
DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

1

Avoiding 19 Common OpenGL Pitfalls

Mark J. Kilgard *

NVIDIA Corporation

Last updated: July 10, 2000

Every software engineer who has programmed long enough has a war story about some
insidious bug that induced head scratching, late night debugging, and probably even schedule
delays. More often than we programmers care to admit, the bug turns out to be self-inflicted.
The difference between an experienced programmer and a novice is knowing the good practices
to use and the bad practices to avoid so those self-inflicted bugs are kept to a minimum.

A programming interface pitfall is a self-inflicted bug that is the result of a misunderstanding about
how a particular programming interface behaves. The pitfall may be the fault of the programming
interface itself or its documentation, but it is often simply a failure on the programmer’s part to
fully appreciate the interface’s specified behavior. Often the same set of basic pitfalls plagues
novice programmers because they simply have not yet learned the intricacies of a new
programming interface.

You can learn about the programming interface pitfalls in two ways: The hard way and the easy
way. The hard way is to experience them one by one, late at night, and with a deadline hanging
over your head. As a wise main once explained, “Experience is a good teacher, but her fees are
very high.” The easy way is to benefit from the experience of others.

This is your opportunity to learn how to avoid 19 software pitfalls common to beginning and
intermediate OpenGL programmers. This is your chance to spend a bit of time reading now to
avoid much grief and frustration down the line. I will be honest; many of these pitfalls I learned
the hard way instead of the easy way. If you program OpenGL seriously, I am confident that the
advice below will make you a better OpenGL programmer.

If you are a beginning OpenGL programmer, some of the discussion below might be about topics
that you have not yet encountered. This is not the place for a complete introduction to some of
the more complex OpenGL topics covered such as mipmapped texture mapping or OpenGL's
pixel transfer modes. Feel free to simply skim over sections that may be too advanced. As you
develop as an OpenGL programmer, the advice will become more worthwhile.

1. Improperly Scaling Normals for Lighting
Enabling lighting in OpenGL is a way to make your surfaces appear more realistic. Proper use of
OpenGL's lighting model provides subtle clues to the viewer about the curvature and orientation
of surfaces in your scene.

When you render geometry with lighting enabled, you supply normal vectors that indicate the
orientation of the surface at each vertex. Surface normals are used when calculating diffuse and
specular lighting effects. For example, here is a single rectangular patch that includes surface
normals:

* Mark graduated with B.A. in Computer Science from Rice University and is a graphics software
engineer at NVIDIA. Mark is the author of OpenGL Programming for the X Window System
(Addison-Wesley, ISBN 0-201-48359-9) and can be reached by electronic mail addressed to
mjk@nvidia.com

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

2

glBegin(GL_QUADS);
 glNormal3f(0.181636,-0.25,0.951057);
 glVertex3f(0.549,-0.756,0.261);
 glNormal3f(0.095492,-0.29389,0.95106);
 glVertex3f(0.288,-0.889,0.261);
 glNormal3f(0.18164,-0.55902,0.80902);
 glVertex3f(0.312,-0.962,0.222);
 glNormal3f(0.34549,-0.47553,0.80902);
 glVertex3f(0.594,-0.818,0.222);
glEnd();

The x, y, and z parameters for each glNormal3f call specify a direction vector. If you do the
math, you will find that the length of each normal vector above is essentially 1.0. Using the first
glNormal3f call as an example, observe that:

sqrt(0.1816362 + -0.252 + 0.9510572) ≈ 1.0

For OpenGL’s lighting equations to operate properly, the assumption OpenGL makes by default
is that the normals passed to it are vectors of length 1.0.

However, consider what happens if before executing the above OpenGL primitive, glScalef is
used to shrink or enlarge subsequent OpenGL geometric primitives. For example:

glMatrixMode(GL_MODELVIEW);
glScalef(3.0, 3.0, 3.0);

The above call causes subsequent vertices to be enlarged by a factor of three in each of the x, y,
and z directions by scaling OpenGL’s modelview matrix. glScalef can be useful for enlarging
or shrinking geometric objects, but you must be careful because OpenGL transforms normals
using a version of the modelview matrix called the inverse transpose modelview matrix. Any
enlarging or shrinking of vertices due to the modelview transformation also changes the length of
normals.

Here is the pitfall: Any modelview scaling that occurs is likely to mess up OpenGL's lighting
equations. Remember, the lighting equations assume that normals have a length of 1.0. The
symptom of incorrectly scaled normals is that the lit surfaces appear too dim or too bright
depending on whether the normals enlarged or shrunk.

The simplest way to avoid this pitfall is by calling:

glEnable(GL_NORMALIZE);

This mode is not enabled by default because it involves several additional calculations. Enabling
the mode forces OpenGL to normalize transformed normals to be of unit length before using the
normals in OpenGL's lighting equations. While this corrects potential lighting problems
introduced by scaling, it also slows OpenGL's vertex processing speed since normalization
requires extra operations, including several multiplies and an expensive reciprocal square root
operation. While you may argue whether this mode should be enabled by default or not,
OpenGL's designers thought it better to make the default case be the fast one. Once you are
aware of the need for this mode, it is easy to enable when you know you need it.

There are two other ways to avoid problems from scaled normals that may let you avoid the
performance penalty of enabling GL_NORMALIZE. One is simply to not use glScalef to scale
vertices. If you need to scale vertices, try scaling the vertices before sending them to OpenGL.
Referring to the above example, if the application simply multiplied each glVertex3f by 3, you

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

3

could eliminate the need for the above glScalef without having the enable the GL_NORMALIZE
mode.

Note that while glScalef is problematic, you can safely use glTranslatef and glRotatef
because these routines change the modelview matrix transformation without introducing any
scaling effects. Also, be aware that glMatrixMultf can also be a source of normal scaling
problems if the matrix you multiply by introduces scaling effects.

The other option is to adjust the normal vectors passed to OpenGL so that after the inverse
transpose modelview transformation, the resulting normal will become a unit vector. For
example, if the earlier glScalef call tripled the vertex coordinates, we could correct for this
corresponding thirding effect on the transformed normals by pre-multiplying each normal
component by 3.

OpenGL 1.2 adds a new glEnable mode called GL_RESCALE_NORMAL that is potentially more
efficient than the GL_NORMALIZE mode. Instead of performing a true normalization of the
transformed normal vector, the transformed normal vector is scaled based on a scale factor
computed from the inverse modelview matrix’s diagonal terms. GL_RESCALE_NORMAL can be
used when the modelview matrix has a uniform scaling factor.

2. Poor Tessellation Hurts Lighting

OpenGL's lighting calculations are done per-vertex. This means that the shading calculations
due to light sources interacting with the surface material of a 3D object are only calculated at the
object's vertices. Typically, OpenGL just interpolates or smooth shades between vertex colors.
OpenGL's per-vertex lighting works pretty well except when a lighting effect such as a specular
highlight or a spotlight is lost or blurred because the effect is not sufficiently sampled by an
object's vertices. Such under-sampling of lighting effects occurs when objects are coarsely
modeled to use a minimal number of vertices.

Figure 1 shows an example of this problem. The top left and top right cubes each have an
identically configured OpenGL spotlight light source shining directly on each cube. The left cube
has a nicely defined spotlight pattern; the right cube lacks any clearly defined spotlight pattern.
The key difference between the two models is the number of vertices used to model each cube.
The left cube models each surface with over 120 distinct vertices; the right cube has only 4
vertices.

At the extreme, if you tessellate the cube to the point that each polygon making up the cube is no
larger than a pixel, the lighting effect will essentially become per-pixel. The problem is that the
rendering will probably no longer be interactive. One good thing about per-vertex lighting is that
you decide how to trade off rendering speed for lighting fidelity.

