1. Please define each of the following terms:
 (a) line arrangement
 (b) convex hull
 (c) ϵ-net
 (d) upper envelope
 (e) Delaunay triangulation

2. Draw, as best you can, the arrangement of the following set of lines:

 $\begin{align*}
 x + y &= 1 \\
 2x - y &= 1 \\
 3x + y &= 3 \\
 x + 2y &= 2 \\
 -x - y &= 1
 \end{align*}$

 Also, please briefly describe an $O(n^2)$-time method for constructing the arrangement of n lines in the plane.

3. Suppose you are given a trapezoidal decomposition of a simple polygon P. Briefly describe a linear-time method for producing a triangulation of P.

4. Sketch a fast method for constructing the convex hull of n points in \mathbb{R}^3 (i.e., 3-dimensional Euclidean space). How can your method be used to construct the Delaunay triangulation of n points in the plane?

5. Prove that the total size of the arrangement of n planes in \mathbb{R}^3 is $O(n^3)$.

6. Recall that an event holds with n-exponential probability if the probability for this event is at least $1 - 1/b^{nc}$ for some constants $b > 1$ and $c > 0$. Let S be a collection of n circles in the plane, and let R be a \sqrt{n}-sized random sample of S. Suppose C is a circle that intersects $n/4$ circles in S. Using one of the well-known Chernoff bounds, show that C intersects at least one circle of R with n-exponential probability.
NOTE: For the remainder of this exam you may assume that you have a subroutine for any problem we discussed in class, provided you can correctly characterize its performance bounds.

7. Let C be a unit cube in \mathbb{R}^3 and let S be a set of n points inside C. Describe an efficient algorithm for finding the largest empty sphere with its center inside C. What is the running time of your method?

8. Let S be a set of n points in the plane (unsorted). Describe a linear-time method for determining the edges of the convex of S that are intersected by a given vertical line L. (Hint: consider the dual problem.)

9. Suppose you are given two convex polygons P and Q that are separated by a line (but you don’t know which one). Give an efficient algorithm for finding the closest pair of points (p, q) such that p is on the boundary of P and q is on the boundary of Q, assuming that P and Q are already stored in main memory in arrays. What is the running time for your method?

10. Suppose you are given a set S of n points in the plane. Define the flatness of S to be the minimum distance between two parallel lines containing the points of S between them.

 (a) Describe an efficient algorithm for finding the flatness of S. What is the running time of your method?

 (b) Generalize this definition of flatness to 3-dimensional sets of points.

 (c) Speculate on how you might extend your 2-dimensional approach to design an algorithm for determining the flatness of a 3-dimensional set of points.