CS 6463: AT Computational Geometry Spring 2006

CS 6463: AT Computational Geometry

Convex Hull Problem

 Given a set of pins on a pinboard and a rubber band around them.
 How does the rubber band look

when it snaps tight?

• The convex hull of a point set is one of the simplest shape approximations for a set of points.

Convexity

• A set $C \subseteq \mathbb{R}^2$ is *convex* if for all two points $p,q \in C$ the line segment \overline{pq} is fully contained in *C*.

convex

non-convex

CS 6463: AT Computational Geometry

Convex Hull

Convex Hull

- **Observation:** CH(P) is the unique convex polygon whose vertices are points of P and which contains all points of P.
- We represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.

CS 6463: AT Computational Geometry

A First Try

```
Algorithm SLOW_CH(P):
```

```
/* CH(P) = Intersection of all half-planes that are defined by the directed line through ordered pairs of points in P and that have all remaining points of P on their left */ Input: Point set P ⊆ R<sup>2</sup>
Output: A list L of vertices describing the CH(P) in counter-clockwise order
E:=Ø
for all (p,q)∈P×P with p≠q // ordered pair
valid := true
for all r∈P, r≠p and r≠q
if r lies to the left of directed line through p and q // takes constant time
valid := false
if valid then
E:=E∪pq // directed edge
```

Construct from *E* sorted list *L* of vertices of CH(P) in counter-clockwise order

- Runtime: $O(n^3)$, where n = |P|
- How to test that a point lies to the left?

Orientation Test / Halfplane Test

• positive orientation (counter-clockwise)

 negative orientation (clockwise)

• r lies to the right of \vec{pq}

• r lies on the line
$$\overrightarrow{pq}$$

• *r* lies to the left of \overrightarrow{pq}

• Orient(p,q,r) = det $\begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$, where $p = (p_x, p_y)$

• Can be computed in constant time

Convex Hull: Divide & Conquer

- Preprocessing: sort the points by x-coordinate
- Divide the set of points into two sets A and B:
 - A contains the left [n/2] points,
 - **B** contains the right [n/2] points
- •Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of **B**
- Merge the two convex hulls

Merging

• Find upper and lower tangent

• With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in O(n) linear time

Finding the lower tangent

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
 - A contains the left [n/2] points,
 - **B** contains the right [n/2] points
- •Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of **B**
- Merge the two convex hulls

 $O(n \log n)$ just once

O(1)

T(n/2)

T(n/2)

Convex Hull: Runtime

• Runtime Recurrence:

T(n) = 2 T(n/2) + cn

• Solves to $T(n) = \Theta(n \log n)$

Recurrence (Just like merge sort recurrence) **1.Divide:** Divide set of points in half. **2.***Conquer:* Recursively compute convex hulls of 2 halves. **3.***Combine*: Linear-time merge. T(n) = 2T(n/2)work dividing # subproblems *subproblem* size and combining

Recurrence (cont' d)

 $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$

How do we solve *T(n)*? I.e., how do we find out if it is O(n) or O(n²) or ...?

CS 6463: AT Computational Geometry

CS 6463: AT Computational Geometry

The divide-and-conquer design paradigm

1.Divide the problem (instance) into subproblems.

a subproblems, each of size *n/b*

2.*Conquer* the subproblems by solving them recursively.

3.*Combine* subproblem solutions. Runtime is f(n)

Master theorem

T(n) = a T(n/b) + f(n) ,

where $a \ge 1$, b > 1, and f is asymptotically positive.

CASE 1: $f(n) = O(n^{\log_b a} - \varepsilon)$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$. CASE 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$. CASE 3: $f(n) = \Omega(n^{\log_b a} + \varepsilon)$ and $af(n/b) \le cf(n)$ $\Rightarrow T(n) = \Theta(f(n))$.

Convex hull: $a = 2, b = 2 \implies n^{\log_b a} = n$ $\Rightarrow CASE 2 (k = 0) \implies T(n) = \Theta(n \log n)$.