Smooth shading between lit vertices helps when the color changes are gradual and fairly linear.
The problem is that effects such as spotlights, specular highlights, and non-linear light source
attenuation are often not gradual. OpenGL's lighting model only does a good job capturing these
effects if the objects involved are reasonably tessellated.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

4

Figure 1: Two cubes rendered with identical OpenGL spotlight enabled.

Novice OpenGL programmers are often tempted to enable OpenGL’s spotlight functionality and
shine a spotlight on a wall modeled as a single huge polygon. Unfortunately, no sharp spotlight
pattern will appear as the novice intended; you probably will not see any spotlight affect at all.
The problem is that the spotlight’s cutoff means that the extreme corners of the wall where the
vertices are specified get no contribution from the spotlight and since those are the only vertices
the wall has, there will be no spotlight pattern on the wall.

If you use spotlights, make sure that you have sufficiently tessellated the lit objects in your scene
with enough vertices to capture the spotlight effect. There is a speed/quality tradeoff here: More
vertices mean better lighting effects, but also increases the amount of vertex transformation
required to render the scene.

Specular highlights (such as the bright spot you often see on a pool ball) also require sufficiently
tessellated objects to capture the specular highlight well.

Keep in mind that if you use more linear lighting effects such as ambient and diffuse lighting
effects where there are typically not sharp lighting changes, you can get good lighting effects with
even fairly coarse tessellation.

If you do want both high quality and high-speed lighting effects, one option is to try using multi-
pass texturing techniques to texture specular highlights and spotlight patterns onto objects in your
scene. Texturing is a per-fragment operation so you can correctly capture per-fragment lighting
effects. This can be involved, but such techniques can deliver fast, high-quality lighting effects
when used effectively.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

5

3. Remember Your Matrix Mode
OpenGL has a number of 4 by 4 matrices that control the transformation of vertices, normals, and
texture coordinates.1 The core OpenGL standard specifies the modelview matrix, the projection
matrix, and the texture matrix.

Most OpenGL programmers quickly become familiar with the modelview and projection matrices.
The modelview matrix controls the viewing and modeling transformations for your scene. The
projection matrix defines the view frustum and controls the how the 3D scene is projected into a
2D image. The texture matrix may be unfamiliar to some; it allows you to transform texture
coordinates to accomplish effects such as projected textures or sliding a texture image across a
geometric surface.

A single set of matrix manipulation commands controls all types of OpenGL matrices:
glScalef, glTranslatef, glRotatef, glLoadIdentity, glMultMatrixf, and several
other commands. For efficient saving and restoring of matrix state, OpenGL provides the
glPushMatrix and glPopMatrix commands; each matrix type has its own a stack of
matrices.

None of the matrix manipulation commands have an explicit parameter to control which matrix
they affect. Instead, OpenGL maintains a current matrix mode that determines which matrix type
the previously mentioned matrix manipulation commands actually affects. To change the matrix
mode, use the glMatrixMode command. For example:

glMatrixMode(GL_PROJECTION);
/* Now update the projection matrix. */
glLoadIdentity();
glFrustum(-1, 1, -1, 1, 0.0, 40.0);

glMatrixMode(GL_MODELVIEW);
/* Now update the modelview matrix. */
glPushMatrix();
 glRotatef(45.0, 1.0, 1.0, 1.0);
 render();
glPopMatrix();

A common pitfall is forgetting the current setting of the matrix mode and performing operations on
the wrong matrix stack. If later code assumes the matrix mode is set to a particular state, you
both fail to update the matrix you intended and screw up whatever the actual current matrix is.

If this can trip up the unwary programmer, why would OpenGL have a matrix mode? Would it not
make sense for each matrix manipulation routine to also pass in the matrix that it should
manipulate? The answer is simple: lower overhead. OpenGL’s design optimizes for the
common case. In real programs, matrix manipulations occur more often than matrix mode
changes. The common case is a sequence of matrix operations all updating the same matrix
type. Therefore, typical OpenGL usage is optimized by controlling which matrix is manipulated
based on the current matrix mode. When you call glMatrixMode, OpenGL configures the
matrix manipulation commands to efficiently update the current matrix type. This saves time
compared to deciding which matrix to update every time a matrix manipulation is performed.

1 OpenGL’s color matrix extension also provides a way for colors to be transformed via a 4 by 4
matrix. The color matrix helps convert between color spaces and accelerate image processing
tasks. The color matrix functionality is a part of the OpenGL 1.2 ARB_imaging subset.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

6

In practice, because a given matrix type does tend to be updated repeatedly before switching to a
different matrix, the lower overhead for matrix manipulation more than makes up for the
programmer’s burden of ensuring the matrix mode is properly set before matrix manipulation.

A simple program-wide policy for OpenGL matrix manipulation helps avoid pitfalls when
manipulating matrices. Such a policy would require any code manipulating a matrix to first call
glMatrixMode to always update the intended matrix. However in most programs, the
modelview matrix is manipulated quite frequently during rendering and the other matrices change
considerably less frequently overall. If this is the case, a better policy is that routines can assume
the matrix mode is set to update the modelview matrix. Routines that need to update a different
matrix are responsible to switch back to the modelview matrix after manipulating one of the other
matrices.

Here is an example of how OpenGL’s matrix mode can get you into trouble. Consider a program
written to keep a constant aspect ratio for an OpenGL-rendered scene in a window. Maintaining
the aspect ratio requires updating the projection matrix whenever the window is resized. OpenGL
programs typically also adjust the OpenGL viewport in response to a window resize so the code
to handle a window resize notification might look like this:

void
doResize(int newWidth, int newHieght)
{
 GLfloat aspectRatio =
 (GLfloat)newWidth / (GLfloat)newHeight;

 glViewport(0, 0, newWidth, newHeight);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, aspectRatio, 0.1, 40.0);
 /* WARNING: matrix mode left as projection! */
}

If this code fragment is from a typical OpenGL program, doResize is one of the few times or
even only time the projection matrix gets changed after initialization. This means that it makes
sense to add to a final glMatrixMode(GL_MODELVIEW)call to doResize to switch back to the
modelview matrix. This allows the window’s redraw code safely assume the current matrix mode
is set to update the modelview matrix and eliminate a call to glMatrixMode. Since window
redraws often repeatedly update the modelview matrix, and redraws occur considerably more
frequently than window resizes, this is generally a good approach.

A tempting approach might be to call glGetIntegerv to retrieve the current matrix mode state
and then only change the matrix mode when it was not what you need it to be. After performing
its matrix manipulations, you could even restore the original matrix mode state.

This is however almost certainly a bad approach. OpenGL is designed for fast rendering and
setting state; retrieving OpenGL state is often considerably slower than simply setting the state
the way you require. As a rule, glGetIntegerv and related state retrieval routines should only
be used for debugging or retrieving OpenGL implementation limits. They should never be used in
performance critical code. On faster OpenGL implementations where much of OpenGL’s state is
maintained within the graphics hardware, the relative cost of state retrieval commands is
considerably higher than in largely software-based OpenGL implementations. This is because
state retrieval calls must stall the graphics hardware to return the requested state. When users
run OpenGL programs on high-performance expensive graphics hardware and do not see the
performance gains they expect, in many cases the reason is invocations of state retrieval
commands that end up stalling the hardware to retrieve OpenGL state.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

7

In cases where you do need to make sure that you restore the previous matrix mode after
changing it, try using glPushAttrib with the GL_TRANSFORM_BIT bit set and then use
glPopAttrib to restore the matrix mode as needed. Pushing and popping attributes on the
attribute stack can be more efficient than reading back the state and later restoring it. This is
because manipulating the attribute stack can completely avoid stalling the hardware if the
attribute stack exists within the hardware. Still the attribute stack is not particularly efficient since
all the OpenGL transform state (including clipping planes and the normalize flag) must also be
pushed and popped.

