# More NP-complete Problems

# Theorem: (proven in previous class)

```
If: Language A is NP-complete
Language B is in NP
A is polynomial time reducible to B
```

Then: B is NP-complete

Using the previous theorem, we will prove that 2 problems are NP-complete:

Vertex-Cover

Hamiltonian-Path

#### Vertex Cover

Vertex cover of a graph is a subset of nodes  $\mathcal{S}$  such that every edge in the graph touches one node in  $\mathcal{S}$ 



## Size of vertex-cover is the number of nodes in the cover

Example: |S|=4



Fall 2006

#### Corresponding language:

VERTEX-COVER = 
$$\{\langle G, k \rangle:$$
 graph G contains a vertex cover of size  $k$ 

#### Example:



$$\langle G',4\rangle \in VERTEX - COVER$$

#### Theorem: VERTEX-COVER is NP-complete

#### Proof:

- 1. VERTEX-COVER is in NP Can be easily proven
- 2. We will reduce in polynomial time 3CNF-SAT to VERTEX-COVER (NP-complete)

Let  $\varphi$  be a 3CNF formula with m variables and  $\ell$  clauses

#### Example:

$$\varphi = (X_1 \lor X_2 \lor X_3) \land (\overline{X_1} \lor \overline{X_2} \lor \overline{X_4}) \land (\overline{X_1} \lor X_3 \lor X_4)$$
Clause 1 Clause 2 Clause 3

$$m=4$$

$$/=3$$

# Formula $\varphi$ can be converted to a graph G such that:

 $\varphi$  is satisfied if and only if

G Contains a vertex cover of size k = m + 2/

9

$$\varphi = (X_1 \lor X_2 \lor X_3) \land (\overline{X_1} \lor \overline{X_2} \lor \overline{X_4}) \land (\overline{X_1} \lor \overline{X_3} \lor X_4)$$
Clause 1 Clause 2 Clause 3

### Variable Gadgets 2m nodes









## Clause Gadgets

 $X_1$   $X_2$   $X_3$ 

Clause 1



 $x_1$   $x_3$   $x_4$ Clause 3

10

3/ nodes

$$\varphi = (X_1 \lor X_2 \lor X_3) \land (\overline{X_1} \lor \overline{X_2} \lor \overline{X_4}) \land (\overline{X_1} \lor \overline{X_3} \lor X_4)$$
Clause 1 Clause 2 Clause 3



Fall 2006 Costas Busch - RPI

### First direction in proof:

If  $\varphi$  is satisfied, then G contains a vertex cover of size k=m+2l

#### Example:

$$\varphi = (X_1 \vee X_2 \vee X_3) \wedge (\overline{X_1} \vee \overline{X_2} \vee \overline{X_4}) \wedge (\overline{X_1} \vee \overline{X_3} \vee X_4)$$

#### Satisfying assignment

$$x_1 = 1$$
  $x_2 = 0$   $x_3 = 0$   $x_4 = 1$ 

We will show that G contains a vertex cover of size

$$k = m + 2l = 4 + 2 \cdot 3 = 10$$

$$\varphi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_3} \vee x_4)$$

$$x_1 = 1 \qquad x_2 = 0 \qquad x_3 = 0 \qquad x_4 = 1$$



Put every satisfying literal in the cover

$$\varphi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_3} \vee x_4)$$

$$x_1 = 1 \qquad x_2 = 0 \qquad x_3 = 0 \qquad x_4 = 1$$



Select one satisfying literal in each clause gadget and include the remaining literals in the cover

# This is a vertex cover since every edge is adjacent to a chosen node



### Explanation for general case:









Edges in variable gadgets are incident to at least one node in cover

# Edges in clause gadgets are incident to at least one node in cover, since two nodes are chosen in a clause gadget







# Every edge connecting variable gadgets and clause gadgets is one of three types:



All adjacent to nodes in cover

Fall 2006 Costas Busch - RPI

### Second direction of proof:

If graph G contains a vertex-cover of size k = m + 2l then formula  $\varphi$  is satisfiable

# Example:



# To include "internal' edges to gadgets, and satisfy k = m + 2l

exactly one literal in each variable gadget is chosen









m chosen out of 2m

exactly two nodes in each clause gadget is chosen







2/ chosen out of 3/

# For the variable assignment choose the literals in the cover from variable gadgets









$$X_1 = 1$$

$$X_2 = 0$$

$$X_3 = 0$$

$$X_4 = 1$$

$$\varphi = (X_1 \vee X_2 \vee X_3) \wedge (\overline{X_1} \vee \overline{X_2} \vee \overline{X_4}) \wedge (\overline{X_1} \vee \overline{X_3} \vee X_4)$$

$$\varphi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_3} \vee x_4)$$
is satisfied with

$$x_1 = 1$$
  $x_2 = 0$   $x_3 = 0$   $x_4 = 1$ 
 $x_1 - \overline{x_1}$   $x_2 - \overline{x_2}$   $x_3 - \overline{x_3}$   $x_4 - \overline{x_4}$ 
 $x_1 - \overline{x_1}$   $x_2 - \overline{x_2}$   $x_3 - \overline{x_3}$   $x_4 - \overline{x_4}$ 

since the respective literals satisfy the clauses

Theorem: HAMILTONIAN-PATH

is NP-complete

#### Proof:

1. HAMILTONIAN-PATH is in NP Can be easily proven

2. We will reduce in polynomial time 3CNF-SAT to HAMILTONIAN-PATH (NP-complete)

$$(X_1 \vee X_2) \wedge (\overline{X_1} \vee X_2)$$



$$(X_1 \vee X_2) \wedge (\overline{X_1} \vee X_2)$$









