
1

Computational Geometry

Kirkpatrick’s Point Location Algorithm
Michael Goodrich

with slides from Carola Wenk

p



2

Kirkpatrick’s Point Location Algorithm
• Needs a triangulation as input.
• One can convert a planar subdivision 

with n vertices into a triangulation:
– Triangulate each face, keep same label as 

original face.
– If the outer face is not a triangle:

• Compute the convex hull of the 
subdivision.

• Triangulate pockets between the 
subdivision and the convex hull.

• Add a large triangle (new vertices
a, b, c) around the convex hull, and 
triangulate the space in-between.

• The size of the triangulated planar subdivision is still O(n), by Euler’s 
formula.

• The conversion can be done in O(n) time.
• Given p, if we find a triangle containing p we also know the (label of) the 

original subdivision face containing p.

a

b

c

p



3

Kirkpatrick’s Hierarchy
• Compute a sequence T0, T1, …, Tk of increasingly coarser triangulations 

such that the last one has constant complexity.
• The sequence T0, T1, …, Tk should have the following properties:

– T0 is the input triangulation, Tk is the outer triangle 
– k Î O(log n)
– Each triangle in Ti+1 overlaps O(1) triangles in Ti

• How to build such a sequence?
– Need to delete vertices from Ti .
– Vertex deletion creates holes, which need

to be re-triangulated.

• How do we go from T0 of size O(n) to
Tk of size O(1) in k=O(log n) steps?
– In each step, delete a constant fraction

of vertices from Ti .
• We also need to ensure that each new triangle in Ti+1 overlaps with only 

O(1) triangles in Ti .



4

Vertex Deletion and Independent Sets
When creating Ti+1 from Ti , delete vertices from Ti 
that have the following properties:

– Constant degree:
Each vertex v to be deleted has O(1) degree in 
the graph Ti .

• If v has degree d, the resulting hole can be re-
triangulated with d-2 triangles

• Each new triangle in Ti+1 overlaps at most d original 
triangles in Ti

– Independent sets:
No two deleted vertices are adjacent.

• Each hole can be re-triangulated independently.



5

Independent Set Lemma
Lemma: Every triangulated planar graph on n≥4
vertices for contains an independent vertex set of size 
n/18 in which each vertex has degree at most 8. Such 
a set can be computed in O(n) time.

Use this lemma to construct Kirkpatrick’s hierarchy:
• Start with T0, and select an independent set S of 

size n/18 in which each vertex has maximum 
degree 8. [Never pick the outer triangle vertices a, 
b, c.]

• Remove vertices of S, and re-triangulate holes.
• The resulting triangulation, T1, has at most 17/18n

vertices.
• Repeat the process to build the hierarchy, until Tk

equals the outer triangle with vertices a, b, c.
• The depth of the hierarchy is k = log18/17 n

a

b

c



6

Hierarchy Example

Use this lemma to construct 
Kirkpatrick’s hierarchy:
• Start with T0, and select an 

independent set S of size n/18 in 
which each vertex has maximum 
degree 8. [Never pick the outer 
triangle vertices a, b, c.]

• Remove vertices of S, and re-
triangulate holes.

• The resulting triangulation, T1, has 
at most 17/18n vertices.

• Repeat the process to build the 
hierarchy, until Tk equals the outer 
triangle with vertices a, b, c.

• The depth of the hierarchy is
k = log18/17 n



7

Hierarchy Data Structure
Store the hierarchy as a DAG:
• The root is Tk . 
• Nodes in each level correspond to 

triangles Ti .
• Each node for a triangle in Ti+1 

stores pointers to all triangles of Ti 
that it overlaps.

How to locate point p in the DAG:
• Start at the root. If p is outside of Tk

then p is in exterior face; done. 
• Else, set D to be the triangle at the 

current level that contains p.
• Check each of the at most 6 = 8-2 

triangles of Tk-1 that overlap with D, 
whether they contain p. Update D
and descend in the hierarchy until 
reaching T0 .

• Output D .

p



8

Analysis
• Query time is O(log n): There are 

O(log n) levels and it takes 
constant time to move between 
levels.

• Space complexity is O(n):
– Sum up sizes of all triangulations in 

hierarchy.
– Because of Euler’s formula, it suffices 

to sum up the number of vertices.
– Total number of vertices:

n + 17/18 n + (17/18)2 n + (17/18)3 n 
+ … 
≤ 1/(1-17/18) n = 18 n

• Preprocessing time is O(n log n):
– Triangulating the subdivision takes 

O(n log n) time.
– The time to build the DAG is 

proportional to its size. 

8

p



9

Independent Set Lemma
Lemma: Every triangulated planar graph on n≥4
vertices contains an independent vertex set of size 
n/18 in which each vertex has degree at most 8. Such 
a set can be computed in O(n) time.

Proof:
Greedy algorithm to construct an independent set:
• Mark all vertices of degree ≥ 9
• While there is an unmarked vertex

• Let v be an unmarked vertex
• Add v to the independent set
• Mark v and all its neighbors

• Can be implemented in O(n) time: Keep list of unmarked 
vertices, and store the triangulation in a data structure (DCEL) 
that allows finding neighbors in O(1) time.

v



10

Independent Set Lemma
Still need to prove existence of a large independent set.
• Euler’s formula for a triangulated planar graph on n vertices:

#edges = 3n – 6
• Sum over vertex degrees:
S deg(v) = 2 #edges = 6n – 12 < 6n

• Claim: At least n/2 vertices have degree ≤ 8.
Proof: By contradiction. So, suppose otherwise.
® n/2 vertices have degree ≥ 9. The remaining have degree ≥ 3. 
® The sum of the degrees is ≥ 9 n/2 + 3 n/2 = 6n. Contradiction.

• In the beginning of the algorithm, at least n/2 nodes are unmarked. Each 
picked vertex v marks ≤ 8 other vertices, so including itself 9. 

• Therefore, the while loop can be repeated at least n/18 times.
• This shows that there is an independent set of size at least n/18 in which 

each node has degree ≤ 8. 

v



11

Summing Up
• Kirkpatrick’s point location data structure needs O(n) 

preprocessing time, O(n) space, and has O(log n) query 
time.

• It involves high constant factors though. So this algorithm, 
while asymptotically optimal, is mostly of theoretical 
interest.