The advice in this section is focused on the matrix mode state, but pitfalls that relate to state
changing and restoring are common in OpenGL. OpenGL’s explicit state model is extremely well
suited to the stateful nature of graphics hardware, but can be an unwelcome burden for
programmers not used to managing graphics state. With a little experience though, managing
OpenGL state becomes second nature and helps ensure good hardware utilization.

The chief advantage of OpenGL’s stateful approach is that well-written OpenGL rendering code
can minimize state changes so that OpenGL can maximize rendering performance. A graphics-
interface that tries to hide the inherently stateful nature of well-designed graphics hardware ends
up either forcing redundant state changes or adds extra overhead by trying to eliminate such
redundant state changes. Both approaches give up performance for convenience. A smarter
approach is relying on the application or a high-level graphics library to manage graphics state.
Such a high-level approach is typically more efficient in its utilization of fast graphics hardware
when compared to attempts to manage graphics state in a low-level library without high-level
knowledge of how the operations are being used.

If you want more convenient state management, consider using a high-level graphics library such
as Open Inventor or IRIS Performer that provide both a convenient programming model and
efficient high-level management of OpenGL state changes.

4. Overflowing the Projection Matrix Stack

OpenGL’s glPushMatrix and glPopMatrix commands make it very easy to perform a set of
cumulative matrix operations, do rendering, and then restore the matrix state to that before the
matrix operations and rendering. This is very handy when doing hierarchical modeling during
rendering operations.

For efficiency reasons and to permit the matrix stacks to exist within dedicated graphics
hardware, the size of OpenGL’s various matrix stacks are limited. OpenGL mandates that all
implementations must provide at least a 32-entry modelview matrix stack, a 2-entry projection
matrix stack, and a 2-entry texture matrix stack. Implementations are free to provide larger
stacks, and glGetIntergerv provides a means to query an implementation’s actual maximum
depth.

Calling glPushMatrix when the current matrix mode stack is already at its maximum depth
generates a GL_STACK_UNDERFLOW error and the responsible glPushMatrix is ignored.
OpenGL applications guaranteed to run correctly on all OpenGL implementations should respect
the minimum stack limits cited above (or better yet, query the implementation’s true stack limit
and respect that).

This can become a pitfall when software-based OpenGL implementations implement stack depth
limits that exceed the minimum limits. Because these stacks are maintained in general purpose
memory and not within dedicated graphics hardware, there is no substantial expense to
permitting larger or even unlimited matrix stacks as there is when the matrix stacks are
implemented in dedicated hardware. If you write your OpenGL program and test it against such
implementations with large or unlimited stack sizes, you may not notice that you exceeded a

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

8

matrix stack limit that would exist on an OpenGL implementation that only implemented
OpenGL’s mandated minimum stack limits.

The 32 required modelview stack entries will not be exceeded by most applications (it can still be
done so be careful). However, programmers should be on guard not to exceed the projection and
texture matrix stack limits since these stacks may have as few as 2 entries. In general, situations
where you actually need a projection or texture matrix that exceed two entries are quite rare and
generally avoidable.

Consider this example where an application uses two projection matrix stack entries for updating
a window:

void
renderWindow(void)
{
 render3Dview();
 glPushMatrix();
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 gluOrtho2D(0, 1, 0, 1);
 render2Doverlay();
 glPopMatrix();
 glPopMatrix();
 glMatrixMode(GL_MODELVIEW);
}

The window renders a 3D scene with a 3D perspective projection matrix (initialization not shown),
then switches to a simple 2D orthographic projection matrix to draw a 2D overlay.

Be careful because if the render2Doverlay tries to push the projection matrix again, the
projection matrix stack will overflow on some machines. While using a matrix push, cumulative
matrix operations, and a matrix pop is a natural means to accomplish hierarchical modeling, the
projection and texture matrices rarely require this capability. In general, changes to the projection
matrix are to switch to an entirely different view (not to make a cumulative matrix change to later
be undone). A simple matrix switch (reload) does not need a push and pop stack operation.

If you find yourself attempting to push the projection or texture matrices beyond two entries,
consider if there is a simpler way to accomplish your manipulations that will not overflow these
stacks. If not, you are introducing a latent interoperability problem when you program is run on
high-performance hardware-intensive OpenGL implementations that implement limited projection
and texture matrix stacks.

5. Not Setting All Mipmap Levels

When you desire high-quality texture mapping, you will typically specify a mipmapped texture
filter. Mipmapping lets you specify multiple levels of detail for a texture image. Each level of
detail is half the size of the previous level of detail in each dimension. So if your initial texture
image is an image of size 32x32, the lower levels of detail will be of size 16x16, 8x8, 4x4, 2x2,
and 1x1. Typically, you use the gluBuild2DMipmaps routine to automatically construct the
lower levels of details from you original image. This routine re-samples the original image at each
level of detail so that the image is available at each of the various smaller sizes.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

9

Mipmap texture filtering means that instead of applying texels from a single high-resolution
texture image, OpenGL automatically selects from the best pre-filtered level of detail.
Mipmapping avoids distracting visual artifacts that occur when a distant textured object under-
samples its associated texture image. With a mipmapped minimization filter enabled, instead of
under-sampling a single high resolution texture image, OpenGL will automatically select the most
appropriate levels of detail.

One pitfall to be aware of is that if you do not specify every necessary level of detail, OpenGL will
silently act as if texturing is not enabled. The OpenGL specification is very clear about this: “If
texturing is enabled (and TEXTURE_MIN_FILTER is one that requires a mipmap) at the time a
primitive is rasterized and if the set of arrays 0 through n is incomplete, based on the dimensions
of array 0, then it is as if texture mapping were disabled.”

The pitfall typically catches you when you switch from using a non-mipmapped texture filter (like
GL_LINEAR) to a mipmapped filter, but you forget to build complete mipmap levels. For example,
say you enabled non-mipmapped texture mapping like this:

glEnable(GL_TEXTURE_2D);
glTexParameterf(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D,
 0, 3, width, height, 0,
 GL_RGB, GL_UNSIGNED_BYTE, imageData);

At this point, you could render non-mipmapped textured primitives. Where you could get tripped
up is if you naively simply enabled a mipmapped minification filter. For example:

glTexParameterf(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);

The problem is that you have changed the minification filter, but not supplied a complete set of
mipmap levels. Not only do you not get the filtering mode you requested, but also subsequent
rendering happens as if texture mapping were not even enabled.

The simple way to avoid this pitfall is to use gluBuild2DMipmaps (or gluBuild1DMipmaps for
1D texture mapping) whenever you are planning to use a mipmapped minification filter. So this
works:

glEnable(GL_TEXTURE_2D);
glTexParameterf(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);
gluBuild2DMipmaps(GL_TEXTURE_2D,
 depth, width, height,
 GL_RGB, GL_UNSIGNED_BYTE, imageData);

The above code uses a mipmap filter and uses gluBuild2DMipmaps to make sure all the levels
are populated correctly. Subsequent rendering is not just textured, but properly uses mipmapped
filtering.

Also, understand that OpenGL considers the mipmap levels incomplete not simply because you
have not specified all the mipmap levels, but also if the various mipmap levels are inconsistent.
This means that you must consistently specify border pixels and each successive level must be
half the size of the previous level in each dimension.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

10

6. Reading Back Luminance Pixels
You can use OpenGL’s glReadPixels command to read back rectangular regions of a window
into your program’s memory space. While reading back a color buffer as RGB or RGBA values is
straightforward, OpenGL also lets you read back luminance values, but it can a bit tricky to get
what you probably expect. Retrieving luminance values is useful if you want to generate a
grayscale image.

