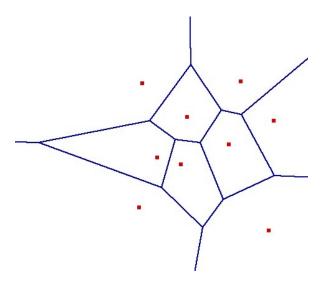
Computational Geometry



Voronoi Diagrams and Their Applications Michael Goodrich

with slides from Carola Wenk and Rodrigo I. Silveira

Voronoi Diagram

(Dirichlet Tesselation)

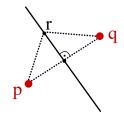
- Given: A set of point sites $P = \{p_1, ..., p_n\} \subseteq \mathbb{R}^2$
- **Voronoi cell:** Partition R^2 into Voronoi cells $V(p_i) = \{q \in R^2 | d(p_i, q) < d(p_j, q) \text{ for all } j \neq i\}$
- Voronoi diagram: The planar subdivision obtained by removing all Voronoi cells from \mathbb{R}^2 .



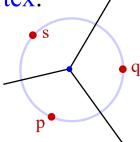
Bisectors

- Voronoi edges are portions of bisectors
- For two points p, q, the bisector b(p, q) is defined as

$$b(p,q) = \{ r \in R^2 \mid d(p,r) = d(q,r) \}$$



Voronoi vertex:

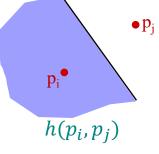


Voronoi cell

• Each Voronoi cell $V(p_i)$ is convex and

$$V(p_i) = \bigcap_{\substack{p_j \in P \\ j \neq i}} h(p_i, p_j),$$

where $h(p_i, p_j)$ is the halfspace that is defined by bisector $b(p_i, p_j)$ and that contains p_i



 \Rightarrow A Voronoi cell has at most n-1 sides

Voronoi Diagram

The Voronoi diagram is a planar, embedded, connected graph with vertices, edges (possibly infinite), and faces (possibly infinite).

• Theorem: Let $P = \{p_1, ..., p_n\} \subseteq R^2$. Let n_v be the number of vertices in VD(P) and let n_e be the number of edges in VD(P). Then

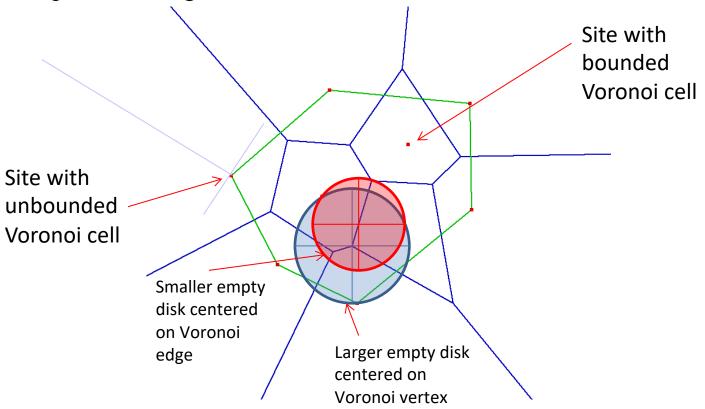
$$n_v \le 2n - 5$$
, and $n_e \le 3n - 6$

Add vertex at infinity

Proof idea: An application of Euler's formula $n_v + 1 - n_e + n = 2$ with "=" because the planar graph is connected, and $2n_e = \sum_{v \in V} \deg(v) \ge 3(n_v + 1)$.

Properties

- 1. A Voronoi cell $V(p_i)$ is unbounded iff p_i is on the convex hull of the sites.
- 2. *v* is a Voronoi vertex iff it is the center of an empty circle (disk) that passes through three sites.

