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Convex Hull Problem 

•  Given a set of pins on a pinboard 

    and a rubber band around them. 

   How does the rubber band look    
   when it snaps tight? 

•  The convex hull of a point set is 
one of the simplest shape 
approximations for a set of points. 
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Convexity 

•  A set C ⊆ R2 is convex if for all two points p,q∈C the line 
segment pq is fully contained in C. 

convex non-convex 
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Convex Hull 

•  The convex hull CH(P) of a point set P ⊆ R2 is the smallest 
convex set C ⊆ P. In other words CH(P) = ∩ C . 

C ⊆ P 
C convex 

P 
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Convex Hull 

•  Observation: CH(P) is the unique convex polygon whose 
vertices are points of P and which contains all points of P. 
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•  We represent the convex hull as the sequence of points on 
the convex hull polygon (the boundary of the convex hull), 
in counter-clockwise order. 
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A First Try 
Algorithm SLOW_CH(P): 
/* CH(P) = Intersection of all half-planes that are defined by the directed line through 

ordered pairs of points in P and that have all remaining points of P on their left */   
Input: Point set P ⊆ R2  
Output: A list L of vertices describing the CH(P) in counter-clockwise order 
E:=∅ 
for all (p,q)∈P×P with p≠q   // ordered pair 

 valid := true 
 for all r∈P, r≠p and r≠q 
  if r lies to the left of directed line through p and q   // takes constant time 
   valid := false 
 if valid then 
  E:=E∪pq   // directed edge 

Construct from E sorted list L of vertices of CH(P) in counter-clockwise order 

•  Runtime: O(n3) , where n = |P| 
•  How to test that a point lies to the left? 
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Orientation Test / Halfplane Test 

p 

q 

r 

r 

q 

p 

•  positive orientation 
(counter-clockwise) 

•  r lies to the left of pq 

•  negative orientation 
  (clockwise) 

•  r lies to the right of pq 

r 
q 

p 
•  zero orientation 
•  r lies on the line pq 

•  Orient(p,q,r) = det   

•  Can be computed in constant time            

1 px py 
1 qx qy 
1 rx ry 

,where p = (px,py) 
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Convex Hull: Divide & Conquer 
•  Preprocessing: sort the points by x-
coordinate 

•  Divide the set of points into two 
sets A and B: 

•  A contains the left ⎣n/2⎦ points,  

•  B contains the right ⎡n/2⎤ points  

• Recursively compute the convex 
hull of A 
• Recursively compute the convex 
hull of B 

•  Merge the two convex hulls 

A B 
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Merging  
•  Find upper and lower tangent 
•  With those tangents the convex hull 
of A∪B can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time 

A B 
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check with 
orientation test 

right turn 
left turn 

Finding the lower tangent  
 a = rightmost point of A 
 b = leftmost point of B 
 while T=ab not lower tangent to both    
          convex hulls of A and B do{ 
        while T not lower tangent to  
         convex hull of A do{ 
            a=a-1 
        } 
        while T not lower tangent to  
          convex hull of B do{ 
            b=b+1 
         } 
 } 

A B 
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Convex Hull: Runtime 
•  Preprocessing: sort the points by x-
coordinate 

•  Divide the set of points into two 
sets A and B: 

•  A contains the left ⎣n/2⎦ points,  

•  B contains the right ⎡n/2⎤ points  

• Recursively compute the convex 
hull of A 
• Recursively compute the convex 
hull of B 

•  Merge the two convex hulls 

O(n log n)  just once 

O(1) 

T(n/2) 

T(n/2) 

O(n) 
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Convex Hull: Runtime 
•  Runtime Recurrence: 

     T(n) = 2 T(n/2) + cn 

 

•  Solves to T(n) = Θ(n log n) 
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Recurrence  
(Just like merge sort recurrence) 

1. Divide: Divide set of points in half. 
2. Conquer: Recursively compute convex 

hulls of 2 halves. 
3. Combine: Linear-time merge. 

T(n) = 2 T(n/2) + O(n) 
# subproblems subproblem size work dividing 

and combining 
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Recurrence (cont’d) 
 

T(n) = 
Θ(1)  if n = 1; 
2T(n/2) + Θ(n)  if n > 1. 

• How do we solve T(n)? I.e., how do we 
find out if it is O(n) or O(n2) or …? 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

T(n) 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

T(n/2) T(n/2) 

dn 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

T(n/4) T(n/4) T(n/4) T(n/4) 

dn/2 dn/2 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 

h = log n 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 

h = log n 

dn 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 

h = log n 

dn 

dn 
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 

h = log n 

dn 

dn 

dn 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 

h = log n 

dn 

dn 

dn 

#leaves = n Θ(n) 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. 

dn 

dn/4 dn/4 dn/4 dn/4 

dn/2 dn/2 

Θ(1) 

h = log n 

dn 

dn 

dn 

#leaves = n Θ(n) 
Total Θ(n log n) 

…
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The divide-and-conquer 
design paradigm 

1. Divide the problem (instance) into 
subproblems. 

 a subproblems, each of size n/b 
2. Conquer the subproblems by 

solving them recursively. 
3. Combine subproblem solutions. 

Runtime is f(n) 
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Master theorem 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε)  
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba logkn)  
⇒ T(n) = Θ(nlogba logk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n)  
⇒ T(n) = Θ( f (n)) . 

                                                            ,  
where a ≥ 1, b > 1, and  f  is asymptotically positive. 
 

Convex hull: a = 2, b = 2  ⇒  nlogba = n 
 ⇒  CASE 2 (k = 0)  ⇒  T(n) = Θ(n log n) .  