When you read back luminance values, the conversion to luminance is done as a simple addition
of the distinct red, green, and blue components with result clamped between 0.0 and 1.0. There
is a subtle catch to this. Say the pixel you are reading back is 0.5 red, 0.5 green, and 0.5 blue.
You would expect the result to then be a medium gray value. However, just adding these
components would give 1.5 that would be clamped to 1.0. Instead of being a luminance value of
0.5, as you would expect, you get pure white.

A naive reading of luminance values results in a substantially brighter image than you would
expect with a high likelihood of many pixels being saturated white.

The right solution would be to scale each red, green, and blue component appropriately.
Fortunately, OpenGL’s pixel transfer operations allow you to accomplish this with a great deal of
flexibility. OpenGL lets you scale and bias each component separately when you send pixel data
through OpenGL.

For example, if you wanted each color component to be evenly averaged during pixel read back,
you would change OpenGL’s default pixel transfer state like this:

glPixelTransferf(GL_RED_SCALE,0.3333);
glPixelTransferf(GL_GREEN_SCALE,0.3334);
glPixelTransferf(GL_BLUE_SCALE,0.3333);

With OpenGL’s state set this way, glReadPixels will have cut each color component by a third
before adding the components during luminance conversion. In the previous example of reading
back a pixel composed of 0.5 red, 0.5 green, and 0.5 blue, the resulting luminance value is 0.5.

However, as you may be aware, your eye does not equally perceive the contribution of the red,
green, and blue color components. A standard linear weighting for combining red, green, and
blue into luminance was defined by the National Television Standard Committee (NTSC) when
the US color television format was standardized. These weightings are based on the human
eye’s sensitivity to different wavelengths of visible light and are based on extensive research. To
set up OpenGL to convert RGB to luminance according to the NTSC standard, you would change
OpenGL’s default pixel transfer state like this:

glPixelTransferf(GL_RED_SCALE, 0.299);
glPixelTransferf(GL_GREEN_SCALE, 0.587);
glPixelTransferf(GL_BLUE_SCALE, 0.114);

If you are reading back a luminance version of an RGB image that is intended for human viewing,
you probably will want to use the NTSC scale factors.

Something to appreciate in all this is how OpenGL itself does not mandate a particular scale
factor or bias for combining color components into a luminance value; instead, OpenGL’s flexible
pixel path capabilities give the application control. For example, you could easily read back a
luminance image where you had suppressed any contribution from the green color component if
that was valuable to you by setting the green pixel transfer scale to be 0.0 and re-weighting red
and blue appropriately.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

11

You could also use the biasing capability of OpenGL’s pixel transfer path to enhance the
contribution of red in your image by adding a bias like this:

glPixelTransferf(GL_RED_BIAS, 0.1);

That will add 0.1 to each red component as it is read back.

Please note that the default scale factor is 1.0 and the default bias is 0.0. Also be aware that
these same modes are not simply used for the luminance read back case, but all pixel or texture
copying, reading, or writing. If you program changes the scales and biases for reading luminance
values, it will probably want to restore the default pixel transfer modes when downloading
textures.

7. Watch Your Pixel Store Alignment

OpenGL’s pixel store state controls how a pixel rectangle or texture is read from or written to your
application’s memory. Consider what happens when you call glDrawPixels. You pass a
pointer to the pixel rectangle to OpenGL. But how exactly do pixels in your application’s linear
address space get turned into an image?

The answer sounds like it should be straightforward. Since glDrawPixels takes a width and
height in pixels and a format (that implies some number of bytes per pixel), you could just assume
the pixels were all packed in a tight array based on the parameters passed to glDrawPixels.
Each row of pixels would immediately follow the previous row.

In practice though, applications often need to extract a sub-rectangle of pixels from a larger
packed pixel rectangle. Or for performance reasons, each row of pixels is setup to begin on
some regular byte alignment. Or the pixel data was read from a file generated on a machine with
a different byte order (Intel and DEC processors are little-endian; Sun, SGI, and Motorola
processors are big-endian).

GL_ _ROW_LENGTHPACK or
UNPACK

GL_ _SKIP_ROWS
PACK or
UNPACK

subimage

image

Excess pixels so
that rows begin on GL_ _ALIGNMENT byte boundary

PACK or
UNPACK

Address passed to OpenGL pixel routine such as
glDrawPixels or glReadPixels

GL_ _SKIP_PIXELSPACK or
UNPACK

Figure 2: Relationship of the image layout pixel store modes.

So OpenGL’s pixel store state determines how bytes in your application’s address space get
unpacked from or packed to OpenGL images. Figure 2 shows how the pixel state determines the
image layout. In addition to the image layout, other pixel store state determines the byte order
and bit ordering for pixel data.

One likely source of surprise for OpenGL programmers is the default state of the
GL_PACK_ALIGNMENT and GL_UNPACK_ALIGNMENT values. Instead of being 1, meaning that
pixels are packed into rows with no extra bytes between rows, the actual default for these modes
is 4.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

12

Say that your application needs to read back an 11 by 8 pixel area of the screen as RGB pixels (3
bytes per pixel, one byte per color component). The following glReadPixels call would read
the pixels:

glReadPixels(x, y, 11, 8,
 GL_RGB, GL_UNSIGNED_BYTE, pixels);

How large should the pixels array need to be to store the image? Assume that the
GL_UNPACK_ALIGNMENT state is still 4 (the initial value). Naively, your application might call:

pixels = (GLubyte*)
 malloc(3 * 11 * 8); /* Wrong! */

Unfortunately, the above code is wrong since it does not account for OpenGL’s default 4-byte row
alignment. Each row of pixels will be 33 bytes wide, but then each row is padded to be 4 byte
aligned. The effective row width in bytes is then 36. The above malloc call will not allocate
enough space; the result is that glReadPixels will write several pixels beyond the allocated
range and corrupt memory.

With a 4 byte row alignment, the actual space required is not simply BytesPerPixel × Width ×
Height, but instead ((BytesPerPixel × Width + 3) >> 2) << 2) × Height. Despite the fact that
OpenGL’s initial pack and unpack alignment state is 4, most programs should not use a 4 byte
row alignment and instead request that OpenGL tightly pack and unpack pixel rows. To avoid the
complications of excess bytes at the end of pixel rows for alignment, change OpenGL’s row
alignment state to be “tight” like this:

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_PACK_ALIGNMENT, 1);

Be extra cautious when your program is written assuming a 1 byte row alignment because bugs
caused by OpenGL's initial 4 byte row alignment can easily go unnoticed. For example, if such a
program is tested only with images and textures of width divisible by 4, no memory corruption
problem is noticed since the test images and textures result in a tight row packing. And because
lots of textures and images, by luck or design, have a width divisible by 4, such a bug can easily
slip by your testing. However, the memory corruption bug is bound to surface as soon as a
customer tries to load a 37 pixel width image.

Unless you really want a row alignment of 4, be sure you change this state when using pixel
rectangles, 2D and 1D textures, bitmaps, and stipple patterns.2 And remember that there is a
distinct pack and unpack row alignment.

8. Know Your Pixel Store State
Keep in mind that your pixel store state gets used for textures, pixel rectangles, stipple patterns,
and bitmaps. Depending on what sort of 2D image data you are passing to (or reading back
from) OpenGL, you may need to load the pixel store unpack (or pack) state.

Not properly configuring the pixel store state (as described in the previous section) is one
common pitfall. Yet another pitfall is changing the pixel store modes to those needed by a
particular OpenGL commands and later issuing some other OpenGL commands requiring the

2 Additional OpenGL extensions also use the pixel store state for passing and returning other
types of arrayed data to OpenGL. For example, the convolution extension uses the pixel store
modes when specifying convolution kernels. The convolution functionality is a part of the
OpenGL 1.2 ARB_imaging subset.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

13

original pixel store mode settings. To be on the safe side, it is usually a good idea to save and
restore the previous pixel store modes when you need to change them.

