CS 167 — Fall 2006 — Goodrich — Midterm 2

Name:		
ID:		
1:		
2:		
3:		
4:		
5:		
total:		

1. (20 points). Short Answers.
(a) What is the running time for computing $gcd(a, b)$ using Euclid's algorithm?
(b) What is a composite number?
(b) What is a composite number:
(c) What is a public-key cryptosystem?
(d) How can a public key encryption scheme, like the RSA algorithm, be used to compute a
digital signature on a message M ?

2. (20 points). Explain how to compute $a^{-1} \mod n$ when gcd(a, n) = 1.

3. (20 points). Briefly sketch the main steps of the repeated squaring algorithm for computing $a^b \mod n$.	

4.	(20 points).	Explain how encryption	and decryption	is done in the	RSA cyptosystem.

5. (20 points). Alice wants to send Bob a message M that is the price she is willing to pay for his used car (M is just an integer in binary). She uses the RSA algorithm to encrypt M into the ciphertext C using Bob's public key, so only he can decrypt it. But Eve has intercepted C and she also knows Bob's public key. Explain how Eve can alter the ciphertext C to change it into C' so that if she sends C' to Bob (with Eve pretending to be Alice), then, after Bob has decrypted C', he will get a plaintext message that is twice the value of M.