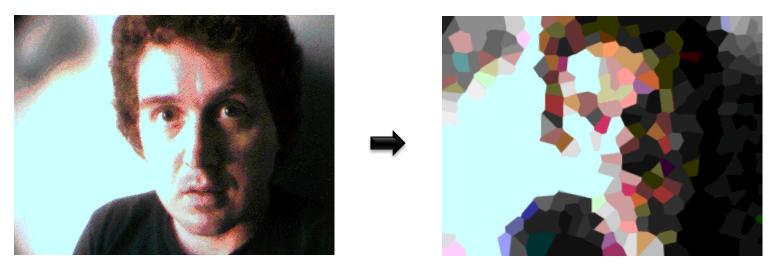


Applications of Voronoi Diagrams

- Nearest neighbor queries:
 - Sites are post offices, restaurants, gas stations
 - For a given query point, locate the nearest point site in $O(\log n)$ time \rightarrow point location
- Closest pair computation:
 - Naïve $O(n^2)$ algorithm; sweep line algorithm in $O(n \log n)$ time
 - Each site and the closest site to it share a Voronoi edge
 - \rightarrow Check all Voronoi edges (in O(n) time)
- Facility location: Build a new gas station (site) where it has minimal interference with other gas stations
 - Find largest empty disk and locate new gas station at center
 - If center is restricted to lie within CH(P) then the center has to be on a Voronoi edge

What can you do with a Voronoi diagram?

All sort of things!



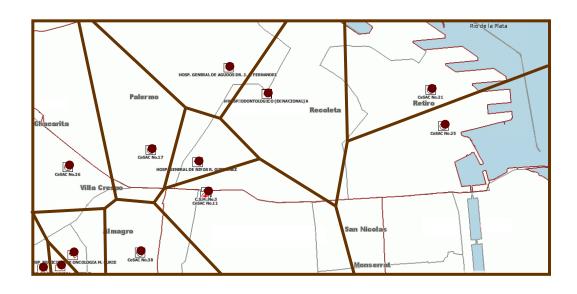
Source: http://www.ics.uci.edu/~eppstein/vorpic.html

Voronoi Diagrams in Nature

- Models for territories, spreading, or growth
- From top-left to bottom-right:
 - muscle cross-section
 - giraffes coat patterns
 - wings of a dragonfly
 - garlic bulb
 - corn cob
 - jackfruits

What other useful things can you do with a Voronoi diagram?

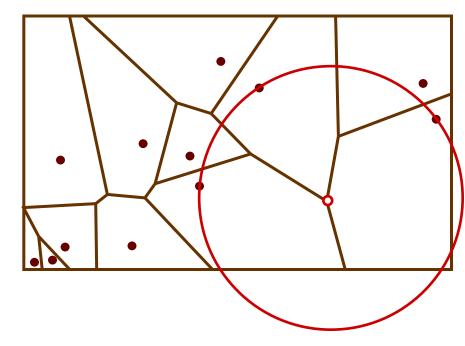
- Already mentioned a few applications
 - Find nearest... hospital, restaurant, gas station,...



Facility location

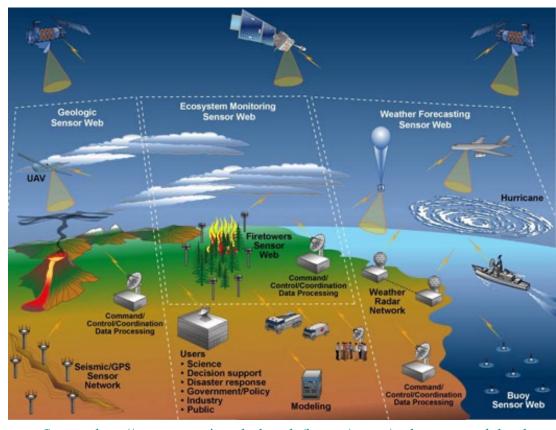
- Determine a location to maximize distance to its "competition"
- Find largest empty circle

- Must be centered at a vertex of the Voronoi
- diagram



Coverage in sensor networks

- Sensor network
 - Sensorsdistributedin an area tomonitor somecondition



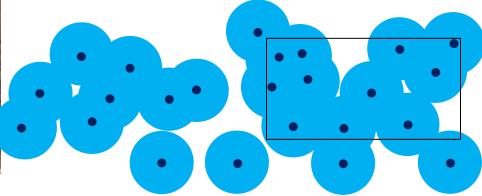
Source: http://seamonster.jun.alaska.edu/lemon/pages/tech_sensorweb.html

Coverage in sensor networks

- Given: locations of sensors
- Problem: Do they cover the whole area?