Here is an example of such a save and restore. The following code saves the pixel store unpack
modes:

GLint swapbytes, lsbfirst, rowlength,
 skiprows, skippixels, alignment;

/* Save current pixel store state. */
glGetIntegerv(GL_UNPACK_SWAP_BYTES, &swapbytes);
glGetIntegerv(GL_UNPACK_LSB_FIRST, &lsbfirst);
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &rowlength);
glGetIntegerv(GL_UNPACK_SKIP_ROWS, &skiprows);
glGetIntegerv(GL_UNPACK_SKIP_PIXELS, &skippixels);
glGetIntegerv(GL_UNPACK_ALIGNMENT, &alignment);

/* Set desired pixel store state. */
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
glPixelStorei(GL_UNPACK_LSB_FIRST, GL_FALSE);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

Then, this code restores the pixel store unpack modes:

/* Restore current pixel store state. */
glPixelStorei(GL_UNPACK_SWAP_BYTES, swapbytes);
glPixelStorei(GL_UNPACK_LSB_FIRST, lsbfirst);
glPixelStorei(GL_UNPACK_ROW_LENGTH, rowlength);
glPixelStorei(GL_UNPACK_SKIP_ROWS, skiprows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, skippixels);
glPixelStorei(GL_UNPACK_ALIGNMENT, alignment);

Similar code could be written to save and restore OpenGL’s pixel store pack modes (change
UNPACK to PACK in the code above).

With OpenGL 1.1, the coding effort to save and restore these modes is simpler. To save, the
pixel store state, you can call:

glPushClientAttrib(GL_CLIENT_PIXEL_STORE_BIT);

Then, this code restores the pixel store unpack modes:

glPopClientAttrib(GL_CLIENT_PIXEL_STORE_BIT);

The above routines (introduced in OpenGL 1.1) save and restore the pixel store state by pushing
and popping the state using a stack maintained within the OpenGL library.

Observant readers may wonder why glPushClientAttrib is used instead of the shorter
glPushAttrib routine. The answer involves the difference between OpenGL client-side and
server-side state. It is worth clearly understanding the practical considerations that surround the
distinction between OpenGL’s server-side and client-side state.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

14

There is not actually the option to use glPushAttrib to push the pixel store state because
glPushAttrib and glPopAttrib only affects the server-state attribute stack and the pixel
pack and unpack pixel store state is client-side OpenGL state.

Think of your OpenGL application as a client of the OpenGL rendering service provided by the
host computer’s OpenGL implementation.3

The pixel store modes are client-side state.4 However, most of OpenGL’s state is server-side.
The term server-side state refers to the fact that the state actually resides within the OpenGL
implementation itself, possibly within the graphics hardware itself. Server-side OpenGL state is
concerned with how OpenGL commands are rendered, but client-side OpenGL state is
concerned with how image or vertex data is extracted from the application address space.

Server-side OpenGL state is often expensive to retrieve because the state may reside only within
the graphics hardware. To return such hardware-resident state (for example with
glGetIntegerv) requires all preceding graphics commands to be issued before the state is
retrievable. While OpenGL makes it possible to read back nearly all OpenGL server-side state,
well-written programs should always avoid reading back OpenGL server-side state in
performance sensitive situations.

Client-side state however is not state that will ever reside only within the rendering hardware.
This means that using glGetIntegerv to read back pixel store state is relatively inexpensive
because the state is client-side. This is why the above code that explicitly reads back each pixel
store unpack mode can be recommended. Similar OpenGL code that tried to save and restore
server-side state could severely undermine OpenGL rendering performance.

Consider that whether it is better to use glGetIntegerv and glPixelStorei to explicitly save
and restore the modes or whether you use OpenGL 1.1’s glPushClientAttrib and
glPopClientAttrib will depend on your situation. When pushing and popping the client
attribute stack, you do have to be careful not to overflow the stack. An advantage to pushing and
popping the client attribute state is that both the pixel store and vertex array client-side state can
be pushed or popped with a single call. Still, you may find that only the pack or only the unpack
modes need to be saved and restored and sometimes only one or two of the modes. If that is the
case, an explicit save and restore may be faster.

9. Careful Updating that Raster Position
OpenGL’s raster position determines where pixel rectangles and bitmaps will be rasterized. The
glRasterPos2f family of commands specifies the coordinates for the raster position. The
raster position gets transformed just as if it was a vertex. This symmetry makes it easy to
position images or text within a scene along side 3D geometry. Just like a vertex, the raster
position is logically an (x,y,z,w) coordinate. It also means that when the raster position is
specified, OpenGL’s modelview and projection matrix transformations, lighting, clipping, and even
texture coordinate generation are all performed on the raster position vertex in exactly the same
manner as a vertex coordinate passed to OpenGL via glVertex3f.

While this is all very symmetric, it rarely if ever makes sense to light or generate a texture
coordinate for the raster position. It can even be quite confusing when you attempt to render a
bitmap based on the current color and find out that because lighting is enabled, the bitmap color
gets determined by lighting calculations. Similarly, if you draw a pixel rectangle with texture

3 The buzzword client-server has become closely associated with networking between machines.
However, client-server is really a description of a relationship between entities where the
communication is through a well-defined protocol.
4 The vertex array state is also client-side.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

15

mapping enabled, your pixel rectangle may end up being modulated with the single texel
determined by the current raster texture coordinate.

Still another symmetric, but generally unexpected result of OpenGL’s identical treatment of
vertices and the raster position is that, just like a vertex, the raster position can be clipped. This
means if you specify a raster position outside (even slightly outside) the view frustum, the raster
position is clipped and marked “invalid”. When the raster position is invalid, OpenGL simply
discards the pixel data specified by the glBitmap, glDrawPixels, and glCopyPixls
commands.

This text is unclipped.

Invalid raster position.

This text is clipped.

Figure 3: The enclosing box represents the view frustum and viewport. Each line of text is preceded
by a dot indicating where the raster position is set before rendering the line of text. The dotted

underlining shows the pixels that will actually be rasterized from each line of text. Notice that none
of the pixels in the lowest line of text are rendered because the line’s raster position is invalid.

Consider how this can surprise you. Say you wanted to draw a string of text with each character
rendered with glBitmap. Figure 3 shows a few situations. The point to notice is that the text
renders as expected in the first two cases, but in the last case, the raster position's placement is
outside the view frustum so no pixels from the last text string are drawn.

It would appear that there is no way to begin rendering of a string of text outside the bounds of
the viewport and view frustum and render at least the ending portion of the string. There is a way
to accomplish what you want; it is just not very obvious. The glBitmap command both draws a
bitmap and then offsets the raster position in relative window coordinates. You can render the
final line of text if you first position the raster position within the view frustum (so that the raster
position is set valid), and then you offset the raster position by calling glBitmap with relative
raster position offsets. In this case, be sure to specify a zero-width and zero-height bitmap so no
pixels are actually rendered.

Here is an example of this:

glRasterPos2i(0, 0);
glBitmap(0, 0, 0.0, 0.0,
 xoffset, yoffset, NULL);
drawString("Will not be clipped.");

This code fragment assumes that the glRasterPos2i call will validate the raster position at the
origin. The code to setup the projection and modelview matrix to do that is not show (setting both
matrices to the identity matrix would be sufficient).

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

16

A

C

B

D

Figure 4: Various raster position scenarios. A, raster position is within the view frustum and the
image is totally with the viewport. B, raster position is within the view frustum but the image is only
partially within the viewport; still fragments are generated outside the viewport. C, raster position is
invalid (due to being placed outside the view frustum); no pixels are rasterized. D, like case B except
glPixelZoom(1,-1) has inverted the Y pixel rasterization direction so the image renders top to

bottom.

