Midterm Exam - 150 points Computational Geometry March 15, 1995

1. $\mathbf{3 0}$ points. Define each of the following terms (using at most 2 sentences each):
(a) convex hull of a set of points,
(b) Voronoi diagram,
(c) point location data structure.

2. 30 points.

(a) Draw, as best you can, the Voronoi diagram for the set of points

$$
\{(2,1),(0,0),(2,5),(3,2),(4,3),(5,3),(5,1)\} .
$$

(b) Sketch an efficient algorithm to construct a Voronoi diagram for a set S of n points in the plane.

NOTE: For the remainder of this exam you may assume that you have a subroutine for any problem we discussed in class, provided you can correctly characterize its performance bounds.
3. 30 points. Suppose you are a set S of n points in the plane. Define the diameter of S to be the largest distance between two points in the set. Briefly describe an $O(n \log n)$ time method for determining the diameter of S.
4. 30 points. Suppose you are given two sets, A and B, of points in the plane, where A and B both contain n points each. Describe an efficient method for finding, for each point in A, its nearest neighbor in B. What is the running time of your method?
5. $\mathbf{3 0}$ points. Suppose you are given a set S of n points in \Re^{3}. Describe an efficient data structure that can determine, for any query point $p \in \Re^{3}$, in $O(\log n)$ time whether p is inside the convex hull of S or not. What is the preprocessing time and space for your data structure?

