
8/29/06 CS 6463: AT Computational Geometry 1

CS 6463: AT Computational Geometry
Spring 2006

Convex Hulls
Carola Wenk

8/29/06 CS 6463: AT Computational Geometry 2

Convex Hull Problem

•  Given a set of pins on a pinboard

 and a rubber band around them.

 How does the rubber band look
 when it snaps tight?

•  The convex hull of a point set is
one of the simplest shape
approximations for a set of points.

8/29/06 CS 6463: AT Computational Geometry 3

Convexity

•  A set C ⊆ R2 is convex if for all two points p,q∈C the line
segment pq is fully contained in C.

convex non-convex

8/29/06 CS 6463: AT Computational Geometry 4

Convex Hull

•  The convex hull CH(P) of a point set P ⊆ R2 is the smallest
convex set C ⊆ P. In other words CH(P) = ∩ C .

C ⊆ P
C convex

P

8/29/06 CS 6463: AT Computational Geometry 5

Convex Hull

•  Observation: CH(P) is the unique convex polygon whose
vertices are points of P and which contains all points of P.

0

2

1

3
4

6

5

•  We represent the convex hull as the sequence of points on
the convex hull polygon (the boundary of the convex hull),
in counter-clockwise order.

8/29/06 CS 6463: AT Computational Geometry 6

A First Try
Algorithm SLOW_CH(P):
/* CH(P) = Intersection of all half-planes that are defined by the directed line through

ordered pairs of points in P and that have all remaining points of P on their left */
Input: Point set P ⊆ R2
Output: A list L of vertices describing the CH(P) in counter-clockwise order
E:=∅
for all (p,q)∈P×P with p≠q // ordered pair

 valid := true
 for all r∈P, r≠p and r≠q
 if r lies to the left of directed line through p and q // takes constant time
 valid := false
 if valid then
 E:=E∪pq // directed edge

Construct from E sorted list L of vertices of CH(P) in counter-clockwise order

•  Runtime: O(n3) , where n = |P|
•  How to test that a point lies to the left?

8/29/06 CS 6463: AT Computational Geometry 7

Orientation Test / Halfplane Test

p

q

r

r

q

p

•  positive orientation
(counter-clockwise)

•  r lies to the left of pq

•  negative orientation
 (clockwise)

•  r lies to the right of pq

r
q

p
•  zero orientation
•  r lies on the line pq

•  Orient(p,q,r) = det

•  Can be computed in constant time

1 px py
1 qx qy
1 rx ry

,where p = (px,py)

8/29/06 CS 6463: AT Computational Geometry 8

Convex Hull: Divide & Conquer
•  Preprocessing: sort the points by x-
coordinate

•  Divide the set of points into two
sets A and B:

•  A contains the left ⎣n/2⎦ points,

•  B contains the right ⎡n/2⎤ points

• Recursively compute the convex
hull of A
• Recursively compute the convex
hull of B

•  Merge the two convex hulls

A B

8/29/06 CS 6463: AT Computational Geometry 9

Merging
•  Find upper and lower tangent
•  With those tangents the convex hull
of A∪B can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

A B

8/29/06 CS 6463: AT Computational Geometry 10

check with
orientation test

right turn
left turn

Finding the lower tangent
 a = rightmost point of A
 b = leftmost point of B
 while T=ab not lower tangent to both
 convex hulls of A and B do{
 while T not lower tangent to
 convex hull of A do{
 a=a-1
 }
 while T not lower tangent to
 convex hull of B do{
 b=b+1
 }
 }

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7

8/29/06 CS 6463: AT Computational Geometry 11

Convex Hull: Runtime
•  Preprocessing: sort the points by x-
coordinate

•  Divide the set of points into two
sets A and B:

•  A contains the left ⎣n/2⎦ points,

•  B contains the right ⎡n/2⎤ points

• Recursively compute the convex
hull of A
• Recursively compute the convex
hull of B

•  Merge the two convex hulls

O(n log n) just once

O(1)

T(n/2)

T(n/2)

O(n)

8/29/06 CS 6463: AT Computational Geometry 12

Convex Hull: Runtime
•  Runtime Recurrence:

 T(n) = 2 T(n/2) + cn

•  Solves to T(n) = Θ(n log n)

8/29/06 CS 6463: AT Computational Geometry 13

Recurrence
(Just like merge sort recurrence)

1. Divide: Divide set of points in half.
2. Conquer: Recursively compute convex

hulls of 2 halves.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining

8/29/06 CS 6463: AT Computational Geometry 14

Recurrence (cont’d)

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• How do we solve T(n)? I.e., how do we
find out if it is O(n) or O(n2) or …?

8/29/06 CS 6463: AT Computational Geometry 15

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

8/29/06 CS 6463: AT Computational Geometry 16

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

8/29/06 CS 6463: AT Computational Geometry 17

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

8/29/06 CS 6463: AT Computational Geometry 18

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

8/29/06 CS 6463: AT Computational Geometry 19

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

8/29/06 CS 6463: AT Computational Geometry 20

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

h = log n

8/29/06 CS 6463: AT Computational Geometry 21

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

h = log n

dn

8/29/06 CS 6463: AT Computational Geometry 22

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

h = log n

dn

dn

8/29/06 CS 6463: AT Computational Geometry 23

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

h = log n

dn

dn

dn

…

8/29/06 CS 6463: AT Computational Geometry 24

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

h = log n

dn

dn

dn

#leaves = n Θ(n)

…

8/29/06 CS 6463: AT Computational Geometry 25

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

Θ(1)

h = log n

dn

dn

dn

#leaves = n Θ(n)
Total Θ(n log n)

…

8/29/06 CS 6463: AT Computational Geometry 26

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems.

 a subproblems, each of size n/b
2. Conquer the subproblems by

solving them recursively.
3. Combine subproblem solutions.

Runtime is f(n)

8/29/06 CS 6463: AT Computational Geometry 27

Master theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba logkn)
⇒ T(n) = Θ(nlogba logk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n)
⇒ T(n) = Θ(f (n)) .

 ,
where a ≥ 1, b > 1, and f is asymptotically positive.

Convex hull: a = 2, b = 2 ⇒ nlogba = n
 ⇒ CASE 2 (k = 0) ⇒ T(n) = Θ(n log n) .