10. The Viewport Does Not Clip or Scissor
It is a very common misconception that pixels cannot be rendered outside the OpenGL viewport.
The viewport is often mistaken for a type of scissor. In fact, the viewport simply defines a
transformation from normalized device coordinates (that is, post-projection matrix coordinates
with the perspective divide applied) to window coordinates. The OpenGL specification makes no
mention of clipping or culling when describing the operation of OpenGL’s viewport.

Part of the confusion comes from the fact that, most of the time, the viewport is set to be the
window’s rectangular extent and pixels are clipped to the window’s rectangular extent. But do not
confuse window ownership clipping with anything the viewport is doing because the viewport
does not clip pixels.

Another reason that it seems like primitives are clipped by the viewport is that vertices are indeed
clipped against the view frustum. OpenGL’s view frustum clipping does guarantee that no vertex
(whether belonging to a geometric primitive or the raster position) can fall outside the viewport.

So if vertices cannot fall outside the view frustum and hence cannot be outside the viewport, how
do pixels get rendered outside the viewport? Might it be an idle statement to say that the
viewport does not act as a scissor if indeed you cannot generate pixels outside the viewport?
Well, you can generate fragments that fall outside the viewport rectangle so it is not an idle
statement.

The last section has already hinted at one way. While the raster position vertex must be specified
to be within the view frustum to validate the raster position, once valid, the raster position (the
state of which is maintained in window coordinates) can be moved outside the viewport with the
glBitmap call’s raster position offset capability. But you do not even have to move the raster
position outside the viewport to update pixels outside of the viewport rectangle. You can just
render a large enough bitmap or image so that the pixel rectangle exceeds the extent of the
viewport rectangle. Figure 4 demonstrates image rendering outside the viewport.

The other case where fragments can be generated outside the viewport is when rasterizing wide
lines and points or smooth points, lines, and polygons. While the actual vertices for wide and
smooth primitives will be clipped to fall within the viewport during transformation, at rasterization
time, the widened rasterization footprint of wide or smooth primitives may end up generating
fragments outside the boundaries of the viewport rectangle.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

17

Indeed, this can turn into a programming pitfall. Say your application renders a set of wide points
that slowly wander around on the screen. Your program configures OpenGL like this:

glViewport(0, 0, windowWidth, windowHeight);
glLineWidth(8.0);

What happens when a point slowly slides off the edge of the window? If the viewport matches
the window’s extents as indicated by the glViewport call above, you will notice that a point will
disappear suddenly at the moment its center is outside the window extent. If you expected the
wide point to gradually slide of the screen, that is not what happens!

Keep in mind that the extra pixels around a wide or antialiased point are generated at
rasterization time, but if the point’s vertex (at its center) is culled during vertex transformation time
due to view frustum clipping, the widened rasterization never happens. You can fix the problem
by widening the viewport to reflect the fact that a point’s edge can be up to four pixels (half of 8.0)
from the point’s center and still generate fragments within the window’s extent. Change the
glViewport call to:

glViewport(-4, -4, windowWidth+4, windowHeight+4);

With this new viewport, wide points can still be rasterized even if the hang off the window edge.
Note that this will also slightly narrow your rectangular region of view, so if you want the identical
view as before, you need to compensate by also expanding the view frustum specified by the
projection matrix.

Note that if you really do require a rectangular 2D scissor in your application, OpenGL does
provide a true window space scissor. See glEnable(GL_SCISSOR_TEST) and glScissor.

11. Setting the Raster Color

Before you specify a vertex, you first specify the normal, texture coordinate, material, and color
and then only when glVertex3f (or its ilk) is called will a vertex actually be generated based on
the current per-vertex state. Calling glColor3f just sets the current color state. glColor3f
does not actually create a vertex or any perform any rendering. The glVertex3f call is what
binds up all the current per-vertex state and issues a complete vertex for transformation.

The raster position is updated similarly. Only when glRasterPos3f (or its ilk) is called does all
the current per-vertex state get transformed and assigned to the raster position.

A common pitfall is attempting to draw a string of text with a series of glBitmap calls where
different characters in the string are different colors. For example:

glColor3f(1.0, 0.0, 0.0); /* RED */
glRasterPos2i(20, 15);
glBitmap(w, h, 0.0, 0.0,
 xmove, ymove, red_bitmap);
glColor3f(0.0, 1.0, 0.0); /* GREEN */
glBitmap(w, h, 0.0, 0.0,
 xmove, ymove, green_bitmap);
/* WARNING: Both bitmaps render red. */

Unfortunately, glBitmap’s relative offset of the raster position just updates the raster position
location. The raster color (and the other remaining raster state values) remain unchanged.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

18

The designers of OpenGL intentionally specified that glBitmap should not latch into place the
current per-vertex state when the raster position is repositioned by glBitmap. Repeated
glBitmap calls are designed for efficient text rendering with mono-chromatic text being the most
common case. Extra processing to update per-vertex state would slow down the intended most
common usage for glBitmap.

If you do want to switch the color of bitmaps rendered with glBitmap, you will need to explicitly
call glRasterPos3f (or its ilk) to lock in a changed current color.

12. OpenGL’s Lower Left Origin

Given a sheet of paper, people write from the top of the page to the bottom. The origin for writing
text is at the upper left-hand margin of the page (at least in European languages). However, if
you were to ask any decent math student to plot a few points on an X-Y graph, the origin would
certainly be at the lower left-hand corner of the graph. Most 2D rendering APIs mimic writers and
use a 2D coordinate system where the origin is in the upper left-hand corner of the screen or
window (at least by default). On the other hand, 3D rendering APIs adopt the mathematically
minded convention and assume a lower left-hand origin for their 3D coordinate systems.

If you are used to 2D graphics APIs, this difference of origin location can trip you up. When you
specify 2D coordinates in OpenGL, they are generally based on a lower left-hand coordinate
system. Keep this in mind when using glViewport, glScissor, glRasterPos2i,
glBitmap, glTexCoord2f, glReadPixels, glCopyPixels, glCopyTexImage2D,
glCopyTexSubImage2D, gluOrtho2D, and related routines.

Another common pitfall related to 2D rendering APIs having an upper left-hand coordinate system
is that 2D image file formats start the image at the top scan line, not the bottom scan line.
OpenGL assumes images start at the bottom scan line by default. If you do need to flip an image
when rendering, you can use glPixelZoom(1,-1) to flip the image in the Y direction. Note
that you can also flip the image in the X direction. Figure 4 demonstrates using glPixelZoom to
flip an image.

Note that glPixelZoom only works when rasterizing image rectangles with glDrawPixels or
glCopyPixels. It does not work with glBitmap or glReadPixels. Unfortunately, OpenGL
does not provide an efficient way to read an image from the frame buffer into memory starting
with the top scan line.

13. Setting Your Raster Position to a Pixel Location

A common task in OpenGL programming is to render in window coordinates. This is often
needed when overlaying text or blitting images onto precise screen locations. Often having a 2D
window coordinate system with an upper left-hand origin matching the window system’s default
2D coordinate system is useful.

Here is code to configure OpenGL for a 2D window coordinate system with an upper left-hand
origin where w and h are the window’s width and height in pixels:

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, w, h, 0.0, -1, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

19

Note that the bottom and top parameters (the 3rd and 4th parameters) to glOrtho specify the
window height as the top and zero as the bottom. This flips the origin to put the origin at the
window’s upper left-hand corner.

