Computational Geometry

Delaunay Triangulations Michael Goodrich

Triangulation

- Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq R^{2}$ be a finite set of points in the plane.
- A triangulation of \boldsymbol{P} is a simple, plane (i.e., planar embedded), connected graph $T=(P, E)$ such that
- every edge in E is a line segment,
- the outer face is bounded by edges of $\mathrm{CH}(P)$,
- all inner faces are triangles.

Dual Graph

- Let $G=(V, E)$ be a plane graph. The dual graph G^{*} has
- a vertex for every face of G,
- an edge for every edge of G, between the two faces incident to the original edge

Delaunay Triangulation

- Let G be the plane graph for the Voronoi diagram $\operatorname{VD}(P)$. Then the dual graph G^{*} is called the Delaunay Triangulation DT(\boldsymbol{P}).

Canonical straight-line embedding for $\mathrm{DT}(\mathrm{P})$:

- If P is in general position (no three points on a line, no four points on a circle) then every inner face of $\mathrm{DT}(P)$ is indeed a triangle.
- $\mathrm{DT}(P)$ can be stored as an abstract graph, without geometric information. (No such obvious storing scheme for $\mathrm{VD}(P)$.)

Delaunay Triangulation

- Let G be the plane graph for the Voronoi diagram $\operatorname{VD}(P)$. Then the dual graph G^{*} is called the Delaunay Triangulation DT(\boldsymbol{P}).

Canonical straight-line embedding for $\mathrm{DT}(\mathrm{P})$:

- If P is in general position (no three points on a line, no four points on a circle) then every inner face of $\mathrm{DT}(P)$ is indeed a triangle.
- $\mathrm{DT}(P)$ can be stored as an abstract graph, without geometric information. (No such obvious storing scheme for $\mathrm{VD}(P)$.)

Straight-Line Embedding

- Lemma: $\mathrm{DT}(P)$ is a plane graph, i.e., the straight-line edges do not intersect.
- Proof:
- $\overline{p p^{\prime}}$ is an edge of $\mathrm{DT}(P) \Leftrightarrow$ There is an empty closed disk D_{p} with p and p^{\prime} on its boundary, and its center c on the bisector.
- Let $q q^{\prime}$ be another Delaunay edge that intersects $p p^{\prime}$
$\Rightarrow q$ and q^{\prime} lie outside of D_{p}, , therefore ${ }^{\prime \prime} q^{\prime}$ also intersects $\overline{p c}$ or $\overline{p^{\prime} c}$
- Symmetrically, $\overline{p p^{\prime}}$ also intersects $\overline{q c}$ or $q^{\prime}{ }^{\prime}$

\Rightarrow Contradiction

Characterization I of DT(P)

- Lemma: Let $p, q, r \in P$ let Δ be the triangle they define. Then the following statements are equivalent:
a) Δ belongs to $\mathrm{DT}(P)$
b) The circumcenter c of Δ is a vertex in $\operatorname{VD}(P)$
c) The circumcircle of Δ is empty (i.e., contains no other point of P)

Proof sketch: All follow directly from the definition of $\mathrm{DT}(P)$ in $\mathrm{VD}(P)$. By definition of $\mathrm{VD}(P)$, we know that p, q, r are c 's nearest neighbors.

- Characterization I: Let T be a triangulation of P.

Then $T=\mathrm{DT}(P) \Leftrightarrow$ The circumcircle of any triangle in T is empty.

Illegal Edges

- Definition: Let $p_{i}, p_{i}, p_{k}, p_{l} \in P$. Then $\overline{p_{i} p_{j}}$ is an illegal edge $\Leftrightarrow p_{l}$ lies in the interior of the circle through p_{i}, p_{j}, p_{k}.
- Lemma: Let $p_{i}, p_{j}, p_{k}, p_{l} \in P$.
 Then $p_{i} p_{j}$ is illegal $\Leftrightarrow \min _{1 \leq i \leq 6} \alpha_{i}<\min _{1 \leq i \leq 6} \alpha^{\prime}$

- Theorem (Thales): Let a, b, p, q be four points on a circle, and let r be inside and let s be outside of the circle, such that p, q, r, S lie on the same side of the line through a, b.
Then $\angle a, s, b<\angle a, q, b=\angle a, p, b<\angle a, r, b$
So, $\alpha_{1}=\angle p_{j}, p_{i}, p_{l}<\angle p_{j}, p_{k}, p_{l}=\alpha_{1}^{\prime}$ and $\alpha_{3}=\angle p_{l}, p_{j}, p_{i}<\angle p_{l}, p_{k}, p_{i}=\alpha_{3}^{\prime}$, etc.

