CS 6463: AT Computational Geometry Spring 2006

Convex Hulls
 Carola Wenk

Convex Hull Problem

${ }^{-}$Given a set of pins on a pinboard and a rubber band around them.

How does the rubber band look when it snaps tight?

- The convex hull of a point set is one of the simplest shape
 approximations for a set of points.

Convexity

${ }^{-}$A set $C \subseteq \mathbf{R}^{2}$ is convex if for all two points $p, q \in C$ the line segment $\overparen{p q}$ is fully contained in C.

convex

non-convex

Convex Hull

- The convex hull $C H(P)$ of a point set $P \subseteq \mathbb{R}^{2}$ is the smallest convex set $C \subseteq P$. In other words $\mathrm{CH}(\mathrm{P})=\bigcap_{C \subseteq P} \mathrm{C}$.

Convex Hull

${ }^{-}$Observation: $\mathrm{CH}(\mathrm{P})$ is the unique convex polygon whose vertices are points of P and which contains all points of P .

- We represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.

A First Try

Algorithm SLOW_CH (P) :
/* $\mathrm{CH}(\mathrm{P})=$ Intersection of all half-planes that are defined by the directed line through ordered pairs of points in P and that have all remaining points of P on their left */
Input: Point set $P \subseteq \mathbb{R}^{2}$
Output: A list L of vertices describing the $\mathrm{CH}(P)$ in counter-clockwise order $E:=\varnothing$
for all $(p, q) \in P \times P$ with $p \neq q$ // ordered pair
valid $:=$ true
for all $r \in P, r \neq p$ and $r \neq q$
if r lies to the left of directed line through p and $q / /$ takes constant time valid := false
if valid then

$$
E:=E \cup \overrightarrow{p q} \quad / / \text { directed edge }
$$

Construct from E sorted list L of vertices of $\mathrm{CH}(P)$ in counter-clockwise order

- Runtime: $\mathrm{O}\left(n^{3}\right)$, where $n=|P|$
- How to test that a point lies to the left?

Orientation Test / Halfplane Test

- positive orientation (counter-clockwise)

- negative orientation (clockwise)

- zero orientation
- r lies on the line $\overrightarrow{\mathrm{pq}}$
- r lies to the left of $\overrightarrow{p q}$
- r lies to the right of $\overrightarrow{\mathrm{pq}}$
- $\operatorname{Orient}(p, q, r)=\operatorname{det}\left(\begin{array}{lll}1 & p_{x} & p_{y} \\ 1 & q_{x} & q_{y} \\ 1 & r_{x} & r_{y}\end{array}\right) \quad$, where $p=\left(p_{x}, p_{y}\right)$
- Can be computed in constant time

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by $\mathrm{x}-$ coordinate
${ }^{-}$Divide the set of points into two sets A and B :
- A contains the left $\lfloor\mathrm{n} / 2\rfloor$ points,
- B contains the right $[\mathrm{n} / 2\rceil$ points
${ }^{\circ}$ Recursively compute the convex hull of A
${ }^{\circ}$ Recursively compute the convex hull of B
- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $O(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A

$b=$ leftmost point of B while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do\{
while T not lower tangent to convex hull of A do \{

```
            a=a-1
```

\}
while T not lower tangent to convex hull of B do $\{$

Convex Hull: Runtime

- Preprocessing: sort the points by $\mathrm{x}-$ coordinate
- Divide the set of points into two sets A and B :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $[\mathrm{n} / 2\rceil$ points
${ }^{\bullet}$ Recursively compute the convex hull of A
${ }^{\circ}$ Recursively compute the convex hull of \mathbb{B}
- Merge the two convex hulls

Convex Hull: Runtime

- Runtime Recurrence:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

- Solves to $T(n)=\Theta(n \log n)$

Recurrence

 (Just like merge sort recurrence)1.Divide: Divide set of points in half.
2.Conquer: Recursively compute convex hulls of 2 halves.
3.Combine: Linear-time merge.
\# subproblems $\begin{aligned} & T(n)=2 T(n / 2)+O(n) \\ & \text { subproblem size } \quad \begin{array}{l}\text { work dividing } \\ \text { and combining }\end{array}\end{aligned}$

Recurrence (cont' d)

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 ; \\
2 T(n / 2)+\Theta(\mathrm{n}) \text { if } n>1 .
\end{array}\right.
$$

- How do we solve $T(n)$? I.e., how do we find out if it is $\mathrm{O}(\mathrm{n})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or \ldots ?

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

$$
T(n)
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

The divide-and-conquer design paradigm

1.Divide the problem (instance) into subproblems.
a subproblems, each of size n / b
2.Conquer the subproblems by solving them recursively.
3.Combine subproblem solutions.

Runtime is $f(n)$

Master theorem

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

$$
\begin{aligned}
& \text { CASE 1: } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) . \\
& \text { CASE 2: } f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right) . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { and } a f(n / b) \leq c f(n) \\
& \quad \Rightarrow T(n)=\Theta(f(n)) .
\end{aligned}
$$

Convex hull: $a=2, b=2 \Rightarrow n^{\log b a}=n$

$$
\Rightarrow \text { CASE } 2(k=0) \Rightarrow T(n)=\Theta(n \log n) .
$$