Now, you can safely set the raster position at a pixel position in window coordinates like this

glVertex2i(x, y);
glRasterPos2i(x, y);

One pitfall associated with setting up window coordinates is that switching to window coordinates
involves loading both the modelview and projection matrices. If you need to “get back” to what
was there before, use glPushMatrix and glPopMatrix (but remember the pitfall about
assuming the projection matrix stack has more than two entries).

All this matrix manipulation can be a lot of work just to do something like place the raster position
at some window coordinate. Brian Paul has implemented a freeware version of the OpenGL API
called Mesa.5 Mesa implements an OpenGL extension called MESA_window_pos that permits
direct efficient setting of the raster position without disturbing any other OpenGL state. The calls
are:

glWindowPos4fMESA(x,y,z,w);
glWindowPos2fMESA(x,y)

Here is the equivalent implementation of these routines in unextended OpenGL:

void
glWindowPos4fMESAemulate(GLfloat x,GLfloat y,GLfloat z,GLfloat w)
{
 GLfloat fx, fy;

 /* Push current matrix mode and viewport attributes. */
 glPushAttrib(GL_TRANSFORM_BIT | GL_VIEWPORT_BIT);

 /* Setup projection parameters. */
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glLoadIdentity();

 glDepthRange(z, z);
 glViewport((int) x - 1, (int) y - 1, 2, 2);

 /* Set the raster (window) position. */
 fx = x - (int) x;
 fy = y - (int) y;
 glRasterPos4f(fx, fy, 0.0, w);

 /* Restore matrices, viewport and matrix mode. */
 glPopMatrix();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

5 Mesa can be obtained from http://www.mesa.org

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

20

 glPopAttrib();
}

void
glWindowPos2fMESAemulate(GLfloat x, GLfloat y)
{
 glWindowPos4fMESAemulate(x, y, 0, 1);
}

Note all the extra work the emulation routines go through to ensure that no OpenGL state is
disturbed in the process of setting the raster position. Perhaps commercial OpenGL vendors will
consider implementing this extension.

14. Careful Enabling Color Material

OpenGL’s color material feature provides a less expensive way to change material parameters.
With color material enabled, material colors track the current color. This means that instead of
using the relatively expensive glMaterialfv routine, you can use the glColor3f routine.

Here is an example using the color material feature to change the diffuse color for each vertex of
a triangle:

glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glBegin(GL_TRIANGLES);
 glColor3f(0.2, 0.5, 0.8);
 glVertex3f(1.0, 0.0, 0.0);
 glColor3f(0.3, 0.5, 0.6);
 glVertex3f(0.0, 0.0, 0.0);
 glColor3f(0.4, 0.2, 0.2);
 glVertex3f(1.0, 1.0, 0.0);
glEnd();

Consider the more expensive code sequence needed if glMaterialfv is used explicitly:

GLfloat d1 = { 0.2, 0.5, 0.8, 1.0 };
GLfloat d2 = { 0.3, 0.5, 0.6, 1.0 };
GLfloat d3 = { 0.4, 0.2, 0.2, 1.0 };

glBegin(GL_TRIANGLES);
 glMaterialfv(GL_FRONT,GL_DIFFUSE,d1);
 glVertex3f(1.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT,GL_DIFFUSE,d2);
 glVertex3f(0.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT,GL_DIFFUSE,d3);
 glVertex3f(1.0, 1.0, 0.0);
glEnd();

If you are rendering objects that require frequent simple material changes, try to use the color material
mode. However, there is a common pitfall encountered when enabling the color material mode. When
color material is enabled, OpenGL immediately changes the material colors controlled by the color material
state. Consider the following piece of code to initialize a newly create OpenGL rendering context:

GLfloat a[] = { 0.1, 0.1, 0.1, 1.0 };

glColor4f(1.0, 1.0, 1.0, 1.0);

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

21

glMaterialfv(GL_FRONT, GL_AMBIENT, a);
glEnable(GL_COLOR_MATERIAL); /* WARNING: Ambient and diffuse
 material latch immediately
 to the current color. */
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glColor3f(0.3, 0.5, 0.6);

What state will the front ambient and diffuse material colors be after executing the above code
fragment? While the programmer may have intended the ambient material state to be (0.1, 0.1,
0.1, 1.0) and the diffuse material state to be (0.3, 0.5, 0.6, 1.0), that is not quite what happens.

The resulting diffuse material state is what the programmer intended, but the resulting ambient
material state is rather unexpectedly (1.0, 1.0, 1.0, 1.0). How did that happen? Well, remember
that the color material mode immediately begins tracking the current color when enabled. The
initial value for the color material settings is GL_FRONT_AND_BACK and
GL_AMBIENT_AND_DIFFUSE (probably not what you expected!).

Since enabling the color material mode immediately begins tracking the current color, both the
ambient and diffuse material states are updated to be (1.0, 1.0, 1.0, 1.0). Note that the effect of
the initial glMaterialfv is lost. Next, the color material state is updated to just change the front
diffuse material. Lastly, the glColor3f invocation changes the diffuse material to (0.3, 0.5, 0.6,
1.0). The ambient material state ends up being (1.0, 1.0, 1.0, 1.0).

The problem in the code fragment above is that the color material mode is enabled before calling
glColorMaterial. The color material mode is very effective for efficient simple material
changes, but to avoid the above pitfall, always be careful to set glColorMaterial before you
enable GL_COLOR_MATERIAL.

15. Much OpenGL State Affects All Primitives

A fragment is OpenGL’s term for the bundle of state used to update a given pixel on the screen.
When a primitive such as a polygon or image rectangle is rasterized, the result is a set of
fragments that are used to update the pixels that the primitive covers. Keep in mind that all
OpenGL rendering operations share the same set of per-fragment operations. The same applies
to OpenGL’s fog and texturing rasterization state.

For example, if you enabled depth testing and blending when you render polygons in your
application, keep in mind that when you overlay some 2D text indicating the application’s status
that you probably want to disable depth testing and blending. It is easy to forget that this state
also affects images drawn and copied with glDrawPixels and glCopyPixels.

You will quickly notice when this shared state screws up your rendering, but also be aware that
sometimes you can leave a mode enabled such as blending without noticing the extra expense
involved. If you draw primitives with a constant alpha of 1.0, you may not notice that the blending
is occurring and simply slowing you down.

This issue is not unique to the per-fragment and rasterization state. The pixel path state is
shared by the draw pixels (glDrawPixels), read pixels (glReadPixels), copy pixels
(glCopyPixels), and texture download (glTexImage2D) paths. If you are not careful, it is
easy to get into situations where a texture download is screwed up because the pixel path was
left configured for a pixel read back.

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

22

16. Be Sure to Allocate Ancillary Buffers that You Use

If you intend to use an ancillary buffer such as a depth, stencil, or accumulation buffer, be sure
that you application actually requests all the ancillary buffers that you intend to use. A common
interoperability issue is developing an OpenGL application on a system with only a few frame
buffer configurations that provide all the ancillary buffers that you use. For example, your system
has no frame buffer configuration that advertises a depth buffer without a stencil buffer. So on
your development system, you “get away with” not explicitly requesting a stencil buffer.

The problem comes when you take your supposedly debugged application and run it on a new
fancy hardware accelerated OpenGL system only to find out that the application fails miserably
when attempting to use the stencil buffer. Consider that the fancy hardware may support extra
color resolution if you do not request a stencil buffer. If you application does not explicitly request
the stencil buffer that it uses, the fancy hardware accelerated OpenGL implementation
determines that the frame buffer configuration with no stencil but extra color resolution is the
better choice for your application. If your application would have correctly requested a stencil
buffer things would be fine. Make sure that you allocate what you use.

17. Do Not Assume a Maximum Extensions String Length

Various implementation-dependent strings can be retrieved with glGetString. You can use
glGetString to retrieve the OpenGL version string (GL_VERSION), vendor string (GL_VENDOR),
renderer description string (GL_RENDERER), and the extensions supported string
(GL_EXTENSIONS).

