Computational Geometry

K-D Trees

Michael Goodrich



Orthogonal range searching

Input: A set P of n points in d dimensions

Task: Process P 1nto a data structure that allows
fast orthogonal range queries. Given an axis-aligned
box (in 2D, a rectangle)
» Report on the points inside the box:
* Are there any points? .
 How many are there? . .
» List the points. °




Orthogonal range searching:

KD-trees

Let us start in 2D:

Input: A set P of n points in 2 dimensions

Task: Process P into a data structure that
allows fast 2D orthogonal range queries:
Report all points 1n P that lie 1n the query

rectangle [x,x '] x [y,y’]

Y

Y

4

4




KD trees

Idea: Recursively split P into two sets of the same size,
alternatingly along a vertical or horizontal line through
the median 1n x- or y-coordinates.

< (g S
ZS ll l7 {p1, P2, p3, Ds> P7> Ps»> Po-P1o}
P4l psl pol ! 0 \ 0
>e {p1, P2, P3} P4ps; {Ps: P, P {po-p1o}

*Pio (_ @ (_
12 sz . 13 {p1, P2} O < — {6, 7}, <«— N4
lg pl. P * Dy @ @ P9 D10

°
P3| I
6




BuildKDTree

Idea: Recursively split P into two sets of the same size, alternatingly along
a vertical or horizontal line through the median in x- or y-coordinates.

Algorithm BUILDKDTREE(P, depth)

Input. A set of points P and the current depth deph.

Output. The root of a kd-tree storing P.

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P into two subsets with a vertical line £ through the

median x-coordinate of the points in P. Let P, be the set of
points to the left of £ or on £, and let P be the set of points

to the right of Z.

D else Split P into two subsets with a horizontal line £ through
the median y-coordinate of the points in P. Let P be the
set of points below £ or on £, and let P; be the set of points

above £.
6. Vieft < BUILDKDTREE(P|,depth+ 1)
7. Viight «—— BUILDKDTREE(P,depth+ 1)
8. Create a node v storing £, make vj.¢ the left child of v, and make
Viight the right child of v.
9 return v

Is 1 1
P4 P D
*Pio
G P2 | o [y
18_]9.1_ . P7 .p8
P3| |
Pes
[y ls




BuildKDTree Analysis

Sort P separately by x- and y-coordinate in advance
Use these two sorted lists to find the median

Pass sorted lists into the recursive calls

Runtime:

(0(1) n=1
() = 10(7’1) +2T (%)n > 1
= O(nlogn)

Storage: O(n), because binary tree on # leaves, and
each internal node has two children.



Regions

region(v)

o lc(v)=left child(v)
 region(lc(v)) = region(v)NI(v)ket
—> Can be computed on the fly in constant time



SearchKDTree & = 2

Algorithm SEARCHKDTREE(V,R) v T ¥ T
Input. The root of (a subtree of) a kd-tree, and a range R. Q G

Output. All points at leaves below v that lie in the range.
<« —

o N
1. ifvisaleaf
2 then Report the point stored at v if it lies in R.
3 else if region(ic(v)) is fully contained in R y
4, then REPORTSUBTREE(Ic(V))
o else if region(ic(v)) intersects R
6 then SEARCHKDTREE(c(v),R)
7 if region(rc(v)) is fully contained in R Is ;
8 then REPORTSUBTREE(r¢(V)) !
9. else if region(rc(v)) intersects R J2N | ’
10. then SEARCHKDTREE(r¢c(v),R) Psg P2
®/10
b 72 by l5
[ ——o—] ° °
How many nodes I B T P
P3 = [10 P12
does a search touch? r s
l, /|




SearchKDTree Analysis

Theorem: A kd-tree for a set of n points in the plane can
be constructed in O(n log »n) time and uses O(n) space. A
rectangular range query can be answered in O (\/n + k)
time, where k& = # reported points.

(Generalization to d dimensions: Also O(n log n)

1
construction time and O(x) space, but O(n'~d + k) query
time.)



SearchKDTree Analysis

Proof Sketch:
* Sum of # visited vertices 1n ReportSubtree 1s O(k)
* # visited vertices that are not in one of the reported
subtrees = O(# regions(v) intersected by a query line)
—> Consider intersections with a vertical line only.
Let O(n) = # intersected regions 1n kd-tree of » points
whose root contains a vertical splitting line
= 0(n) = 2 +20(n/4), for n>1 -

= Q(n) = O(v/n)

10



Summary Orthogonal Range Searching

Range trees

Query time: O(k + log?’ n) to report k points
(uses fractional cascading in the last dimension)

Space: O(n log? ! n)

Preprocessing time: O(n log? ! n)

KD-trees

1
Query time: O(nl_ﬁ + k) to report k points
Space: O(n)
Preprocessing time: O(n log n)

11



