The Satisfiability Problem

Cook’s Theorem: An NP-Complete
Problem

Restricted SAT: CSAT, 3SAT

Boolean Expressions

#Boolean, or propositional-logic
expressions are built from variables and
constants using the operators AND, OR,
and NOT.

D Constants are true and false, represented
by 1 and 0, respectively.

D We'll use concatenation (juxtaposition) for
AND, + for OR, - for NOT,

: Boolean expression

& (X+Yy)(-X + -y) is true only when
variables x and y have opposite truth
values.

¢ Note: parentheses can be used at will,
and are needed to modify the
precedence order NOT (highest), AND,
OR.

The Satisfiability Problem (SA7)

¢ Study of boolean functions generally is
concerned with the set of fruih
assignments (assignments of 0 or 1 to
each of the variables) that make the
function true.

¢ NP-completeness needs only a simpler
question (SAT): does there exist a truth
assignment making the function true?

: SAT

¢ (x+Yy)(-x + -y) is satisfiable.

¢ There are, in fact, two satisfying truth
assignments:
1. x=0; y=1.
2. x=1; y=0.

¢ X(-X) is not satisfiable.

SAT

as a Language/Problem

& An instance of SAT is a boolean
function.

& Must
®Use s

e coded in a finite alphabet.

necial symbols (,), +, - as

themselves.

® Represent the i-th variable by symbol x
followed by integer i in binary.

SAT isin NP

¢ There is a multitape NTM that can decide if a
Boolean formula of length n is satisfiable.

¢ The NTM takes O(n?) time along any path.

4 Use nondeterminism to guess a truth
assignment on a second tape.

® Replace all variables by guessed truth values.
Evaluate the formula for this assignment.
¢ Accept if true.

Cook’s Theorem

¢ SAT is NP-complete.

D Really a stronger result: formulas may be
in conjunctive normal form (CSAT) — later.
¢ To prove, we must show how to
construct a polytime reduction from
each language L in NP to SAT.

[Details omitted — see book, or slides
for CIRCUIT-SAT.]

Conjunctive Normal Form

A Boolean formula is in Conjunctive
Normal Form (CNF) if it is the AND of
Clauses.

& Each clause is the OR of /iterals.

¢ A literal is either a variable or the negation
of a variable.

& Problem CSAT : is a Boolean formula in
CNF satisfiable?

®Example: (X + -y + 2)(-X)(-W + X + y + Z)

9

NP-Completeness of CSAT

® Cook’s proof (from 1971) can be
modified to produce a formula in CNF.

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be '"reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here '"'reduced'" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle 1is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle'") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [17.

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguis%ed states called
the query state, yes state, and no

state, respectively. If M 1is a

10

ther NP-Complete Problems

® There are a lot of other problems that
can be shown to be NP-complete via a
reduction from SAT. E.qg., [Karp, 1972]:

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS+

Richard M. Karp

University of California at Berkeley

Abstract: A large class of computational problems involve the
determination of properties of graphs, digraphs, integers, arrays
of integers, finite families of finite sets, boolean formulas and
elements of other countable domains. Through simple encodings
from such domains into the set of words over a finite alphabet
these problems can be converted into language recognition problems,
and we can inquire into their computational complexity. It is
reasonable to consider such a problem satisfactorily solved when
an algorithm for its solution is found which terminates within a
number of steps bounded by a polynomial in the length of the input.
We show that a large number of classic unsolved problems of cover-
ing, matching, packing, routing, assignment and sequencing are
equivalent, in the sense that either each of them possesses a
polynomial-bounded algorithm or none of them does.

Richard Karp’s Original Set

¢ A set of polynomial-time reductions.

SATISFIABILITY
CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET
’////////:;;59VER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED NET EXACT CLIQUE
NODE SET ARC SET HAMILTON . oo .. COVER COVER
CIRCUIT
- \ G .
3 DI?%E?;ENAL KNAPSACK nggiN S;g;EER
UNDIRECTED MA
HAMILTON
CIRCULT
SEQUENCING PARTITION

-
(o]
MAX CUT 3
bl
[w)
z
FIGURE 1 - Complete Problems x
>
bl
el

k-SAT

¢ If a boolean formula is in CNF and
every clause consists of exactly k
literals, we say the boolean formula is
an instance of A-SA7.

