
1

Computational Geometry

K-D Trees

Michael Goodrich

with slides from Carola Wenk

2

Orthogonal range searching

Input:A set P of n points in d dimensions

Task: Process P into a data structure that allows
fast orthogonal range queries. Given an axis-aligned
box (in 2D, a rectangle)

• Report on the points inside the box:
• Are there any points?
• How many are there?
• List the points.

3

Orthogonal range searching:
KD-trees

Let us start in 2D:
Input:A set P of n points in 2 dimensions

Task: Process P into a data structure that
allows fast 2D orthogonal range queries:
Report all points in P that lie in the query
rectangle [x,x’] ´ [y,y’]

x x'

y

y'

4

KD trees
Idea: Recursively split P into two sets of the same size,
alternatingly along a vertical or horizontal line through
the median in x- or y-coordinates.

l1

p5
p4

p2
p7

l2 l3

l4

l5

l6
p6

p9

l7

p10

p8
l8 p1

p3 l9

l1

l2 l3

l6 l7l4 l5

l9l8

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

{p1, p2, p3, p4,p5} {p6, p7, p8, p9,p10}

{p1, p2, p3} {p4,p5} {p6, p7, p8} {p9,p10}

{p1, p2} {p6, p7}

®

¬

¯

¬ ® ®¬

¯

¯

¯

¬

¬
®

®

5

BuildKDTree
Idea: Recursively split P into two sets of the same size, alternatingly along
a vertical or horizontal line through the median in x- or y-coordinates.

l1

p5
p4

p2
p7

l2 l3

l4

l5

l6
p6

p9

l7

p10

p8l8 p1
p3 l9

l1

l2 l3

l6 l7l4 l5

l9l8

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

®

¬

¯

¬ ® ®¬

¯

¯

¯

¬

¬® ®

6

BuildKDTree Analysis
• Sort P separately by x- and y-coordinate in advance
• Use these two sorted lists to find the median
• Pass sorted lists into the recursive calls
• Runtime:

𝑇 𝑛 = $
𝑂 1 , 𝑛 = 1

𝑂 𝑛 + 2𝑇
𝑛
2
, 𝑛 > 1

= 𝑂(𝑛 log 𝑛)
• Storage: O(n), because binary tree on n leaves, and

each internal node has two children.

7

Regions
l1

l2 l3

l6 l7l4 l5

l9l8

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

l1

p5
p4

p2
p7

l2 l3

l4

l5

l6

p6

p9

l7

p10

p8
l8 p1

p3 l9

• lc(v)=left_child(v)
• region(lc(v)) = region(v)Çl(v)left
Þ Can be computed on the fly in constant time

=v

region(v)

®

¬

¯

¬ ® ®¬

¯

¯

¯

¬

¬® ®

8

SearchKDTree
l1

l2 l3

l6 l7l4 l5

l8

p1 p2

p3 p4 p5

p6

p11 p7

p9 p10l9 p8

l10

l11

p12 p13

l12

l1

p5
p4

p2 p7l2 l3

l4

l5

l6

p6

p9

l7

p10

p8
l8 p1

p3
l9

p11 p12

p13

l10

l11 l12How many nodes
does a search touch?

®

¬

¯

¬ ® ®¬

¯

¯

¯

¯

¯

¬

¬

¬

® ®

®

9

SearchKDTree Analysis
Theorem: A kd-tree for a set of n points in the plane can
be constructed in O(n log n) time and uses O(n) space. A
rectangular range query can be answered in 𝑂 𝑛 + 𝑘
time, where k = # reported points.
(Generalization to d dimensions: Also O(n log n)
construction time and O(n) space, but 𝑂(𝑛!"

!
" + 𝑘) query

time.)

10

SearchKDTree Analysis
Proof Sketch:
• Sum of # visited vertices in ReportSubtree is O(k)
• # visited vertices that are not in one of the reported

subtrees = O(# regions(v) intersected by a query line)
Þ Consider intersections with a vertical line only.

Let Q(n) = # intersected regions in kd-tree of n points
whose root contains a vertical splitting line

Þ Q(n) = 2 + 2Q(n/4), for n>1
Þ Q(n) = O(𝑛)

l1

l2

l3 l4

l1

l2

l4

l3

®

¯ ¯

¬

11

Range trees
Query time: O(k + logd-1 n) to report k points

(uses fractional cascading in the last dimension)
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Summary Orthogonal Range Searching

KD-trees
Query time: 𝑂(𝑛!"

!
" + 𝑘) to report k points

Space: O(n)
Preprocessing time: O(n log n)

