Nondeterministic Finite Automata

Nondeterminism
Subset Construction

Nondeterminism

- A nondeterministic finite automaton
 has the ability to be in several states at
 once.
- Transitions from a state on an input symbol can be to any set of states.

Nondeterminism – (2)

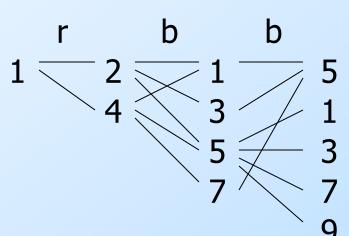
- Start in one start state.
- Accept if any sequence of choices leads to a final state.
- Intuitively: the NFA always "guesses right."

Example: Moves on a Chessboard

- States = squares.
- Inputs = r (move to an adjacent red square) and b (move to an adjacent black square).
- Start state, final state are in opposite corners.

Example: Chessboard – (2)

1	2	3
4	5	6
7	8	9



		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

Accept, since final state reached

Formal NFA

- A finite set of states, typically Q.
- An input alphabet, typically Σ.
- A transition function, typically δ.
- A start state in Q, typically q₀.
- A set of final states F ⊆ Q.

Transition Function of an NFA

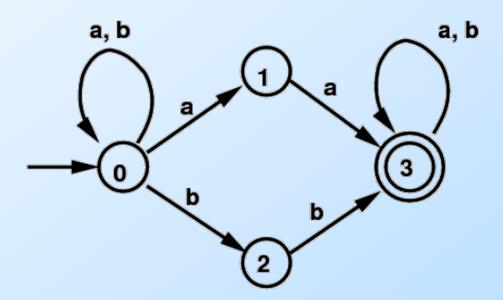
- $\delta(q, a)$ is a set of states.
- Extend to strings as follows:
- Basis: $\delta(q, \epsilon) = \{q\}$
- Induction: $\delta(q, wa) = \text{the union over all}$ states p in $\delta(q, w)$ of $\delta(p, a)$

Language of an NFA

- A string w is **accepted** by an NFA if $\delta(q_0, w)$ contains at least one final state.
- That is, there exists a sequence of valid transitions from q₀ to a final state given the input w.
- The language of the NFA is the set of strings it accepts.

Example NFA

 Set of all strings with two consecutive a's or two consecutive b's:



 Note that some states have an empty transition on an a or b, and some have multiple transitions on a or b.

Example 2: Language of an NFA

1	2	3
4	5	6
7	8	9

- For our chessboard NFA we saw that rbb is accepted.
- If the input consists of only b's, the set of accessible states alternates between {5} and {1,3,7,9}, so only even-length, nonempty strings of b's are accepted.
- What about strings with at least one r?

Equivalence of DFA's, NFA's

- A DFA can be turned into an NFA that accepts the same language.
- If $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.
- Then the NFA is always in a set containing exactly one state – the state the DFA is in after reading the same input.

Equivalence -(2)

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ , transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ.
 - Start state {q₀}.
 - Final states = all those with a member of F.

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction – (2)

- The transition function δ_D is defined by:
- $\delta_D(\{q_1,...,q_k\}, a)$ is the union over all i = 1,...,k of $\delta_N(q_i, a)$.
- Example: We'll construct the DFA equivalent of our "chessboard" NFA.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1} {2,4} {5}	{2,4}	{5}

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to.

16

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
\rightarrow {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }		
{2,4,6,8}		
{1,3,5,7}		

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5 }
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5 }	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
*	{1,3,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
[*] {1,3,7,9}	{2,4,6,8}	{5 }
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}
{2,4} {5} {2,4,6,8} {1,3,5,7} \$ {1,3,7,9}	{2,4,6,8} {2,4,6,8} {2,4,6,8} {2,4,6,8} {2,4,6,8}	{1,3,5,7} {1,3,7,9} {1,3,5,7,9} {1,3,5,7,9} {5}

Proof of Equivalence: Subset Construction

- The proof is almost a pun.
- Show by induction on |w| that

$$\delta_{N}(q_0, w) = \delta_{D}(\{q_0\}, w)$$

• Basis: $W = \epsilon$: $\delta_{N}(q_{0}, \epsilon) = \delta_{D}(\{q_{0}\}, \epsilon) = \{q_{0}\}.$