Characterization II of DT(P)

- Definition: A triangulation is called legal if it does not contain any illegal edges.
- Characterization II: Let T be a triangulation of P. Then $T=\mathrm{DT}(P) \Leftrightarrow T$ is legal.
- Algorithm Legal_Triangulation (T) :

Input: A triangulation T of a point set P
Output: A legal triangulation of P
while T contains an illegal edge $\overline{p_{i} p_{j}}$ do
//Flip $\overline{p_{i} p_{j}}$
Let $p_{i}, p_{j}, p_{k} p_{l}$ be the quadrilateral containing $\overline{p_{i} p_{j}}$ Remove $\overline{p_{i} p_{j}}$ and add $\overline{p_{k} p_{l}}$
return T

Runtime analysis:

retur

- In every iteration of the loop the angle vector of T (all angles in T sorted by increasing value) increases
- With this one can show that a flipped edge never appears again
- There are $\mathrm{O}\left(n^{2}\right)$ edges, therefore the runtime is $\mathrm{O}\left(n^{2}\right)$

Characterization III of DT(P)

- Definition: Let T be a triangulation of P and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}$ be the angles of the m triangles in T sorted by increasing value. Then $A(T)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}\right)$ is called the angle vector of T.
- Definition: A triangulation T is called angle optimal $\Leftrightarrow A(T)>A\left(T^{\prime}\right)$ for any other triangulation T^{\prime} of the same point set P.
- Let T^{\prime} be a triangulation that contains an illegal edge, and let T^{\prime} ' be the resulting triangulation after flipping this edge. Then $A\left(T^{\prime}\right)>A\left(T^{\prime}\right)$.
- $\quad T$ is angle optimal $\Rightarrow T$ is legal $\Rightarrow T=\mathrm{DT}(P)$
- Characterization III: Let T be a triangulation of P. Then $T=\mathrm{DT}(P) \Leftrightarrow T$ is angle optimal.
(If P is not in general position, then any triangulation obtained by triangulating the faces maximizes the minimum angle.)

Applications of DT

- All nearest neighbors: Find for each $p \in P$ its nearest neighbor $q \in P ; q \neq p$.
- Empty circle property: $p, q \in P$ are connected by an edge in $\mathrm{DT}(P)$ \Leftrightarrow there exists an empty circle passing through p and q. Proof: " $\Rightarrow "$: For the Delaunay edge $p q$ there must be a Voronoi edge. Center a circle through p and q at any point on the Voronoi edge, this circle must be empty.
$" \Leftarrow$ ": If there is an empty circle through p and q, then its center c has to lie on the Voronoi edge because it is equidistant to p and q
 and there is no site closer to c.
- Claim: In DT (P), every $p \in P$ is adjacent to its nearest neighbors. Proof: Let $q \in P$ be a nearest neighbor adjacent to p in $\mathrm{DT}(P)$. Then the circle centered at p with q on its boundary has to be empty, so the circle with diameter $p q$ is empty and $p q$ is a Delaunay edge.

- Algorithm: Find all nearest neighbors in $\mathrm{O}(n)$ time: Check for each $p \in P$ all points connected to p with a Delaunay edge.
- Minimum spanning tree: The edges of every Euclidean minimum spanning tree of P are a subset of the edges of DT (P).

Anditcationsor

- Terrain modeling:
- Model a scanned terrain surface by interpolating the height using a piecewise linear function over R^{2}.

- Angle-optimal triangulations give better approximations / interpolations since they avoid skinny triangles

(a)

(b)

Randomized Incremental Construction of DT(P)

- Start with a large triangle containing P.
- Insert points of P incrementally:
- Find the containing triangle
- Add new edges

- Flip all illegal edges until every edge is legal.

Randomized Incremental Construction of DT(P)

- An edge can become illegal only if one of its incident triangles changes.
- Check only edges of new triangles.
- Every new edge created is incident to p_{r}.
- Every old edge is legal (if p_{r} is on one of the incident triangles, the edge would have been flipped if it were illegal).
- Every new edge is legal (since it has been created from flipping a previously legal edge).

empty circle
\Rightarrow Delaunay edge

Pseudo Code

Algorithm DelaunayTriangulation (P)

Input. A set P of $n+1$ points in the plane.
Output. A Delaunay triangulation of P.

