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Computational Geometry

K-D Trees

Michael Goodrich

with slides from Carola Wenk
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Orthogonal range searching

Input:A set P of n points in d dimensions

Task: Process P into a data structure that allows 
fast orthogonal range queries. Given an axis-aligned 
box (in 2D, a rectangle)

• Report on the points inside the box: 
• Are there any points?
• How many are there?
• List the points.
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Orthogonal range searching: 
KD-trees

Let us start in 2D:
Input:A set P of n points in 2 dimensions

Task: Process P into a data structure that 
allows fast 2D orthogonal range queries:
Report all points in P that lie in the query 
rectangle [x,x’] ´ [y,y’]
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KD trees
Idea: Recursively split P into two sets of the same size, 
alternatingly along a vertical or horizontal line through 
the median in x- or y-coordinates.
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BuildKDTree
Idea: Recursively split P into two sets of the same size, alternatingly along 
a vertical or horizontal line through the median in x- or y-coordinates.
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BuildKDTree Analysis
• Sort P separately by x- and y-coordinate in advance
• Use these two sorted lists to find the median
• Pass sorted lists into the recursive calls
• Runtime:

𝑇 𝑛 = $
𝑂 1 , 𝑛 = 1

𝑂 𝑛 + 2𝑇
𝑛
2
, 𝑛 > 1

= 𝑂(𝑛 log 𝑛)
• Storage: O(n), because binary tree on n leaves, and 

each internal node has two children.
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Regions
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• lc(v)=left_child(v)
• region(lc(v)) = region(v)Çl(v)left
Þ Can be computed on the fly in constant time
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SearchKDTree
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SearchKDTree Analysis
Theorem: A kd-tree for a set of n points in the plane can 
be constructed in O(n log n) time and uses O(n) space. A 
rectangular range query can be answered in 𝑂 𝑛 + 𝑘
time, where k = # reported points. 
(Generalization to d dimensions: Also O(n log n) 
construction time and O(n) space, but 𝑂(𝑛!"

!
" + 𝑘) query 

time.)
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SearchKDTree Analysis
Proof Sketch:
• Sum of # visited vertices in ReportSubtree is O(k)
• # visited vertices that are not in one of the reported 

subtrees = O(# regions(v) intersected by a query line)
Þ Consider intersections with a vertical line only.

Let Q(n) = # intersected regions in kd-tree of n points 
whose root contains a vertical splitting line

Þ Q(n) = 2 + 2Q(n/4), for n>1
Þ Q(n) = O( 𝑛)
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Range trees
Query time: O(k + logd-1 n) to report k points

(uses fractional cascading in the last dimension)
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Summary Orthogonal Range Searching

KD-trees
Query time: 𝑂(𝑛!"

!
" + 𝑘) to report k points

Space: O(n)
Preprocessing time: O(n log n)