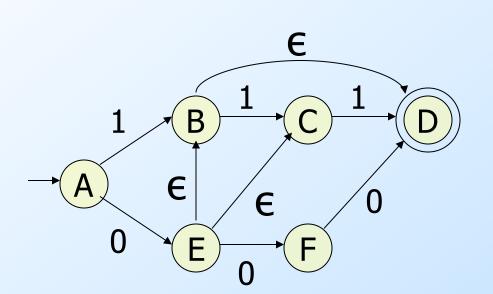
Induction

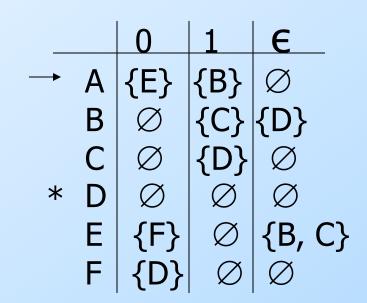
- Assume IH for strings shorter than w.
- Let w = xa; IH holds for x.
- Let $\delta_N(q_0, x) = \delta_D(\{q_0\}, x) = S$.
- Let T = the union over all states p in S of $\delta_N(p, a)$.
- Then $\delta_{N}(q_{0}, w) = \delta_{D}(\{q_{0}\}, w) = T$.
 - For NFA: the extension of δ_N .
 - For DFA: definition of δ_D plus extension of δ_D .
 - That is, $\delta_D(S, a) = T$; then extend δ_D to w = xa.

NFA's With ϵ -Transitions

- We can allow state-to-state transitions on ε input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.

Example: ϵ -NFA





Closure of States

 CL(q) = set of states you can reach from state q following only arcs labeled
 €.

Example: CL(A) = {A};
 CL(E) = {B, C, D, E}.

 Closure of a set of states = union of the closure of each state.

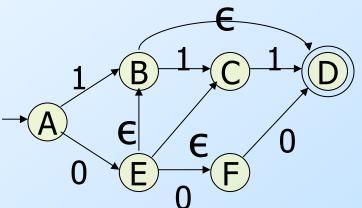
Extended Delta

- Basis: $\delta(q, \epsilon) = CL(q)$.
- Induction: $\hat{\delta}(q, xa)$ is computed as follows:
 - 1. Start with $\hat{\delta}(q, x) = S$.
 - 2. Take the union of $CL(\delta(p, a))$ for all p in S.
- Intuition: δ(q, w) is the set of states you can reach from q following a path labeled w.

And notice that $\delta(q, a)$ is *not* that set of states, for symbol a.

Example:

Extended Delta



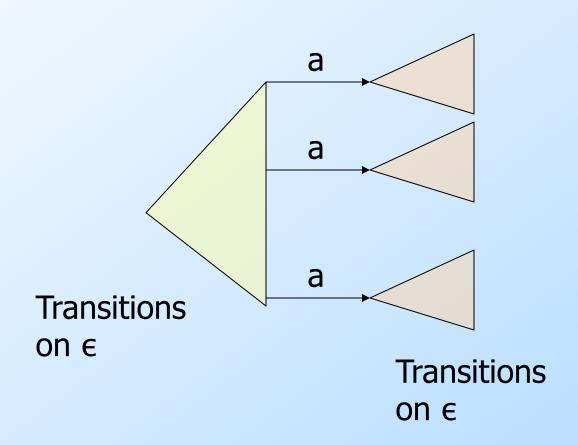
- $\delta(A, \epsilon) = CL(A) = \{A\}.$
- $\delta(A, 0) = CL(\{E\}) = \{B, C, D, E\}.$
- $\delta(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- Language of an ε-NFA is the set of strings w such that δ(q₀, w) contains a final state.