1. Let p_{0} be the lexicographically highest point of P, that is, the rightmost among the points with largest y-coordinate.
2. Let p_{-1} and p_{-2} be two points in \mathbb{R}^{2} sufficiently far away and such that P is contained in the triangle $p_{0} p_{-1} p_{-2}$.
3. Initialize \mathcal{T} as the triangulation consisting of the single triangle $p_{0} p_{-1} p_{-2}$.
4. Compute a random permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $P \backslash\left\{p_{0}\right\}$.
5. for $r \leftarrow 1$ to n
6. do ($*$ Insert p_{r} into $\left.\mathcal{T}: *\right)$
7. Find a triangle $p_{i} p_{j} p_{k} \in \mathcal{T}$ containing p_{r}.
8. if p_{r} lies in the interior of the triangle $p_{i} p_{j} p_{k}$
9.

then Add edges from p_{r} to the three vertices of $p_{i} p_{j} p_{k}$, thereby splitting $p_{i} p_{j} p_{k}$ into three triangles.
10. LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$

LegalizeEdge $\left(p_{r}, \overline{p_{j} p_{k}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{k} p_{i}}, \mathcal{T}\right)$
else ($* p_{r}$ lies on an edge of $p_{i} p_{j} p_{k}$, say the edge $\left.\overline{p_{i} p_{j}} *\right)$
Add edges from p_{r} to p_{k} and to the third vertex p_{l} of the other triangle that is incident to $\overline{p_{i} p_{j}}$, thereby splitting the two triangles incident to $\overline{p_{i} p_{j}}$ into four triangles.
15. LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{l}}, \mathcal{T}\right)$

16
17
18
18
19. Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T}.
. return \mathcal{T}
LegalizeEdge $\left(p_{r}, \overline{p_{l} p_{j}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{j} p_{k}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{k} p_{i}}, \mathcal{T}\right)$

$\operatorname{LEGALIzEEdGE}\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$

1. ($*$ The point being inserted is p_{r}, and $\overline{p_{i} p_{j}}$ is the edge of \mathfrak{T} that may need to be flipped. *)
2. if $\overline{p_{i} p_{j}}$ is illegal
3. then Let $p_{i} p_{j} p_{k}$ be the triangle adjacent to $p_{r} p_{i} p_{j}$ along $\overline{p_{i} p_{j}}$.
(* Flip $\left.\overline{p_{i} p_{j}}: *\right)$ Replace $\overline{p_{i} p_{j}}$ with $\overline{p_{r} p_{k}}$.
4. LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{k}}, \mathcal{T}\right)$
5. LEGALIZEEDGE $\left(p_{r}, \overline{p_{k} p_{j}}, \mathcal{T}\right)$

History

The algorithm stores the history of the constructed triangles. This allows to easily locate the triangle containing a new point by following pointers.

- Division of a triangle:

Store pointers from the old triangle to the three new triangles.

- Flip:

Store pointers from both old triangles to both new triangles.

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p^{*}{ }_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then $\mathrm{DT}(P)$ is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{*}=\left\{p^{*}{ }_{1}, \ldots, p^{*}{ }_{n}\right\}$.

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}{ }_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then $\mathrm{DT}(P)$ is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p^{\prime}{ }_{1}, \ldots, p^{\prime}{ }_{n}\right\}$.

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}{ }_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then $\mathrm{DT}(P)$ is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p^{\prime}{ }_{1}, \ldots, p^{\prime}{ }_{n}\right\}$.

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p^{\prime}{ }_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then $\mathrm{DT}(P)$ is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p^{\prime}{ }_{1}, \ldots, p^{\prime}{ }_{n}\right\}$.
$p_{i}^{\prime}, p^{\prime}{ }_{\mathrm{i}} p^{\prime}{ }_{\mathrm{k}}$ form a (triangular) face of $\mathrm{LCH}\left(P^{\prime}\right)$

The plane through $p_{\mathrm{i},}^{\prime} p_{\mathrm{i},}^{\prime} p^{\prime}{ }_{\mathrm{k}}$ leaves all remaining points of P of unit above it

The circle through $p_{\mathrm{i},} p_{\mathrm{i},} p_{\mathrm{k}}$ leaves all remaining points of P in its exterior

$p_{\mathrm{i},} p_{\mathrm{j}}, p_{\mathrm{k}}$ form a triangle of $\mathrm{DT}(P)$

Slide adapted from slides by Vera Sacristan.

