Chan's Convex Hull Algorithm

Michael T. Goodrich

University of California Q Irvine

Review

- We learned about a binary search method for finding the common upper tangent for two convex hulls separated by a line in O(log n) time.
- This same method also works to find the upper tangent between a point and a convex polygon in $O(\log n)$ time.

More Review

- The upper-hull plane-sweep algorithm runs in $O(n \log n)$ time.
- This algorithm is sometimes called "Graham Scan"
- The Gift Wrapping algorithm runs in $\mathbf{O}(\mathrm{nh})$ time, where h is the size of the hull.
- This algorithm is sometimes called "Jarvis March"
- Which of these is best depends on $\mathrm{h} \longleftarrow$
- It would be nice to have one optimal algorithm for all values of h...

Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions*

Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1Z4

Abstract. We present simple output-sensitive algorithms that construct the convex hull of a set of n points in two or three dimensions in worst-case optimal $O(n \log h)$ time and $O(n)$ space, where h denotes the number of vertices of the convex hull.

Main Idea

- Assume, for now, we have an estimate, m, that is $\mathrm{O}(\mathrm{h})$.
- Divide our set into n / m groups of size O(m) each
\checkmark Find the convex hull of each group in $\mathrm{O}(\mathrm{m}$ log m) time using Graham scan O (om logm)
- Next, do a Jarvis march around all these "mini hulls."

Jarvis March Steps

- Start with a point, p_{k}, on the convex hull
- Find the tangent for every mini hull with p_{k}
- Takes O((n/m)log m) time
- Pick the furthest one
- Repeat

Analysis

- Doing all the Graham scans to build the mini hulls takes $\mathrm{O}((\mathrm{n} / \mathrm{m}) \mathrm{m} \log \mathrm{m})=\mathrm{O}(\mathrm{n} \log \mathrm{m})$ time.
- Doing each Jarvis march step takes $\mathrm{O}((\mathrm{n} / \mathrm{m}) \log \mathrm{m})$ time. There are $h<=m$ such steps to find the convex hull. So all these steps take $\mathrm{O}(\mathrm{n} \log \mathrm{m})$ time.
- If m is $O(h)$, the running time is $O(n \log h)$.
- But we don't know h...

Pseudo Code

Algorithm $\operatorname{Hull2D}(P, m, H)$, where $P \subset E^{2}, 3 \leq m \leq n$, and $H \geq 1$
2. partition P into subsets $P_{1}, \ldots, P_{\lceil n / m\rceil}$ each of size at most m
2. for $i=1, \ldots,\lceil n / m\rceil$ do
3. compute conv $\left(P_{i}\right)$ by Graham's scan and store its vertices in an array in ccw order
$\rightarrow 5 . \quad p_{1} \leftarrow$ the rightmost point of P
6. for $k=1, \ldots, H$ do

Guessing an estimate for h

- Start with $\mathrm{m}=4$.
- Run Chan's algorithm. If it doesn't return incomplete, we're done.
- Otherwise, try again with $\mathrm{m}=\mathrm{m}^{2}$.
- Keep repeating this until we get a complete hull.

The Complete Running Time

- The complete running time (adding up the terms in reverse order):
$O\left(\underline{n} \log h+n \log h^{1 / 2}+n \log h^{1 / 4}+\ldots\right)$
$=O(n \log h+(1 / 2) n \log h+(1 / 4) n \log h+\ldots)$
$=O(n \log h)$.

