Lecture outline

- Last week recap
- Final exam date vote

- Stable matching
 - Definition
 - Algorithm
 - Applications

- My research: stable matching + shortest paths
Last week recap

- Max-Flow problem
 - Algorithms:
 - Ford-Fulkerson $O(f^*(n + m))$
 - Edmond-Karp $O(nm^2)$
 - Applications:
 - Maximum Bipartite Matching $O(nm)$
 - Baseball elimination

- Min-cut problem
 - Krager’s algorithm $O(n^4 \log n)$

Find the minimum cut for ANY cut in the graph, not just $s - t$ cuts as in Max-Flow.
Final exam date vote

▶ Last lecture: Thu June 8th: 2pm-3:20pm

▶ Official date: Thu June 15th: 1:30pm-3:30pm

▶ Go to kahoot.it on your phone.
Stable matching problem

Setting:

- n med students need to find a hospital for their residency.
- n hospitals accept one student each.
- Each student ranks the hospitals by preference.
 - E.g.: student A prefers hospital 1, then 3, then 2.
- Each hospital ranks the students by preference.
Goal

- Assign a student to each hospital.
- Based on all the preferences.
- Not everyone can have their first choice.
- So... what do we do?
Example of matching

A good matching...?
Unstable pair

- **Unstable pair**: A student and a hospital that prefer each other to their current matches.
 - E.g.: student B and hospital 1

"Why go with them when we can be with each other?"
Stable matching

▶ Stable matching: matching with no unstable pairs.

...does it even exist?
Stable \neq more satisfaction

Non-stable

$$1 > 3 > 2 \quad 3 > 1 > 2 \quad 3 > 2 > 1$$

Stable

$$1 > 3 > 2 \quad 3 > 1 > 2 \quad 3 > 2 > 1$$
Background

- Also called "stable marriage problem"
- Originally: marry n women with n men.
- Unstable pair \rightarrow extramarital affair
- Studied in 1962 by

David Gale

Lloyd Shapley

- Shapley won the Nobel Prize of economics for the theory of stable matchings.
Gale-Shapley algorithm

- every student starts unmatched
- repeat while there are unmatched students:
 - each unmatched student applies to its highest-ranked hospital to which he has not applied yet
 - the hospitals retain the highest-ranked student that applies to them
 - if a hospital already had a student from a previous round and gets a better match, the old student becomes unmatched again
Simulation

- **UCI Health Center**
- **LA Hospital**
- **NY Hospital**
- **Moon Hospital**
- **J.D.**
- **Turk**
- **Foreman**
- **13**
Simulation

➤ Guess: it ended in 3 rounds.

Just in case, I prepared a longer example.

➤ **UCI**: 13, J.D., Foreman, Turk
➤ **LA**: J.D., Turk, 13, Foreman
➤ **NY**: Turk, 13, Foreman, J.D.
➤ **Moon**: J.D., Turk, Foreman, 13

➤ **J.D.**: UCI, Moon, NY, LA
➤ **Turk**: UCI, LA, Moon, NY
➤ **Foreman**: LA, UCI, NY, Moon
➤ **13**: LA, NY, Moon, UCI
At the end, there cannot be a student (e.g., Turk) and a hospital (e.g., NY) both unmatched.

- Turk must have applied to NY at some point (since students will eventually apply to every hospital, if necessary).
- From the point when Turk applies to NY, NY always has a student thereafter.
Gale-Shapley: stability proof

Consider any student–hospital pair, e.g., Turk–NY. We must see that Turk–NY cannot be an unstable pair. (Recall: Turk–NY is an unstable pair if both prefer each other to their matches)

3 cases:

1. Turk is matched to a hospital he prefers MORE than NY. → not unstable.

2. Turk is matched to NY. → not unstable.

3. Turk is matched to a hospital (e.g., UCI) he prefers LESS than NY.
 Then Turk, applied to NY before UCI, but NY rejected him. Therefore, NY prefers its student to Turk. → not unstable.
Properties

- **Existence**
 Gale-Shapley always finds a stable matching. Therefore, a stable matching **always exists**.

- **Optimality**
 Who is better off, students or hospitals?
 Students get the best match they could possibly get.

- **Runtime**
 No student ever applies to the same hospital twice.
 \[O(n^2) \]
Some applications

- National Resident Matching Program
 - Each hospital has more than one position.
 - Must account for couples → becomes NP-hard. Oops

- Internet-based advertisement auctions.

- *Not* marrying people.

”All models are wrong... and some are useful.”
My research

- Nodes are houses.
- Edges are roads.
- Big nodes are post offices.
- Goal: stably match each post office to the same number of houses.
- Houses rank post offices by distance.
- Post offices rank houses by distance.