Computational Geometry

K-D Trees

Michael Goodrich

with slides from Carola Wenk

Orthogonal range searching

Input: A set *P* of *n* points in *d* dimensions

Task: Process *P* into a data structure that allows fast orthogonal range queries. Given an axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching: KD-trees

Let us start in 2D:

Input: A set *P* of *n* points in 2 dimensions

Task: Process *P* into a data structure that allows fast 2D orthogonal range queries: Report all points in *P* that lie in the query rectangle $[x,x'] \times [y,y']$

KD trees

Idea: Recursively split P into two sets of the same size, alternatingly along a vertical or horizontal line through the median in x- or y-coordinates.

BuildKDTree

Idea: Recursively split P into two sets of the same size, alternatingly along a vertical or horizontal line through the median in x- or y-coordinates.

Algorithm BUILDKDTREE(*P*, *depth*)

Input. A set of points P and the current depth depth.

Output. The root of a kd-tree storing P.

- 1. **if** *P* contains only one point
- 2. **then return** a leaf storing this point
- 3. **else if** *depth* is even
- 4. **then** Split *P* into two subsets with a vertical line ℓ through the median *x*-coordinate of the points in *P*. Let *P*₁ be the set of points to the left of ℓ or on ℓ , and let *P*₂ be the set of points to the right of ℓ .
 - else Split *P* into two subsets with a horizontal line ℓ through the median *y*-coordinate of the points in *P*. Let *P*₁ be the set of points below ℓ or on ℓ , and let *P*₂ be the set of points above ℓ .
 - $v_{\text{left}} \leftarrow BUILDKDTREE(P_1, depth+1)$
- 7. $v_{\text{right}} \leftarrow \text{BUILDKDTREE}(P_2, depth+1)$
- 8. Create a node v storing ℓ , make v_{left} the left child of v, and make v_{right} the right child of v.
- 9. return v

5.

6.

BuildKDTree Analysis

- Sort *P* separately by *x* and *y*-coordinate in advance
- Use these two sorted lists to find the median
- Pass sorted lists into the recursive calls
- Runtime:

$$T(n) = \begin{cases} 0(1) & ,n = 1\\ 0(n) + 2T\left(\frac{n}{2}\right), n > 1\\ = 0(n\log n) \end{cases}$$

• Storage: O(*n*), because binary tree on *n* leaves, and each internal node has two children.

Regions

- lc(v)=left_child(v)
- region(lc(v)) = region(v) \cap l(v)^{left}
- \Rightarrow Can be computed on the fly in constant time

SearchKDTree

SearchKDTree Analysis

Theorem: A kd-tree for a set of n points in the plane can be constructed in $O(n \log n)$ time and uses O(n) space. A rectangular range query can be answered in $O(\sqrt{n} + k)$ time, where k = # reported points. (Generalization to *d* dimensions: Also $O(n \log n)$ construction time and O(n) space, but $O(n^{1-\frac{1}{d}} + k)$ query time.)

SearchKDTree Analysis

Proof Sketch:

- Sum of # visited vertices in ReportSubtree is O(k)
- # visited vertices that are not in one of the reported subtrees = O(# regions(v) intersected by a query line)
- $\Rightarrow \text{Consider intersections with a vertical line only.} \\ \text{Let } Q(n) = \# \text{ intersected regions in kd-tree of } n \text{ points whose root contains a vertical splitting line.} \end{bmatrix}$
- $\Rightarrow Q(n) = 2 + 2Q(n/4), \text{ for } n > 1$ $\Rightarrow Q(n) = O(\sqrt{n})$

lz

 $^{|}l_{4}$

 l_2

Summary Orthogonal Range Searching

Range trees Query time: $O(k + \log^{d-1} n)$ to report *k* points (uses fractional cascading in the last dimension) **Space:** $O(n \log^{d-1} n)$ **Preprocessing time:** $O(n \log^{d-1} n)$

KD-trees

Query time: $O(n^{1-\frac{1}{d}} + k)$ to report k points Space: O(n)Preprocessing time: $O(n \log n)$