
SILHOUETTE-OPAQUE TRANSPARENCY RENDERING

Osman Sen
Department of Computer Science
University of California, Irvine

osen@ics.uci.edu

Chaitanya Chemudugunta
Department of Computer Science
University of California, Irvine

chandra@ics.uci.edu

M. Gopi
Department of Computer Science
University of California, Irvine

gopi@ics.uci.edu

ABSTRACT
Transparency in 3D graphics has traditionally been created
by ordering the transparent objects from back-to-front with
respect to the viewpoint, and rendering the opaque objects
first and then the transparent objects in the prescribed or-
der. This has three major disadvantages: need for splitting
intersecting polygons, repeated ordering for varying view
points, and finally, incorrect transparency at the regions
near silhouettes. The first two problems are eliminated by
order independent transparency rendering techniques. The
goal of this paper is to eliminate the third disadvantage also.
Silhouettes look more opaque than the rest of the regions
of the model. We call thissilhouette-opaque transparency
rendering. We use the alpha value as a probabilistic mea-
sure, similar to other order independent methods. We dif-
fer from the traditional methods by using this probabilis-
tic measure in object space rather than in image space to
render the transparency in silhouettes correctly. We call
our technique to achievesilhouette-opacityasobject-space
screen-door transparency.

KEY WORDS
Object-space screen-door transparency, silhouette-opacity,
transparency rendering.

1 Introduction

Traditional transparency algorithms would separate opaque
and transparent objects, and sort transparent objects back to
front. The Z-buffer being enabled, the opaque objects are
rendered first, and then the transparent objects are rendered
back to front. The transparency of a fragment is denoted by
its α value. The color of the fragment is linearly compos-
ited with the color already existing in the framebuffer.

Crow [3], and Kay and Greenberg [9] in their clas-
sic works noted that the transparency is dependent on the
amount of material the light passes through. The amount
of material depth is invariably more along the silhouettes,
and hence silhouettes will look more opaque than other re-
gions of the object. We call this assilhouette-opacity. Crow
[3] proposed to change theα value towards silhouettes and
interpolated theα value non-linearly based on the normal
vector at the surface point and the viewing direction. This
function isα = (αmax − αmin)(1 − (1 − Nz)p) + αmin.
The quantitiesαmax andαmin are the maximum and mini-
mum transparency of any point on the object. TheNz is the

Z component of the unit normal to the surface andp is the
cosine power factor. Kay and Greenberg [9] proposed solu-
tions for refraction in the transparent medium by modeling
the thickness of the material. This model also incorporated
features to take care ofsilhouette-opacity. As far as we
know, [3, 9] are the only works in the literature that talk
aboutsilhouette-opacityand propose solutions.

The advent of latest graphics hardware accelerators
have not followed up on these proposals for various rea-
sons. The model proposed by [9] has similar problems
as ray-tracing algorithm has in terms of its amenability to
hardware implementation. The solution proposed in [3] has
the following problems. First, when all other more com-
monly used attributes like depth value, texture coordinates,
and color are interpolated linearly (at least in homogeneous
coordinates), interpolating theα value using a non-linear
function is a significant overhead. Second, irrespective of
the interpolation function, the ordering of triangles (or pixel
fragments) from back-to-front has to be computed either by
application or during rasterization.
Main Contributions: In this paper, we propose a method
for silhouette-opaque transparent renderingthat eliminates
all the above mentioned disadvantages of the methods pro-
posed earlier. First, we achieve order-independent trans-
parency rendering by using a probabilistic method of sam-
pling the surface.

This is similar to the screen-door transparency
method but uses random alpha mask patterns in the object
space, and super-sampling to generate high quality images.
Second, we achievesilhouette-opacityby a simple object-
space screen-door transparency. Our method is a single
pass rendering method that also lends itself for easy hard-
ware implementation.
Outline of the Paper: Next section analyzes the previous
work in this area. Section 3 describes our method concep-
tually. Section 4 describes the implementation details of
our algorithm and presents the results. Sections 5 and 6 list
the limitations of our apprach and conclude this paper.

