1. **30 points.** Define each of the following terms (using at most 2 sentences each):

 (a) polygon triangulation,

 (b) convex hull,

 (c) simple polygon.

2. **30 points.** Describe an efficient plane-sweeping method for finding the convex hull of \(n \) points in the plane. Be sure to indicate the invariant, events, and data structures needed for this plane sweep, as well as the methods for processing each event.

3. **30 points.** Describe the main components of a segment tree defined on a set \(I \) of \(n \) intervals from \(\mathbb{R} \), the set of real numbers. Describe how one can use this segment tree to report all the intervals containing a query point \(x \) in \(O(\log n + k) \) time, where \(k \) is the number of intervals in \(I \) that contain \(x \).

 NOTE: For the remainder of this exam you may assume that you have a subroutine for any problem we discussed in class, provided you can correctly characterize its performance bounds.

4. **30 points.** Describe an efficient algorithm for determining the area of a simple polygon \(P \) containing \(n \) vertices. What is the running time of your method?

5. **30 points.** Suppose you are given a set \(S \) of \(n \) axis-aligned rectangles in the plane. Describe an efficient method for finding a point \(p \) in the plane that is contained in the most number of rectangles from \(S \). What is the running time of your method?