Midterm Exam - 150 points Computational Geometry April 9, 1996

1. 30 points. Define each of the following terms (using at most 2 sentences each):
(a) star-shaped polygon,
(b) Delaunay triangulation,
(c) line arrangement.

2. 30 points.

(a) Draw, as best you can, the convex hull for the set of points

$$
\{(2,1),(0,0),(2,5),(3,2),(4,3),(5,3),(5,1)\}
$$

(b) Sketch an efficient algorithm to construct the convex hull for a set S of n points in the plane.

NOTE: For the remainder of this exam you may assume that you have a subroutine for any problem we discussed in class, provided you can correctly characterize its performance bounds.
3. 30 points. Describe an efficient algorithm for determining if a set S of n points in the plane can be separated from a point p by a line.
4. 30 points. Given a set S of n points in a rectangle R, describe an efficient algorithm for determining the largest circle C centered inside R that has no point of S inside C 's interior.
5. 30 points. Suppose you are a set S of n line segments in the plane. Sketch an efficient algorithm for finding a line L that intersects the maximum number of segments in S (which, of course, may be much smaller then n).