Assume sensors have a fixed coverage range

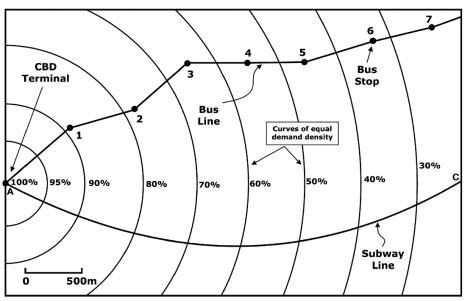
Solution: Look for largest empty disk, check its radius



Building metro stations

- Where to place stations for metro line?
 - People commuting to CBD terminal

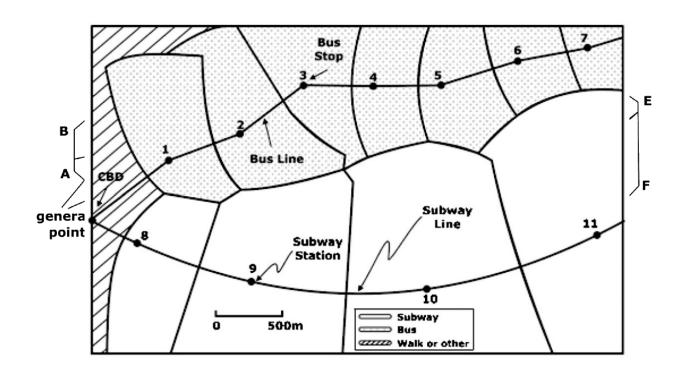
- People can also
 - Walk
 - 4.4 km/h +
 - 35% correction
 - Take bus
 - Some avg speed



Source: Novaes et al (2009). DOI:10.1016/j.cor.2007.07.004

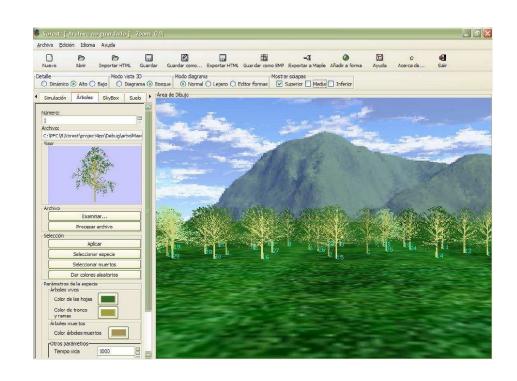
Building metro stations

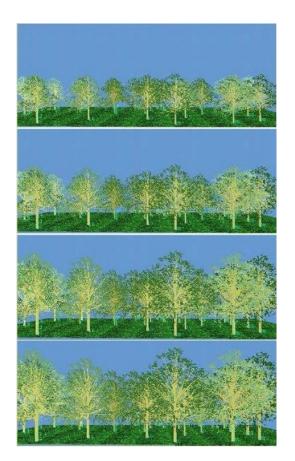
- Weighted Voronoi Diagram
 - Distance function is not Euclidean anymore
 - $\operatorname{dist}_{w}(p, \operatorname{site}) = (1/w) \operatorname{dist}(p, s)$



