Computational Geometry

Kirkpatrick's Point Location Algorithm Michael Goodrich

with slides from Carola Wenk

Kirkpatrick's Point Location Algorithm

- Needs a triangulation as input.
- One can convert a planar subdivision with *n* vertices into a triangulation:
 - Triangulate each face, keep same label as original face.
 - If the outer face is not a triangle:
 - Compute the convex hull of the subdivision.
 - Triangulate pockets between the subdivision and the convex hull.
 - Add a large triangle (new vertices **a**, **b**, **c**) around the convex hull, and triangulate the space in-between.

- The size of the triangulated planar subdivision is still O(n), by Euler's formula.
- The conversion can be done in O(n) time.
- Given *p*, if we find a triangle containing *p* we also know the (label of) the original subdivision face containing *p*.

Kirkpatrick's Hierarchy

- Compute a sequence T_0 , T_1 , ..., T_k of increasingly coarser triangulations such that the last one has constant complexity.
- The sequence T_0 , T_1 , ..., T_k should have the following properties:
 - T_0 is the input triangulation, T_k is the outer triangle
 - $-k \in O(\log n)$
 - Each triangle in T_{i+1} overlaps O(1) triangles in T_i
- How to build such a sequence?
 - Need to delete vertices from T_i .
 - Vertex deletion creates holes, which need to be re-triangulated.
- How do we go from T_0 of size O(n) to T_k of size O(1) in $k=O(\log n)$ steps?
 - In each step, delete a constant fraction of vertices from T_i .

• We also need to ensure that each new triangle in T_{i+1} overlaps with only O(1) triangles in T_i .

Vertex Deletion and Independent Sets

When creating T_{i+1} from T_i , delete vertices from T_i that have the following properties:

- Constant degree:

Each vertex \vec{v} to be deleted has O(1) degree in the graph T_i .

- If v has degree d, the resulting hole can be retriangulated with d-2 triangles
- Each new triangle in T_{i+1} overlaps at most *d* original triangles in T_i

– Independent sets:

No two deleted vertices are adjacent.

• Each hole can be re-triangulated independently.

Independent Set Lemma

Lemma: Every triangulated planar graph on $n \ge 4$ vertices for contains an independent vertex set of size n/18 in which each vertex has degree at most 8. Such a set can be computed in O(n) time.

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T₀, and select an independent set S of size n/18 in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of *S*, and re-triangulate holes.
- The resulting triangulation, T_1 , has at most 17/18n a vertices.
- Repeat the process to build the hierarchy, until T_k equals the outer triangle with vertices **a**, **b**, **c**.
- The depth of the hierarchy is $k = \log_{18/17} n$

Hierarchy Example

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T₀, and select an independent set S of size n/18 in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of *S*, and re-triangulate holes.
- The resulting triangulation, T_1 , has at most 17/18n vertices.
- Repeat the process to build the hierarchy, until *T_k* equals the outer triangle with vertices **a**, **b**, **c**.
- The depth of the hierarchy is $k = \log_{18/17} n$

Hierarchy Data Structure

Store the hierarchy as a DAG:

- The root is T_k .
- Nodes in each level correspond to triangles T_i .
- Each node for a triangle in T_{i+1} stores pointers to all triangles of T_i that it overlaps.

How to locate point *p* in the DAG:

- Start at the root. If p is outside of T_k then p is in exterior face; done.
- Else, set Δ to be the triangle at the current level that contains p.
- Check each of the at most 6 = 8-2triangles of T_{k-1} that overlap with Δ , whether they contain p. Update Δ and descend in the hierarchy until reaching T_0 .
- Output Δ .

Analysis

- Query time is O(log *n*): There are O(log *n*) levels and it takes constant time to move between levels.
- **Space complexity** is **O**(*n*):
 - Sum up sizes of all triangulations in hierarchy.
 - Because of Euler's formula, it suffices to sum up the number of vertices.
 - Total number of vertices:

 $n + \frac{17}{18} n + \frac{(17}{18})^2 n + \frac{(17}{18})^3 n + \frac{17}{18} n = \frac{18}{18} n$

- **Preprocessing time** is O(n log n):
 - Triangulating the subdivision takes $O(n \log n)$ time.
 - The time to build the DAG is proportional to its size.

Independent Set Lemma

Lemma: Every triangulated planar graph on $n \ge 4$ vertices contains an independent vertex set of size n/18 in which each vertex has degree at most 8. Such a set can be computed in O(n) time.

Proof:

Greedy algorithm to construct an independent set:

- Mark all vertices of degree ≥ 9
- While there is an unmarked vertex
 - Let **v** be an unmarked vertex
 - Add **v** to the independent set
 - Mark **v** and all its neighbors
- Can be implemented in O(*n*) time: Keep list of unmarked vertices, and store the triangulation in a data structure (DCEL) that allows finding neighbors in O(1) time.

Independent Set Lemma

Still need to prove existence of a *large* independent set.

- Euler's formula for a triangulated planar graph on *n* vertices: #edges = 3n - 6
- Sum over vertex degrees: $\sum_{v} \deg(v) = 2 \# \text{edges} = 6n - 12 < 6n$
- Claim: At least n/2 vertices have degree ≤ 8.
 Proof: By contradiction. So, suppose otherwise.
 → n/2 vertices have degree ≥ 9. The remaining have degree ≥ 3.
 → The sum of the degrees is ≥ 9 n/2 + 3 n/2 = 6n. Contradiction.
- In the beginning of the algorithm, at least n/2 nodes are unmarked. Each picked vertex v marks ≤ 8 other vertices, so including itself 9.
- Therefore, the while loop can be repeated at least n/18 times.
- This shows that there is an independent set of size at least n/18 in which each node has degree ≤ 8 .

Summing Up

- Kirkpatrick's point location data structure needs O(*n*) preprocessing time, O(*n*) space, and has O(log *n*) query time.
- It involves high constant factors though. So this algorithm, while asymptotically optimal, is mostly of theoretical interest.