2 Previous Work

Rendering objects transparently can open the door for a
multitude of graphics and 3D visualization applications.
However, rendering of realistic object transparency simu-
lation, including refraction, is a computationally expensive
operation. Therefore, non-refractive transparency is used
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Figure 1. The imagea show the results of using conventional alpha blendin, using stipple buffer [14], our hardware assisted
implementation and our software implementation of our object-space screen door transparency algorithm. Notice the silhouettes
in our software implementation. The artifacts in the stipple image are due to overlapping polygons getting mapped on to similar
stipple maps. Note that this is a filtered image with16 × 16 kernel size.

for most of the applications requiring fast rendering. Exact
simulation of non-refractive transparent surfaces with alpha
blending requires ordering of polygons from back to front
and subdividing intersecting polygons [2, 15]. The cur-
rent day transparency algorithms can be classified as sort-
ing based algorithms and order independent transparency
algorithms.

Sorting based algorithms require the primitives to be
sorted back to front with respect to the viewpoint. These
algorithms can be further classified based on how the sort-
ing is done: application sorting, hardware assisted applica-
tion sorting, and hardware sorting. Examples of applica-
tion sorting algorithms include [2, 15, 16, 11, 13, 9] where
application takes the complete responsibility of sorting the
primitives. Hardware assisted sorting based transparency
algorithms include methods like layer depth sorting (depth
peeling) using data structures for pixel depth information
[5]. Hardware sorting are special purpose architectures for
sorting rasterized fragments [18, 1, 13, 8, 12, 4, 10, 17, 11].
Most of these works are derivatives of A-buffer [1]. A
few of these hardware-assisted or hardware algorithms use
multi-pass rendering methods [5, 12, 4, 17, 11]. These
multi-pass algorithms use data structures like linked list of
pointers with special hardware and/or render a fixed num-
ber of transparent levels.

Order independent transparency algorithms, typically
model theα value as a probability measure. Usually, poly-
gons are rendered in the image space that is overlaid with
masks. Random masks are used to choose or reject pixels
to produce dithering-like effects in the image space [14, 7].
Methods like screen-door transparency using stipple and al-
pha buffers fall under this category. These techniques have
several advantages like they are single pass methods, do not
require sorting of primitives, and are able to handle inter-
secting polygons without further processing. They also suf-
fer from artifacts such as incorrect opacities and distracting
patterns due to dithering and masks. Further a few of these
methods also have the disadvantage of storing many masks
for each transparency value. Supersampling and filtering is
a common technique that is used to remove image quality
problems. But the correctness of the image generated, es-

pecially along the silhouettes cannot be improved by these
image-space masking techniques.

The method we present in this paper is an order-
independent transparency algorithm. Hence our method is
a single pass method and use alpha masks as other meth-
ods. Unlike previous techniques, we use these masks in
the object space rather than in the image space. This
solves the problem of incorrect opacities and also produces
silhouette-opaque rendering. We also use supersampling
to eliminate the dithering artifacts introduced by mask-
ing. Finally, we suggest the use of certain hardware fea-
tures to accelerate our implementation. In the next section,
we formally introduce the underlying concepts behind our
method, and our method itself.

3 Object Space Screen-Door Transparency

Let us define the transparency factorα. Consider two vec-
tor fields in 3D space. One field contains the outgoing light
in all directions from any 3D pointP and the other con-
sists of the incoming light from all directions toP . The
length of a vectorVo(P ) (or Vi(P )) at a 3D pointP de-
notes the amount of the outgoing (or incoming) light in the
direction ofVo(P ) (or Vi(P )). The relationship between
everyVi(P ) andVo(P ) is the radiance transfer equation.
But we are going to restrict this relationship between those
two rays that are the same. That is,Vi(P ) = Vo(P ) = V .

Given a directionV and a pointP , let βV (P ) =
|Vo(P )|/|Vi(P )|, whereVi(P ) andVo(P ) are vectors from
the two fields in the same direction asV . The transparency
factorαV (P ) = 1 − βV (P ). (Actually,α should be called
the opacity factor. We call it the transparency factor to
be consistent with the convention.) IfP is vacuum, then
αV (P ) = 0, for anyV .