D Say the formula is in A&~-CNF.

: 3-SAT formula
X+y+z2)(X+-y+2)(X+Yy+-2)(X+-y+-2)

13

k-SAT Facts

¢ 2-SAT is in P.
¢ 3-SAT is NP-complete.

SATISFIABILITY

/

SATISFIABILITY WITH AT
MOST 3 LITERALS PER CLAUSE
I

14

Proof: 2SAT is in P (Sketch)

¢ Pick an assignment for some variable,
say X = true.

® Any clause with —x forces the other
literal to be true.
D : (-X + -y) forces y to be false.

¢ Keep seeing what other truth values are
forced by variables with known truth
values.

15

Proof — (2)

4 One of three things can happen:

1.

You reach a contradiction (e.qg., z is
forced to be both true and false).

. 'You reach a point where no more

variables have their truth value forced,
but some clauses are not yet made true.

. 'You reach a satisfying truth assignment.

16

Proof — (3)

¢ Case 1: (Contradiction) There can only
be a satisfying assignment if you use
the other truth value for x.
D Simplify the formula by replacing x by this
truth value and repeat the process.

¢ Case 3: You found a satisfying
assignment, so answer “yes.”

17

Proof — (4)

Case 2: (You force values for some
variables, but other variables and
clauses are not affected).

D Adopt these truth values, eliminate the
clauses that they satisfy, and repeat.

¢1In Cases 1 and 2 you have spent O(n?)
time and have reduced the length of
the formula by > 1, so O(n?) total.

18

3SAT

This problem is NP-complete.

®Clearly it is in NP:

1. Guess an assignment of true and false to
the variables

2. Test whether the Boolean formula is true.

19

3SAT — (2)

¢ \We need to reduce every CNF formula F
to some 3-CNF formula that is
satisfiable if and only if F is.

Reduction involves introducing new
variables into long clauses, so we can
split them apart.

20

Reduction of CSAT to 3SAT

®Let (X;+...+X,) be a clause in some
CSAT instance, with n > 4.

D Note: the x's are literals, not variables; any
of them could be negated variables.

¢ Introduce new variables y;,...,Y,.; that
appear in no other clause.

21

CSAT to 3SAT — (2)

®Replace (X{+...+X,) by

(Xy+X+Y 1) (X3+Yo+ -Yy) oo (Xi+HYi+ -Yi)
(Xn-2+Yn-3+ 'Yn-4)(xn—1+xn+ 'Yn-3)

¢ If there is a satisfying assignment of the
X's for the CSAT instance, then one of
the literals x; must be made true.

®Assign y; = true if j < i-1 and y; = false
for larger j.

22

CSAT to 3SAT - (3)

& \We are not done.

¢ We also need to show that if the
resulting 3SAT instance is satisfiable,
then the original CSAT instance was
satisfiable.

23

CSAT to 3SAT — (4)

#® 5Suppose (X;+X;+Y1)(X3+Y,+ -Yy)
(Xn-2+Yn-3+ 'Yn-4)(xn-1+xn+ 'Yn—3)
is satisfiable, but none of the x’s is true.
® The first clause forces y, = true.
® Then the second clause forces y, = true.
¢ And so on ... all the y's must be true.
¢ But then the last clause is false.

24

CSAT to 3SAT - (5)

® There is a little more to the reduction,
for handling clauses of 1 or 2 literals.

®Replace (x) by (X+y;+Y,) (X+Yy;+ -Y,)
(X+ -yi1+Y,) (X+ -y + -Y,).
®Replace (W+Xx) by (W+X+y)(W+X+ -y).

® Remember: the y’s are different
variables for each CNF clause.

25

CSAT to 3SAT Running Time

This reduction is surely polynomial.

¢ 1n fact it is linear in the length of the
CSAT instance.

® Thus, we have polytime-reduced CSAT
to 3SAT.

#Since CSAT is NP-complete, so is 3SAT.

26