The pointer returned by glGetString is a character array managed by the OpenGL
implementation. The string is read-only and should not be written. Your application should not
attempt to free the returned pointer. You should not make any assumptions on the length of the
returned strings, but you can depend on the strings being null-terminated so its length can be
determined with strlen.

Because the string is write-only, applications often copy these strings to application-allocated
memory. A common pitfall is to assume that one or more of these strings is no longer than a
fixed size buffer. If a longer-than-expected string is copied into a fixed size buffer that is too
small, the result is usually memory corruption and eventually erroneous program behavior, often
times a program crash.

This pitfall is particularly common for the OpenGL extensions string. Some OpenGL
implementations support a large number of extensions. Indeed, the OpenGL extensions string
will only get longer in future OpenGL implementations that will support more and more
extensions. The maximum length of the extensions string for today’s OpenGL implementations is
sure to be exceeded by tomorrow’s OpenGL implementations. The problem with this pitfall is that
it is usually several months or years in the future that some end-user finds that your application
crashes when using a new OpenGL implementation. And because the pitfall results in memory
corruption, the way the corruption exhibits itself is quite unpredictable.

Here is what to avoid:

GLubyte *extensions;
GLubyte buffer[1024]; /* WRONG: Fixed buffer size assumption. */

extensions = glGetString(GL_EXTENSIONS);
sprintf(buffer, “Extensions: %s\n”,
 extensions); /* BAD ASSUMPTION: Buffer overflow possible! */

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

23

Instead dynamically allocate the buffer based on the length of the extensions string. For
example:

GLubyte *extensions;
int extensionsLen;
char * buffer;

extensions = glGetString(GL_EXTENSIONS);
extensionsLen = strlen(extensions);
buffer = (char*) malloc(extensionsLen+sizeof(“Extensions: \n”));
sprintf(buffer, “Extensions: %s\n”, extensions);

While the extensions string is usually the longest string and the string must subject to growth in
the future, this pitfall can equally apply to length assumptions about any of the implementation-
dependent strings returned by glGetString .

18. Clip Plane and Eye-Linear Texture Coordinate Generation Plane
Specification

OpenGL supports application-defined clip planes and a mechanism called eye-linear texture coordinate
generation. Texture coordinate generation is often called texgen for short. Clip planes provide a way to
clip primitives when they fall on the wrong side of an application-specified clip plane. Eye-linear texture
coordinate generation is a mechanism for having OpenGL automatically generate texture coordinates
(instead of you explicitly specifying the coordinates with glTexCoord) such that the texture coordinates
are a linear function of a vertex’s eye-space position.

Both mechanisms require four floating-point parameters that define a plane equation. Plane equations are
typically specified as Ax + By + Cz + Dw = 0 where A, B, C, and D are the parameters of the plane
equation. Clip planes are specified with the glClipPlane command. Eye-linear texgen planes are
specified with the glTexGen command with the GL_EYE_LINEAR parameter.

What may not be obvious to OpenGL programmers, though it is well documented, is that the parameters
used to specify the clip plane or eye-linear plane equations are transformed by the inverse of the current
modelview matrix. The clip plane and texgen functionality uses the transformed version of the parameters,
not the actual parameters that you pass to glClipPlane or glTexGen.

If you don’t understand this, the operation of clip planes and eye-linear texgen is very confusing.

By transforming the clip plane and eye-linear texgen parameters by the inverse of the modelview matrix,
the plane equation is transformed into eye space. In fact, this is very convenient in many cases. If the
current modelview matrix is loaded with your “look at” transform that defines the mapping from world
space to eye space, then you can specify the parameters for the clip plane or eye-linear texgen plane as a
world space plane equation.

If you want to specify your clip plane or eye-linear texgen plane directly in eye coordinates, make sure the
current modelview matrix is the identity matrix. If you want to specify your clip plane or eye-linear texgen
plane in world coordinates, make sure that your modelview matrix is loaded with your “look at” transform
(typically specified with gluLookAt).

Other OpenGL state parameters are also transformed into eye space. When you specify a light position
with glLightfv and GL_POSITION, the current modelview matrix transforms the light position. When
you specify a light’s spotlight direction with glLightfv and GL_SPOT_DIRECTION, the upper
leftmost 3x3 portion of the modelview matrix transforms that spotlight direction vector. Again, these
automatic transformations are confusing if you are not aware of them, but they are very convenient when

DPH�'HYHORSHUV�&RQIHUHQFH���$GYDQFHG�2SHQ/�*DPH�'HYHORSPHQW

24

you want to specify the light position or spotlight direction in world space coordinates. In this case, specify
your light position and/or spotlight direction when the modelview matrix is loaded with your “look at”
transform.

19. The OpenGL header directory name is capitalized

This is a pitfall for Windows programmers trying to write portable OpenGL programs. When you include
OpenGL’s standard header files, it should be done as follows

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

Note that the first GL is capitalized in each line. Windows file names are case insensitive (capitalization
does not matter). This means on Windows machines, you can get away with writing

#include <gl/gl.h> /* WRONG: should capitalize gl directory */
#include <gl/glu.h> /* WRONG */
#include <gl/glut.h> /* WRONG */

On Linux PCs and Unix workstations that support OpenGL, file names are case sensitive so “gl” is a
different directory from “GL”. Source code that includes the OpenGL header files with <gl/gl.h> or
<gl/glu.h> will have to be fixed for the code to compile portably on Linux and Unix systems. Save
yourself some grief and always properly capitalize the OpenGL include file names.

Also, if you use GLUT (the OpenGL Utility Toolkit) to develop portable applications, be sure that you
always include <GL/glut.h> and do not explicitly include <GL/gl.h> or <GL/glu.h> in your
source code. On Windows operating systems, the <GL/gl.h> and <GL/glu.h> header files cannot be
successfully included without a bunch of Windows-dependent types and macros being setup which are
normally defined in <windows.h>. Unfortunately (or fortunately depending on your predisposition
about Microsoft operating systems), <windows.h> is not available on non-Windows operating systems.
And even under Windows where it is available, including <windows.h> will define literally thousands of
macros, type definitions, and function prototypes that get in the way of writing portable programs. The
good news is that <GL/glut.h> automatically includes <GL/gl.h> and <GL/glu.h> for you in a
portable way that works on both Windows and non-Windows operating systems. By including
<GL/glut.h>, you can maximize the portability of your GLUT programs to both Windows and non-
Windows operating systems.

Conclusion
I hope that this review of various OpenGL pitfalls saves you much time and debugging grief. I
wish that I could have simply read about these pitfalls instead of learning most of them the hard
way.

Visualization has always been the key to enlightenment. If computer graphics changes the world
for the better, the fundamental reason why is that computer graphics makes visualization easier.

	Avoiding 19 Common OpenGL Pitfalls
	Improperly Scaling Normals for Lighting
	Poor Tessellation Hurts Lighting
	Remember Your Matrix Mode
	Overflowing the Projection Matrix Stack
	Not Setting All Mipmap Levels
	Reading Back Luminance Pixels
	Watch Your Pixel Store Alignment
	Know Your Pixel Store State
	Careful Updating that Raster Position
	The Viewport Does Not Clip or Scissor
	Setting the Raster Color
	OpenGL's Lower Left Origin
	Setting Your Raster Position to a Pixel Location
	Careful Enabling Color Material
	Much OpenGL State Affects All Primitives
	Be Sure to Allocate Ancillary Buffers that You Use
	Do Not Assume a Maximum Extensions String Length
	Clip Plane and Eye-Linear Texture Coordinate Generation Plane Specification
	The OpenGL header directory name is captialized
	Conclusions