Notice the dependence ofα on the directionV , and
its independence on the incoming light from directions
other thanV . In other words, this definition models the
anisotropic transparency effects of object points, and ig-
nores the refractive properties. Similar definitions can be
arrived at from the above model for refraction, reflection,
and other radiance properties of the object.
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Silhouette-Opacity: The silhouette-opacity property,
where the silhouettes are more opaque than the other parts
of the object, can be modeled as an anisotropic property of
the object regions. Basically,|Vo(P )| the outgoing vector
towards the viewpoint is less ifP is near silhouette than
if P is in other regions of the object. Since|Vo(P )| =
(1 − αV )|Vi(P )|, this attenuation near the silhouettes can
be modeled either by reducing the incoming light, or by
increasingαV .

The approach taken by [3] to model silhouette-
opacity, increases the value ofαV as a non-linear function
of the viewing direction and the normal vector at that point.
In our method, we take the alternate approach of reducing
the length of the incoming light vector to model silhouette-
opacity, and assuming thatαV is same in all directions (that
is, isotropic and independent ofV ).

We model the object using uniform sized primitives
and the union of these primitives covers the object. Since
the density of primitives in the projection plane is naturally
more along the silhouettes, the light reaching the viewpoint
from these regions will be attenuated more that the light
from other regions of the model. Note that the “primitive”
is a generic term. A primitive can be a point (disk) or a
triangle or any other geometric feature that is small enough
and reliably covers the surface.

Order Independent Transparency: The above pro-
cess takes care of the silhouette-opacity. We still have to
solve the problem of order-independency. In the above
sampling of the surface, every primitive is assumed to be
of the same size and have the sameα value. The amount
of outgoing light is|Vo(P )| = (1 − α)|Vi(P )|. Consider a
set ofn primitives in a small region. The amount of light
let through by this set ofn regions is(1− α)Σn

j=1|Vi(Pj)|
corresponding to all primitives in the set. Assuming that
the same amount of light is incident on each primitive, due
to their spatial proximity, the amount of light let through
by the set ofn primitives is |Vo| = n(1 − α)|Vi|. Let
us consider a case in which|Vo| is same as above, but
under the condition that every primitive can have either
α = 0 or 1. Assuming same amount of input light|Vi|, the
number of primitiviesm (out of the aboven primitives),
that can haveα = 1 is m = nα. If α = 1, then that
primitive is rendered opaque; otherwise it is not rendered.
Renderingm(< n) opaque primitives, instead ofn semi-
transparent primitives, wouldon an averagegive the same
effect. Choosingm out of n primitives can be achieved
using a mask. If these primitives are pixels, and the mask
is applied on the image plane, then this method is called
screen-door transparency[14].

Let us first prove that screen-door transparency pro-
duces correct results under restricted conditions. Since
binary-alpha transparency rendering is an “averaging” pro-
cess, it is inherently probabilistic. So the image is super-
sampled such thatn pixels are averaged to get one pixel in
the final image. Assume that there is one transparent ob-
ject with α = α1 and hence the number of primitives to
haveα = 1 is m = nα1. Let the color of the object beC1

and that of the background color beC2. The final color of
the pixel after filtering isC = (mC1 + (n − m)C2)/n =
α1C1 + (1 − α1)C2, which is the equation for traditional
transparency. Assuming that the Z-buffer is enabled, this
concept can be proved to be correct for multiple objects
also, and does not dependent on the order of rendering of
the objects.

Transparency is inherently an object property. Obvi-
ously, the above “image-space” argument is correct only if
n primitives on the object surface coversn pixels in the im-
age space. But, this is not true for the primitives in the sil-
houette of the model. Hence, the “image-space screen-door
transparency” cannot be used to produce silhouette-opacity.

Silhouette-Opaque Order-Independent Trans-
parency: To achieve order-independent transparent
rendering, we choosem out of n primitives from the
object, rather than from theimage. We call this method,
object-space screen-door transparency. To achieve
silhouette-opacity, we useuniform object space sampling.
By combining these two techniques, we achieveorder-
independent silhouette-opacity transparency rendering.

