Convex Hulls

 \checkmark

Michael T. Goodrich

Review: Convexity

Convex hull

• Smallest convex set containing all *n* points

Convex hull

• Smallest convex set containing all *n* points

input = set of points: $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9$ output = representation of the convex hull: p_4, p_5, p_8, p_2, p_9

Orientation Test

• right turn or left turn (or straight line)

A Better Convex Hull Algorithm

Plane-Sweep Technique

- We "sweep" the plane with a vertical line
- Stop at event points
- Maintain a partial solution for the sweptover area

Events

• Each point determines an event

Upper Hull Algorithm

n / _

Algorithm CONVEXHULL(*P*)

Input. A set *P* of points in the plane.

Output. A list containing the vertices of CH(P) in clockwise order.

- 1. Sort the points by *x*-coordinate, resulting in a sequence p_1, \ldots, p_n .
- 2. Put the points p_1 and p_2 in a list \mathcal{L}_{upper} , with p_1 as the first point.
- 3. for $i \leftarrow 3$ to n
- 4. **do** Append p_i to \mathcal{L}_{upper} .
- 5. **while** \mathcal{L}_{upper} contains more than two points **and** the last three points in \mathcal{L}_{upper} do not make a right turn
- 6. **do** Delete the middle of the last three points from \mathcal{L}_{upper} .
- 7. Put the points p_n and p_{n-1} in a list \mathcal{L}_{lower} , with p_n as the first point.

Upper Hull Algorithm

Algorithm CONVEXHULL(*P*)

Sort the points by *x*-coordinate, resulting in a sequence p_1, \ldots, p_n . Put the points p_1 and p_2 in a list \mathcal{L}_{upper} , with p_1 as the first p_1 in p_2 in a list \mathcal{L}_{upper} is the first p_1 in p_2 in a list \mathcal{L}_{upper} is the first p_2 in p_1 as the first p_2 in p_2 in p_2 in p_2 in p_2 in p_1 as the first p_2 in p_1 as the first p_2 in p_1 as the first p_2 in p_2 *Input.* A set *P* of points in the plane. *Output.* A list containing the vertices of CH(P) in clockwise order. 2. 3. for $i \leftarrow 3$ to n **do** Append p_i to \mathcal{L}_{upper} . **while** \mathcal{L}_{upper} contains more than two points **and** the last three points in \mathcal{L}_{upper} do not make a right turn **do** Delete the middle of the last three points from \mathcal{L}_{upper} . Put the points p_n and p_{n-1} in a list \mathcal{L}_{lower} , with p_n as the first point. > Each iteration - add a point ((n) selete a point) O(n) time t soching: O(nlogn)

Divide-and-Conquer

- If the problem is smaller than a constant, solve it
- Else:
 - Divide the problem into two or more subproblems
 - Solve each subproblem recursively
 - Merge the two solutions together

() (log)

n

Lower Bound for Convex Hull

- A reduction from sorting to convex hull is:
 - Given *n* real values x_i , generate *n* 2D points on the graph of a convex function, e.g. (x_i, x_i^2) .
 - Compute the (ordered) convex hull of the points.
 - The order of the convex hull points is the numerical order of the x_i .
- So CH time is $\Omega(n \log n)$

Convex Hull – Gift Wrapping

- Algorithm:
 - Find a point p_1 on the convex hull (e.g. the lowest point).
 - Rotate counterclockwise a line through p_1 until it touches one of the other points (start from a horizontal orientation).
 - Repeat the last step for the new point.
 - Stop when p_1 is reached again.
 - Uni ead Time Complexity: O(nh), where n is the input size and the output (hull) size.

Convex Hull – Gift Wrapping

- Algorithm:
 - Find a point p_1 on the convex hull (e.g. the lowest point).
 - Rotate counterclockwise a line through p₁ until it touches one of the other points (start from a horizontal orientation).
 - Repeat the last step for the new point.
 - Stop when p_1 is reached again.

Gift Wrapping

- Running time is **output sensitive**
 - The time depends on both the size of the input and the size of the output

Time Complexity: O(*nh*), where *n* is the input size and h_{μ} is the output (hull) size.