Computational Geometry

Line Arrangements Michael Goodrich

with slides from Carola Wenk

Arrangement of Lines

Lines. Not line segments.

Let $L = \{l_1, ..., l_n\}$ be a set of *n* lines in \mathbb{R}^2 . Then $\mathcal{A}(L)$ is called the arrangement of L. It is defined as the planar subdivision induced by all lines in L.

 $\mathcal{A}(L)$ is simple if no three lines meet in one point, and no two lines are parallel.

Arrangement Complexity

Because it's a planar subdivision.

The complexity of $\mathcal{A}(L)$ is its #vertices + #edges + #faces.

#vertices $\leq \binom{n}{2} = \frac{n(n-1)}{2}$ We have *n* lines, and in the worst case every pair intersects (vertex).

 $\# edges \le n^2$

On one line we can have at most n - 1 vertices, so at most n edges total.

#faces
$$\leq \frac{n^2+n+2}{2}$$

Consider an incremental construction, just for counting purposes right now. Let $\mathcal{A}_i = \mathcal{A}(\{l_1, ..., l_i\})$. Line l_i splits a face of \mathcal{A}_{i-1} in two. This creates i additional faces (since l_i has at most i edges in \mathcal{A}_i see above).

$$\Rightarrow \# \text{faces in} \mathcal{A}(L) = \mathcal{A}(\{l_1, \dots, l_n\}) = 1 + \sum_{i=1}^n i = 1 + \frac{n(n+1)}{2}$$

 $L = \{l_1, ..., l_n\}$

 l_2

Arrangement Construction

Input: A set of *n* lines $L = \{l_1, ..., l_n\}$ in \mathbb{R}^2 **Output:** The arrangement $\mathcal{A}_n = \mathcal{A}(\{l_1, ..., l_n\})$ stored in a DCEL

1) Sweep-line construction:

Takes $O(n^2 \log n)$ time.

2) Incremental construction:

Insert one line after the other. Again let $A_i = A(\{l_1, ..., l_i\})$.

Construct_arrangement(L = { l_1 , ..., l_n }){

 \mathcal{A}_0 = whole plane for i=1 to n{

0(i)

 $\mathcal{A}_i = \text{insert } l_i \text{ into } \mathcal{A}_{i-1} \text{ by threading } l_i \text{ through } \mathcal{A}_{i-1} \text{ face by face}$ and splitting edges and faces accordingly (using the DCEL!).

Using "zone theorem"

Runtime:
$$O\left(\sum_{i=1}^{n} i\right) = O(n^2)$$

Zone Theorem

Zone Theorem: Let \mathcal{A} be an arrangement of n lines and let l be another line. The *zone* of l in \mathcal{A} is the planar subdivision consisting of all faces, edges, and vertices intersected by l. The complexity of the zone of l in \mathcal{A} is O(n).

How can the zone have complexity O(n) if \mathcal{A} has complexity $O(n^2)$?

Zone Theorem Proof

Assume l is horizontal. Also assume \mathcal{A} is simple and as no horizontal edges

Goal: Prove that # left-bounding edges in the zone is $\leq 3n$, using induction.

- Base: n = 1
- Step: $n 1 \rightarrow n$ Let *L* be a set of *n* lines and $\mathcal{A}(L)$ its arrangement.

- $l_1 =$ line that has the **rightmost** intersection with l
- v = vertex on l_1 **above** l, closest to l
- w = vertex on l_1 **below** l, closest to l

Zone Theorem Proof

left-bounding edges

Goal: Prove that # left-bounding edges in the zone is $\leq 3n$, using induction.

• Step: $n - 1 \rightarrow n$

Let L be a set of lines and $\mathcal{A}(L)$ its arrangement.

 $l_1 = line$ that has the **rightmost** intersection with l

v =vertex on l_1 **above** l, closest to l

w =vertex on l_1 **below** l, closest to l

Think about $\mathcal{A}(L \setminus \{l_1\})$.

 \Rightarrow # left-bounding edges in $\mathcal{A}(L \setminus \{l_1\})$ is $\leq 3(n-1)$ by inductive hypothesis.

Now insert l_1 into $\mathcal{A}(L \setminus \{l_1\})$:

- $\Rightarrow \overline{vw}$ is a new edge, and two edges were split into two.
- \Rightarrow 3 new edges
- \Rightarrow No more new edges: Region *R* is not in zone(l) but is the only part of l_1 above v that could contribute with left-bounding edges.
- \Rightarrow In total, the zone has 3(n-1) + 3 edges