Forestal applications

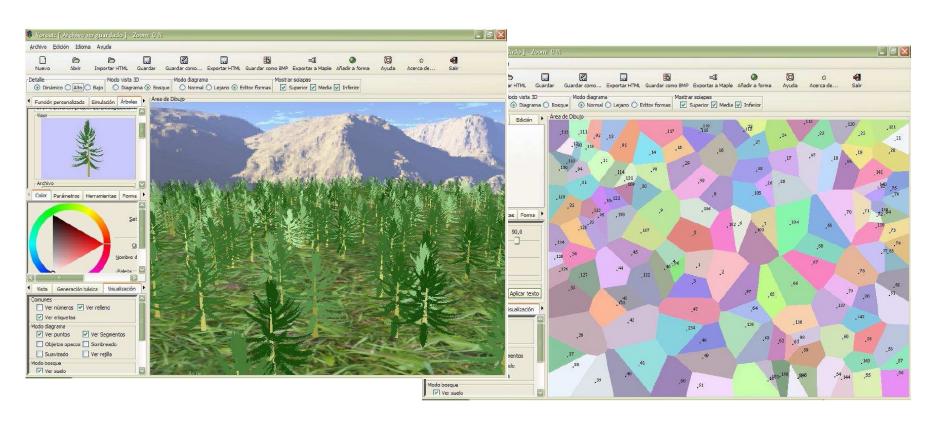
VOREST: Simulating how trees grow





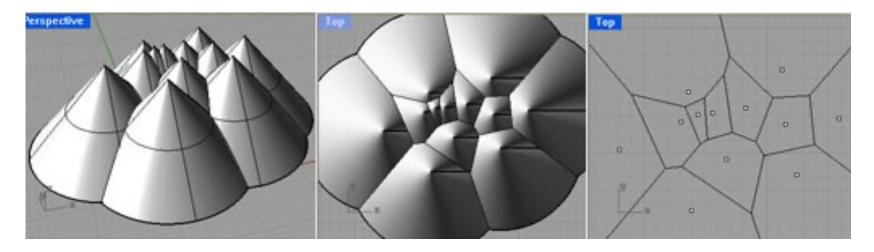
Simulating how trees grow

• The growth of a tree depends on how much "free space" it has around it



Lower envelopes of cones

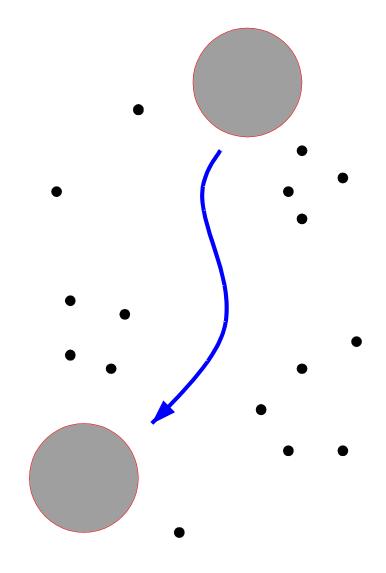
- Alternative definition of Voronoi diagram:
 - 2D projection of lower envelope of distance cones centered at sites



Robot motion planning

Move robot amidst obstacles

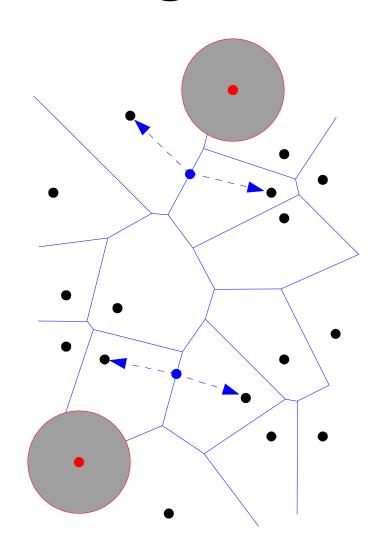
• Can you move a disk (robot) from one location to another avoiding all obstacles?



Most figures in this section are due to Marc van Kreveld

Robot motion planning

- Observation: we can move the disk if and only if we can do so on the edges of the Voronoi diagram
 - edges are (locally) as far as possible from sites



Robot motion planning

- General strategy
 - Compute Voronoi diagram of obstacles
 - Remove edges that get too close to sites
 - i.e. on which robot would not fit
 - Locate starting and end points
 - Move robot center along VD edges

• This technique is called retraction

