NP-Completeness (2)

Problem Reduction

A language M is polynomial-time reducible to a language L if an instance x for M can be transformed in polynomial time to an instance x' for L such that x is in M if and only if x' is in L.

A problem (language) L is NP-hard if every problem in NP is polynomial-time reducible to L.

A problem (language) is NP-complete if it is in NP and it is NP-hard.

CIRCUIT-SAT is NP-complete:
- CIRCUIT-SAT is in NP
- For every M in NP, M \Rightarrow \text{CIRCUIT-SAT}.

Transitivity of Reducibility

If A \Rightarrow B and B \Rightarrow C, then A \Rightarrow C.

An input x for A can be converted to x' for B, such that x is in A if and only if x' is in B. Likewise, for B to C.

Convert x' into x" for C such that x' is in B iff x" is in C. Hence, if x is in A, x' is in B, and x" is in C.

Likewise, if x" is in C, x' is in B, and x is in A.

Thus, A \Rightarrow C, since polynomial-time is closed under composition.

Types of reductions:
- Local replacement: Show A \Rightarrow B by dividing an input to A into components and show how each component can be converted to a component for B.
- Component design: Show A \Rightarrow B by building special components for an input of B that enforce properties needed for A, such as "choice" or "evaluate."

SAT

A Boolean formula is a formula where the variables and operations are Boolean (0/1):
- OR: +, AND: (times), NOT: ¬

SAT: Given a Boolean formula S, is S satisfiable, that is, can we assign 0's and 1's to the variables so that S is 1 ("true")?

Easy to see that CNF-SAT is in NP:
- Non-deterministically choose an assignment of 0's and 1's to the variables and then evaluate each clause. If they are all 1 ("true"), then the formula is satisfiable.

SAT is NP-complete

Reduce CIRCUIT-SAT to SAT.
- Given a Boolean circuit, make a variable for every input and gate.
- Create a sub-formula for each gate, characterizing its effect. Form the formula as the output variable AND-ed with all these sub-formulas:
 - Example: \text{m((a+b)\leftrightarrow e)(c\leftrightarrow \neg f)(d\leftrightarrow \neg g)(e\leftrightarrow \neg h)(ef\leftrightarrow i)…}

The formula is satisfiable if and only if the Boolean circuit is satisfiable.
NP-Completeness 7

The SAT problem is still NP-complete even if the formula is a conjunction of disjuncts, that is, it is in conjunctive normal form (CNF).

The SAT problem is still NP-complete even if it is in CNF and every clause has just 3 literals (a variable or its negation):

\[(a+b+\neg d)(\neg a+\neg c+e)(\neg b+d+e)(a+\neg c+\neg e)\]

Reduction from SAT (See §13.3.1).

NP-Completeness 8

Vertex Cover

A vertex cover of graph G=(V,E) is a subset W of V, such that, for every edge (a,b) in E, a is in W or b is in W.

VERTEX-COVER: Given an graph G and an integer K, is does G have a vertex cover of size at most K?

VERTEX-COVER is in NP: Non-deterministically choose a subset W of size K and check that every edge is covered by W.

NP-Completeness 9

Vertex-Cover is NP-complete

Reduce 3SAT to VERTEX-COVER.

Let S be a Boolean formula in CNF with each clause having 3 literals.

For each variable x, create a node for x and \(\neg x\), and connect these two:

For each clause \((a+b+c)\), create a triangle and connect these three nodes.

\[\text{Example: (a+b+c)(\neg a+b+\neg c)(\neg b+\neg c+\neg d)}\]

Graph has vertex cover of size \(K=4+6=10\) iff formula is satisfiable.

NP-Completeness 10

Vertex-Cover is NP-complete

Completing the construction

Connect each literal in a clause triangle to its copy in a variable pair.

E.g., a clause \((\neg x+y+z)\)

Let n=# of variables
Let m=# of clauses
Set \(K=n+2m\)

This graph has a clique of size 5

NP-Completeness 11

Vertex-Cover is NP-complete

Example: (a+b+c)(\neg a+b+\neg c)(\neg b+\neg c+\neg d)

Graph has vertex cover of size \(K=4+6=10\) iff formula is satisfiable.

NP-Completeness 12

Clique

A clique of a graph G=(V,E) is a subgraph C that is fully-connected (every pair in C has an edge).

CLIQUE: Given a graph G and an integer K, is there a clique in G of size at least K?

This graph has a clique of size 5

CLIQUE is in NP: non-deterministically choose a subset C of size K and check that every pair in C has an edge in G.
CLIQUE is NP-Complete

- Reduction from VERTEX-COVER.
- A graph G has a vertex cover of size K if and only if its complement has a clique of size $n-K$.

Some Other NP-Complete Problems

- **SET-COVER:** Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?
 - NP-complete by reduction from VERTEX-COVER
- **SUBSET-SUM:** Given a set of integers and a distinguished integer K, is there a subset of the integers that sums to K?
 - NP-complete by reduction from VERTEX-COVER

Some Other NP-Complete Problems

- **0/1 Knapsack:** Given a collection of items with weights and benefits, is there a subset of weight at most W and benefit at least K?
 - NP-complete by reduction from SUBSET-SUM
- **Hamiltonian-Cycle:** Given a graph G, is there a cycle in G that visits each vertex exactly once?
 - NP-complete by reduction from VERTEX-COVER
- **Traveling Salesperson Tour:** Given a complete weighted graph G, is there a cycle that visits each vertex and has total cost at most K?
 - NP-complete by reduction from Hamiltonian-Cycle.