Computational Geometry

Line Arrangements Michael Goodrich

Arrangement of Lines

Lines. Not line segments.
Let $\mathrm{L}=\left\{l_{1}, \ldots, l_{n}\right\}$ be a set of n lines in \mathbb{R}^{2}. Then $\mathcal{A}(L)$ is called the arrangement of L. It is defined as the planar subdivision induced by all lines in L.

$\mathcal{A}(L)$ is simple if no three lines meet in one point, and no two lines are parallel.

Arrangement Complexity

Because it's a planar subdivision.
The complexity of $\mathcal{A}(L)$ is its \#vertices + \#edges + \#faces.

\#vertices $\leq\binom{ n}{2}=\frac{n(n-1)}{2}$
We have n lines, and in the worst case every pair intersects (vertex).
\#edges $\leq n^{2}$
On one line we can have at most $n-1$ vertices, so at most n edges total.
$\#$ faces $\leq \frac{n^{2}+n+2}{2}$
Consider an incremental construction, just for counting purposes right now. Let $\mathcal{A}_{i}=\mathcal{A}\left(\left\{l_{1}, \ldots, l_{i}\right\}\right)$. Line l_{i} splits a face of \mathcal{A}_{i-1} in two. This creates i additional faces (since l_{i} has at most i edges in \mathcal{A}_{i} see above).
\Rightarrow \#faces $\operatorname{in} \mathcal{A}(L)=\mathcal{A}\left(\left\{l_{1}, \ldots, l_{n}\right\}\right)=1+\sum_{i=1}^{n} i=1+\frac{n(n+1)}{2}$

Arrangement Construction

Input: A set of n lines $L=\left\{l_{1}, \ldots, l_{n}\right\}$ in \mathbb{R}^{2}
Output: The arrangement $\mathcal{A}_{n}=\mathcal{A}\left(\left\{l_{1}, \ldots, l_{n}\right\}\right)$ stored in a DCEL

1) Sweep-line construction:

Takes $O\left(n^{2} \log n\right)$ time.
2) Incremental construction:

Insert one line after the other. Again let $\mathcal{A}_{i}=\mathcal{A}\left(\left\{l_{1}, \ldots, l_{i}\right\}\right)$.
Construct_arrangement $\left(\mathrm{L}=\left\{l_{1}, \ldots, l_{n}\right\}\right)\{$
$\mathcal{A}_{0}=$ whole plane
for $\mathrm{i}=1$ to $\mathrm{n}\{$
$O(i) \quad \mathcal{A}_{i}=$ insert l_{i} into \mathcal{A}_{i-1} by threading l_{i} through \mathcal{A}_{i-1} face by face and splitting edges and faces accordingly (using the DCEL!).

Runtime: $O\left(\sum_{i=1}^{n} i\right)=O\left(n^{2}\right)$

Zone Theorem

Zone Theorem: Let \mathcal{A} be an arrangement of n lines and let l be another line. The zone of l in \mathcal{A} is the planar subdivision consisting of all faces, edges, and vertices intersected by l. The complexity of the zone of l in \mathcal{A} is $O(n)$.

How can the zone have complexity $O(n)$ if \mathcal{A} has complexity $O\left(n^{2}\right)$?

Zone Theorem Proof

Assume l is horizontal. Also assume \mathcal{A} is simple and as no horizontal edges

Goal: Prove that \# left-bounding edges in the zone is $\leq 3 n$, using induction.

- Base: $n=1$

- Step: $n-1 \rightarrow n$

Let L be a set of n lines and $\mathcal{A}(L)$ its arrangement.

$l_{1}=$ line that has the rightmost intersection with l
$v=$ vertex on l_{1} above l, closest to l
$w=$ vertex on l_{1} below l, closest to l

Zone Theorem Proof

Goal: Prove that \# left-bounding edges in the zone is $\leq 3 n$, using induction.

- Step: $n-1 \rightarrow n$

Let L be a set of lines and $\mathcal{A}(L)$ its arrangement.

$l_{1}=$ line that has the rightmost intersection with l
$v=$ vertex on l_{1} above l, closest to l
$w=$ vertex on l_{1} below l, closest to l

Think about $\mathcal{A}\left(L \backslash\left\{l_{1}\right\}\right)$.
\Rightarrow \# left-bounding edges in $\mathcal{A}\left(L \backslash\left\{l_{1}\right\}\right)$ is $\leq 3(n-1)$ by inductive hypothesis.
Now insert l_{1} into $\mathcal{A}\left(L \backslash\left\{l_{1}\right\}\right)$:
$\Rightarrow \overline{v w}$ is a new edge, and two edges were split into two.
$\Rightarrow 3$ new edges
\Rightarrow No more new edges: Region R is not in zone (l) but is the only part of l_{1} above v that could contribute with left-bounding edges.
\Rightarrow In total, the zone has $3(n-1)+3$ edges

