Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming: 0/1 Knapsack

The 0/1 Knapsack Problem

- w_i a positive weight
- b_i a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take
 - Objective: maximize $\sum_{i \in T} b_i$

• Constraint:
$$\sum_{i \in T} w_i \le W$$

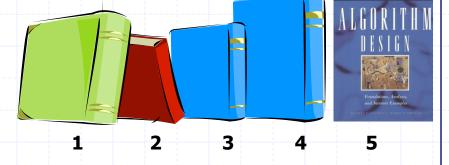
Example

b_i - a positive "benefit"

w_i - a positive "weight"

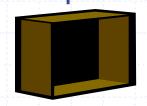
Goal: Choose items with maximum total benefit but with

weight at most W.



Weight: 4 in 2 in 2 in 6 in 2 in Benefit: \$20 \$3 \$6 \$25 \$80

"knapsack"

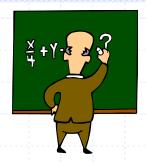


box of width 9 in

Solution:

- item 5 (\$80, 2 in)
- item 3 (\$6, 2in)
- item 1 (\$20, 4in)

The General Dynamic Programming Technique

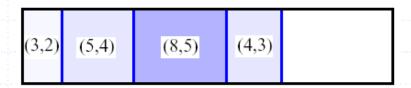


- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

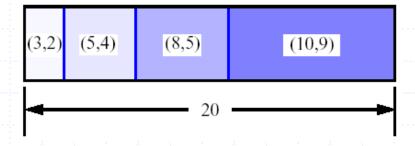
A 0/1 Knapsack Algorithm, First Attempt

- ◆ S_k: Set of items numbered 1 to k.
- \bullet Define B[k] = best selection from S_k.
- Problem: does not have subproblem optimality:
 - Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of (benefit, weight) pairs and total weight W = 20

Best for S₄:



Best for S_5 :



A 0/1 Knapsack Algorithm, Second (Better) Attempt

- ♦ S_k: Set of items numbered 1 to k.
- Define B[k,w] to be the best selection from S_k with weight at most w
- Good news: this does have subproblem optimality.

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- I.e., the best subset of S_k with weight at most w is either
 - the best subset of S_{k-1} with weight at most w or
 - the best subset of S_{k-1} with weight at most w-w_k plus item k

0/1 Knapsack Algorithm

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- Recall the definition of B[k,w]
- Since B[k,w] is defined in terms of B[k−1,*], we can use two arrays of instead of a matrix
- Running time: O(nW).
- Not a polynomial-time algorithm since W may be large
- This is a pseudo-polynomial time algorithm

Algorithm 01Knapsack(S, W):

Input: set S of n items with benefit b_i and weight w_i ; maximum weight W

Output: benefit of best subset of S with weight at most W

let \boldsymbol{A} and \boldsymbol{B} be arrays of length $\boldsymbol{W}+1$

for
$$w \leftarrow 0$$
 to W do $B[w] \leftarrow 0$

for $k \leftarrow 1$ to n do copy array B into array A

for
$$w \leftarrow w_k$$
 to W do
if $A[w \neg w_k] + b_k > A[w]$ then

 $B[w] \leftarrow A[w \neg w_k] + b_k$

return B[W]