Lecture outline

- ▶ Last week recap
- ▶ Final exam date vote
- **▶** Stable matching
 - Definition
 - ► Algorithm
 - Applications

▶ My research: stable matching + shortest paths

Last week recap

- Max-Flow problem
 - ► Algorithms:
 - ▶ Ford-Fulkerson $O(f^*(n+m))$
 - \triangleright Edmond-Karp $O(nm^2)$
 - ► Applications:
 - ► Maximum Bipartite Matching *O*(*nm*)
 - Baseball elimination
- ▶ Min-cut problem
 - ▶ Krager's algorithm $O(n^4 \log n)$

Find the minimum cut for ANY cut in the graph, not just s-t cuts as in Max-Flow.

Final exam date vote

▶ Last lecture: Thu June **8th**: 2pm-3:20pm

▶ Official date: Thu June **15th**: 1:30pm-3:30pm

▶ Go to kahoot.it on your phone.

Stable matching problem

Setting:

- n med students need to find a hospital for their residency.
- n hospitals accept one student each.
- Each student ranks the hospitals by preference.
 - ► E.g.: student A prefers hospital 1, then 3, then 2.
- ► Each hospital ranks the students by preference.

Goal

- Assign a student to each hospital.
- ▶ Based on all the preferences.
- ► Not everyone can have their first choice.
- ► So... what do we do?

Example of matching

A good matching...?

Unstable pair

- Unstable pair: A student and a hospital that prefer each other to their current matches.
 - ▶ E.g.: student B and hospital 1

"Why go with them when we can be with each other?"

Stable matching

► **Stable matching:** matching with no unstable pairs.

...does it even exist?

Stable \neq more satisfaction

Non-stable

Stable

Background

- Also called "stable marriage problem"
- ightharpoonup Originally: marry n women with n men.
- lacktriangle Unstable pair ightarrow extramarital affair
- ► Studied in 1962 by

David Gale

Lloyd Shapley

Shapley won the Nobel Prize of economics for the theory of stable matchings.

Gale-Shapley algorithm

- every student starts unmatched
- repeat while there are unmatched students:
 - each unmatched student applies to its highest-ranked hospital to which he has not applied yet
 - the hospitals retain the highest-ranked student that applies to them
 - if a hospital already had a student from a previous round and gets a better match, the old student becomes unmatched again

Simulation

▶ UCI Health Center

► J.D.

► LA Hospital

► Turk

► **NY** Hospital

Foreman

Moon Hospital

▶ 13

Simulation

Guess: it ended in 3 rounds.

Just in case, I prepared a longer example.

- ▶ UCI: 13, J.D., Foreman, Turk
- ▶ LA: J.D., Turk, 13, Foreman
- ▶ **NY**: Turk, 13, Foreman, J.D.
- ▶ Moon: J.D., Turk, Foreman, 13
- ▶ J.D.: UCI, Moon, NY, LA
- ► Turk: UCI, LA, Moon, NY
- ► Foreman: LA, UCI, NY, Moon
- ▶ 13: LA, NY, Moon, UCI

Gale-Shapley: everyone gets matched

At the end, there cannot be a student (e.g., Turk) and a hospital (e.g., NY) both unmatched.

- ► Turk must have applied to NY at some point (since students will eventually apply to every hospital, if necessary).
- ► From the point when Turk applies to NY, NY always has a student thereafter.

Gale-Shapley: stability proof

Consider any student–hospital pair, e.g., Turk–NY. We must see that Turk–NY cannot be an unstable pair. (Recall: Turk–NY is an unstable pair if both prefer each other to their matches)

3 cases:

- Turk is matched to a hospital he prefers MORE than NY. → not unstable.
- 2. Turk is matched to NY. \rightarrow not unstable.
- 3. Turk is matched to a hospital (e.g., UCI) he prefers LESS than NY.

Then Turk, applied to NY before UCI, but NY rejected him. Therefore, NY prefers its student to Turk. \rightarrow not unstable.

Properties

Existence

Gale-Shapley always finds a stable matching. Therefore, a stable matching **always exists**.

Optimality

Who is better off, students or hospitals? Students get the best match they could possibly get.

Runtime

No student ever applies to the same hospital twice.

$$\rightarrow O(n^2)$$

Some applications

- National Resident Matching Program
 - Each hospital has more than one position.
 - lacktriangle Must account for couples ightarrow becomes NP-hard. Oops
- Internet-based advertisement auctions.
- Not marrying people.

"All models are wrong... and some are useful."

My research

- Nodes are houses.
- ► Edges are roads.
- Big nodes are post offices.
- Goal: stably match each post office to the same number of houses.
- Houses rank post offices by distance.
- Post offices rank houses by distance.