3.1 Decision Parameters

We are now ready to analyze various parameters that would
influence the quality of images generated by a method us-
ing object-space screen-door transparency.
Size and Number of the Point Samples: The number
of primitives to be generated depends onα and the surface
area. Since these two quantities do not change, the prim-
itives can be generated as a pre-process. All the chosen
primitives are opaque (α = 1) and the rest of the area is
totally transparent(α = 0). This static sampling has a dis-
advantage. In the worst case, the viewpoint can be such that
one singe (opaque) primitive covers the whole image plane
generating incorrect images. Hence the primitives should
be sampled during run-time, and the size of the primitives
should be dependent on the distance of the triangle(object)
from the viewpoint. The optimum size of the primitive is
when it covers just one pixel on the screen. The number
of generated primitives is dictated by this chosen size of a
primitive, the value ofα, and the actual area of the poly-
gon(object).
Randomness of Primitive Selection:The choice of prim-
itives on the surface should be uniformly random for our
theory to work correctly in practice. We choose primi-
tives in two different ways: by software and by using alpha
masks on the triangle in the object space. While choos-
ing primitives by software, we use pseudo-random number
generator. In our hardware-assisted implementation, we
generate the alpha-mask using a (pseudo-) random pattern
of ones and zeros and thus randomize the primitive selec-
tion from the object.

Image-space screen-door transparency runs the risk of
rejecting all primitives falling on a pixel, if the same image-
space mask is used for all objects (with sameα value).
Such methods avoid this problem by randomly choosing
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mask from a set of pre-generated masks for eachα value.
In our method we have only one mask for eachα value.
In our method, we do not face this problem as the mask
and selection of primitives are in object space rather than
in screen space.
Size of Supersampling Kernel: The size supersampling
kernel should be large enough to accommodate the required
number of pixels generated by all the transparent objects
that fall in that region. This size is based on theα values
of all these objects and the transparent depth complexity
(that is, the depth complexity till the first opaque object
from the viewpoint). If we assume an 8-bit representation
of α, then we found thatn = 256 = 16 × 16 would be
more than sufficient for most practical purposes. All results
shown in this paper, including the implementation of other
algorithms, are generated with this kernel size.

4 Implementation Details

In this section, we describe two algorithms to demonstrate
the concept ofobject-space screen door transparency. One
is a software implementation, and the other a hardware as-
sisted method. In both these implementations, we will dis-
cuss how the vital decision parameters explained in the pre-
vious section are taken into account.

4.1 Software Implementation

In this method, we discretize the triangles using point prim-
itives. The number of samples, the choice of samples,
and the generation of these samples form the core of our
method. In the final step, the high-resultion image we gen-
erate is filtered to an image of required size.

4.1.1 Size and Number of Point Primitives

Since we use object-space sampling, the sampling should
be independent of the orientation of the triangle. But as we
discussed earlier, it should be dependent on the distance of
the triangle from the viewpoint. Further, the size of the
point should be approximately equal to the pixel size in the
super-sampled image.

(Figure 2)Given three vertices of the triangle in the
object space, we find the closest distance of the triangle
from the viewpoint. We calculate the screen space area
occupied by that triangle at that distance, by rotating the
triangle to be parallel to the image plane. The number of
pixels in this projected area is the number of samples in the
triangle. This is calculated as follows:

n =
(

Nhim

dh

)2

A

whereN is the distance of the near plane from the view-
point, d is the distance to the centroid of the triangle from
the viewpoint,him is the height of image in number of pix-
els, h is the height of image in object space units, andA

is the area of the triangle in object space units. Clearly,
this method of calculating the number of samples is inde-
pendent of the orientation of the triangle, and is dependent
on its distance from the viewpoint. Hence, this sampling
is truly an object-space sampling. We useuv parameteri-
zation of the triangle to equally distribute these primitives-
to-be-generated on the object-space triangle. This achieves
uniform object space sampling. Next step is to choose a
subset of these uniform samples based onα.

4.1.2 Randomness

The number of chosen primitives is proportional toα of the
triangle. For eachuv parameterized coordinate of a trian-
gle, a psuedo-uniform-random number is generated in the
range of the transparency values. This random number is
compared with the transparency value of the triangle to de-
cide whether theuv point under consideration should be
opaque or transparent. This approach is equivalent to that
of using a dynamic random alpha mask mapped on theuv
parameterization of a triangle.

4.1.3 Final Image Generation

As mentioned in Section 3, the generated points are ren-
dered onto the high-resolution image using conventional
techniques with Z-buffer being enabled. Then this image
is repeatedly filtered down to one-fourth its size using box-
filtering. This technique is same as the one used for texture
mip-map generation. Results on comparison of our tech-
nique with other techniques are shown in Figures 1. Note
the silhouette-opacity effects in these images. Further, note
the artifacts in Figure 1 for rendering using stipple buffer.
Even though this is a filtered image, these artifacts are due
to the mapping of many overlapping polygons to the same
stipple map.