Equivalence of NFA, ϵ -NFA

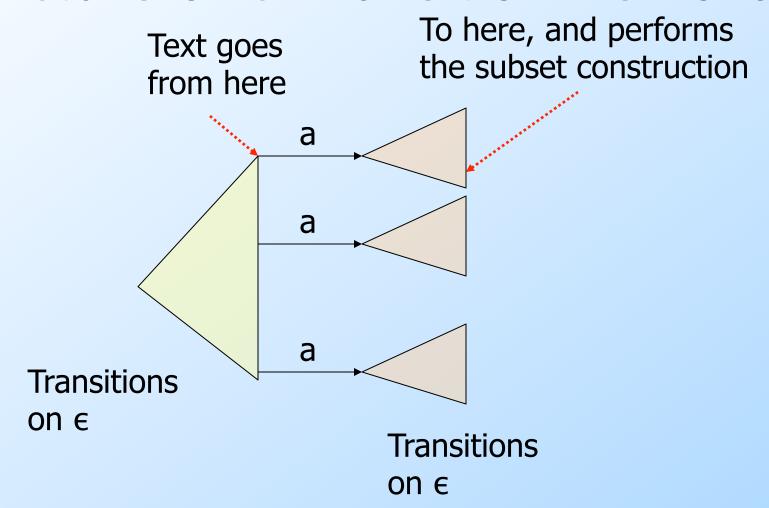
- Every NFA is an ε-NFA.
 - It just has no transitions on ϵ .
- Converse requires us to take an ε-NFA and construct an NFA that accepts the same language.
- We do so by combining ϵ —transitions with the next transition on a real input.

Warning: This treatment is a bit different from that in the text.

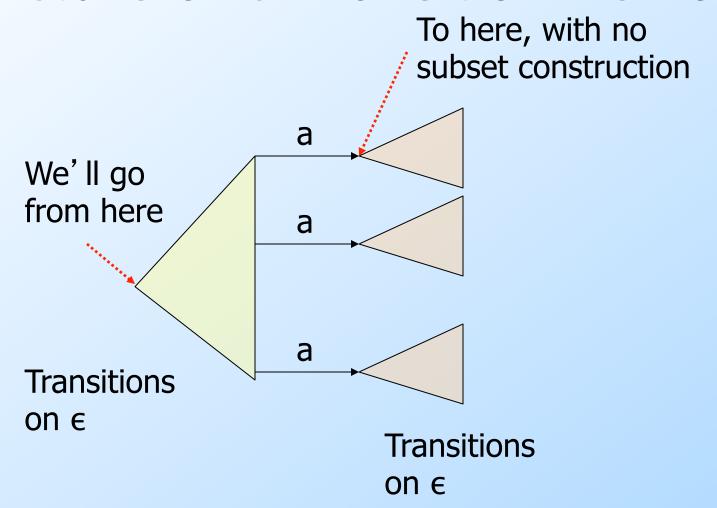
Picture of ε-Transition Removal



Picture of ϵ -Transition Removal



Picture of ε-Transition Removal



Equivalence -(2)

- Start with an ϵ -NFA with states Q, inputs Σ , start state q_0 , final states F, and transition function δ_E .
- Construct an "ordinary" NFA with states Q, inputs Σ , start state q_0 , final states F', and transition function δ_N .

Equivalence – (3)

- Compute $\delta_N(q, a)$ as follows:
 - 1. Let S = CL(q).
 - 2. $\delta_N(q, a)$ is the union over all p in S of $\delta_F(p, a)$.
- F' = the set of states q such that CL(q) contains a state of F.
- Intuition: δ_N incorporates ϵ —transitions before using a but not after.

Equivalence – (4)

Prove by induction on |w| that

$$CL(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w).$$

 Thus, the ε-NFA accepts w if and only if the "ordinary" NFA does.

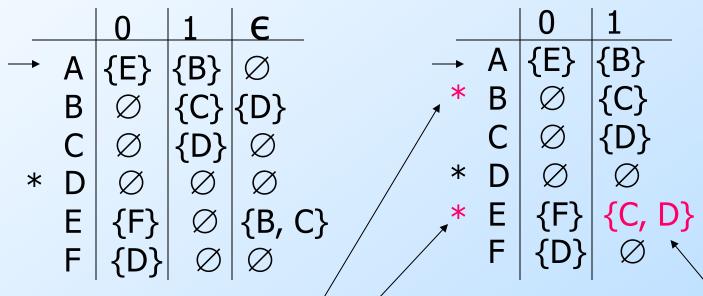
Interesting

closures: CL(B)

 $= \{B,D\}; CL(E)$

 $= \{B,C,D,E\}$

Example: ε-NFAto-NFA



€-NFA

Since closures of B and E include final state D.

Since closure of E includes B and C; which have transitions on 1 to C and D.

Summary

- DFA's, NFA's, and ϵ -NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented in linear time!