4.2 Hardware Accelerated Implementation

The basic idea of the algorithm is to take the help of texture-
mapping hardware support for theuv parameterization.
This is achieved as follows. As a preprocess, the trans-
parency values are discretized and for each transparency
level an appropriate alpha mask (with binary alpha values
for each texel) is generated. Each triangle is mapped on
with an alpha mask corresponding to itsα value. The trans-
parent texels of the mask will produce the required number
of points on the triangle automatically. The rest of the ren-
dering proceeds as in our software implementation (Section
4.1). Note that, unlike the image-space screen-door trans-
parency, generation of a single mask for each transparency
level is sufficient for the object space. Further, the size of
the mask when compared to the size of the triangle would
dictate the size and number of pixels generated on the trian-
gle. Next section elaborates the details of finding this scale
to generate appropriate number of samples.
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Figure 2. The left image shows diagram for computing the number of samples in a triangle in our software implementation.
The right image shows the diagram used in our hardware assisted method.

4.2.1 Size and Number of Pixels

The scale of the texture with respect to the triangle can be
controlled by changing the texture coordinates assigned to
the triangle vertices. The texture coordinates of the vertices
are computed such that each texel of the texture-mapped
object-space triangle covers approximately one pixel in the
image space when projected.

The computation of the texture coordinates for a mask
is done as follows. (Figure 2)In the first step, the edge vec-
tors of the triangle,~U and~V , are scaled to their projected
sizes after bringing the vectors parallel to the image plane,
and they are transformed to image space units as,
~Uim =

(
Nhim

dh

)
~U ; ~Vim =

(
Nhim

dh

)
~V

where ~Uim and ~Vim are in the image plane and in image
space units. The next step is to transform the dimensions
to texture space units. As each texel corresponds to a pixel
in the image, this transformation is performed simply by
rescaling the vectors proportional to size of the mask in
number of texels.
~Ut =

(
1
M

)
~Uim; ~Vt =

(
1
M

)
~Vim

whereM is the size of the mask in terms of number of
texels.

Last step is computing the texture coordinates for the
triangle points. The relationship between thest parame-
terization of the texture and the vertices of the triangle is
given as follows. Letk = ~Ut · ~Vt/| ~Ut|.
~Cu =

(
| ~Ut|, 0

)
; ~Cv =

(
k,

√
~Vt

2
− k2

)
where ~Cu and ~Cv are the texture coordinates of thevertices
U andV , respectively (refer to Figure 2).

4.2.2 Randomness

The randomness in the opaque texels in the alpha mask pro-
vides the randomness in the choice of object-space point
samples. The generation of this random alpha mask is sim-
ilar to that of the software implementation. For each texel
in the alpha mask, a random number is produced and com-

Figure 3. Two random alphs masks forα = 0.5 (left) and
α = 0.9 (right), both of size 128×128.

pared to the alpha level of the mask to decide whether the
texel should be transparent or opaque. As a result the num-
ber of opaque texels is proportional to the alpha value and
its distribution is (pseudo-)uniform. Example masks are
shown in Figure 3.

5 Limitations

In both the algorithms, at the silhouettes, there are many
sample-points that correspond to a single pixel in the im-
age. However, in the hardware accelerated implementation,
the silhouettes are not visible due to the limitations in the
filters available for texture mapping. At present, there are
two types of filters provided for texture mapping:Linear
andNearest. The Nearestfilter is used in the current al-
gorithm which results in images without silhouettes. How-
ever, this can be corrected if we have aMax filter that se-
lects the maximum value among the available candidates.

The sampling of the object depends on the distance of
the primitive from the viewpoint. This prohibits the use of
these algorithms with large models.
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6 Conclusion

In this paper we presented a new approach for order-
independent transparency. The important problem that our
work solves is thesilhouette-opacity, and we achieve this
usingobject-space screen-door transparency. Our method
is a probabilitic, single-pass method and the results are sig-
nificantly better than the previous approaches. We have im-
plemented our method using a software approach for sam-
pling and a hardware assisted approach for sampling points
from the surface of the object. We believe that this work
will renew the enthusiasm to improve the hardware capa-
bilities for efficient and correct transparency rendering in
the future.
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