On the Utility of Distributed Cryptography in P2P and MANETS: the Case of
Member ship Control

Maithili Narasimha, Gene Tsudik, Jeong Hyun Yi*
School of Information and Computer Science
University of Californiaat Irvine
{marasi mgts, jhyi }@cs. uci . edu

Abstract

Peer-to-peer systems enable efficient resource aggrega-
tion and are inherently scalable since they do not depend
on any centralized authority. However, lack of a centralized
authority, prompts many security-related challenges. Pro-
viding efficient security services in these systems is an ac-
tive research topic which is receiving much attention in the
security research community.

In this paper, we explore the use of threshold cryptog-
raphy in peer-to-peer settings (both Internet- and MANET-
based) to provide, in a robust and fault tolerant fashion, se-
curity services such as authentication, certificate issuance
and access control. Threshold cryptography provides high
availability by distributing trust throughout the group and
is, therefore, an attractive solution for secure peer-groups.
At least, so it seems... Our work investigates the applica-
bility of threshold cryptography for membership control in
peer-to-peer systems. In the process, we discover that one
interesting recently proposed scheme contains an unfortu-
nate (yet serious) flaw. We then present an alternative solu-
tion and its performance measurements. More importantly,
our preliminary work casts a certain degree of skepticism
on the practicality and even viability of using (seemingly
attractive) threshold cryptography in certain peer-to-peer
settings.

1 Introduction

Peer-to-peer (P2P) systems typically reside at the
“edges” of the Internet or in mobile ad-hoc networks
(MANETS) and are characterized by their ability to perform
a task using distributed resources in a decentralized manner.
In such settings, lack of any centralized authority results in
formidable challenges as far as providing effective and ef-
ficient security services. Moreover, the dynamic nature of

* Author names appear in alphabetical order.

peer group membership adds a further complication. Secu-
rity services need to be provided in an efficient and scalable
manner while allowing for membership events that change
the topology (i.e., the composition) of a peer group. In other
words, the volatility of group membership, coupled with the
absence of centralized authority, necessitate the distribution
of highly sensitive operations, such as the functions of a
Certification Authority (CA), throughout the peer group it-
self to ensure their availability.

Informally, Threshold Cryptography [4] distributes the
ability to provide a cryptographic service such as decryption
or signing. It offers better fault tolerance than non-threshold
cryptography: even if some nodes are unavailable, others
can still perform the task. Threshold cryptography also of-
fers better security since no single entity is entrusted to per-
form the task in its entirety. Consequently, it seems like an
ideal choice to provide security services, such as authenti-
cation and access control, in P2P systems.

More formally, Threshold Cryptography provides an el-
egant means to share critical functions among group mem-
bers, in a way that a coalition of cooperating parties can
jointly perform the function. Specifically, an (¢, n) thresh-
old cryptographic scheme allows n, parties to share the abil-
ity to perform a cryptographic operation (e.g., decrypt or
sign a message), in a way that any ¢ parties can perform
this operation jointly, whereas, no coalition of (¢ — 1) or
fewer parties can perform the same operation. In this paper,
we explore the applicability of current threshold signature
schemes to providing security services for peer groups. We
use group access control (more precisely, group admission)
as an example to demonstrate and discuss the usefulness of
threshold schemes. As discussed in section below, our work
is not the first to explore this topic. (Interested readers are
referred to [29] and [18] for further background and moti-
vating factors.)

Contributions in Brief: From a technical perspective, the
main contribution of this paper is in presenting and ana-
lyzing two solutions, both using threshold cryptography,

for the problem of membership control. The first solution,
based on so-called threshold RSA signatures, is a simple ex-
tension of the scheme proposed by Kong, et al.[17, 18, 16].
As discussed later in the paper, this method does not provide
an important property known as verifiability and, hence,
cannot be used in a setting where malicious insiders (group
members) can exist. Furthermore, it requires a trusted third
party to initialize the group during bootstrapping. The
second solution, which is based on threshold DSA signa-
tures, overcomes these problems. Another contribution of
this work is demonstrating (via experimental results) the
approximate costs and performance of the two threshold
schemes. Finally, this work also raises some important is-
sues that question the practicality of using threshold cryp-
tography in certain P2P settings where group membership
is dynamic and group connectivity is sporadic (as in many
MANETS).

Scope and Limitations: Group access control includes
many issues, including membership control mechanisms
and the more general issue of group security policy. This
paper is concerned only with the mechanisms to control ad-
mission to a secure peer-group and does not address the
specification and negotiation of group security policy. In
the following, we assume the existence of such a policy.
Furthermore, in an effort to keep our discussion general, we
do not consider the impact of the underlying physical-layer
characteristics of the peer-group network. Naturally, a wire-
less network will have additional security and performance
concerns, as compared to its wired counterpart. However,
these issues, unique to a wireless network, are beyond the
scope of this work. Additionally, we are using a certificate-
based approach to provide membership control. A common
problem associated with such approaches is the revocation
of certificates. However, although we acknowledge this is-
sue and appreciate its difficulty, it remains beyond the scope
of this work.

Organization: This paper is organized as follows: In sec-
tion 2, we describe the details of membership control mech-
anisms and enlist the various design challenges. Section 3
gives the details of the membership control protocol. Sec-
tion 4 introduces the various cryptographic building blocks.
In section 5, we apply a threshold RSA based scheme for
membership control and point out some of the shortcom-
ings of that scheme. In section 6, we propose an alternative
DSA-based threshold signature scheme. In section 8, we
describe the implementation and compare the performances
of these two threshold schemes.

1.1 Related Work

Our work pairs threshold cryptography with peer-group
security in an attempt to facilitate membership control
mechanisms. In this section, we briefly examine relevant

prior work from both threshold cryptography as well as
peer-group security.

Threshold signatures are part of the general area known
as threshold cryptography [3, 4]. Many flavors of threshold
signature schemes are described in the research literature.
Some schemes obtain robustness by providing verifiable
secret sharing [2, 9]. Others periodically update the par-
ticipants’ secret shares via the technique known as proac-
tive secret sharing [8, 12]. Some of these require a trusted
centralized authority (dealer) to bootstrap the secret-sharing
procedure, while others provide joint secret sharing and do
not require any trusted authorities.

One of the earliest attempts to use threshold cryptogra-
phy in a peer group setting is the work of Zhou and Haas
[29] which proposed using threshold signatures to improve
security in MANETS. They observed that using threshold
cryptography to distribute the group signing key prevents
one (or several) compromised node(s) from signing mes-
sages on behalf of the group.

More recently, Kong, et al. [17] used a similar approach
to provide a scalable distributed authentication service in
MANETs. They constructed a threshold RSA signature
scheme (discussed below in section 5) that supports dy-
namic groups. Unfortunately, as will be shown below, this
scheme does not provide an important property — verifiabil-
ity. In a follow-on work, Luo, et al. [18] enhanced [17] to
provide proactive secret sharing. In this paper, we adhere, to
a large extent, to the design guidelines highlighted in [18].

2 Architecture

We begin by outlining some basic features and require-
ments for membership control in peer groups. (See [15] for
further background on this topic.)

A group membership control mechanism must guaran-
tee that bona fide members of a peer group have been “ap-
proved” to join that group. In other words, a member-
ship control mechanism ensures that only those entities that
have satisfied certain admission requirements are allowed
membership. Admission requirements are clearly group-
specific and form an integral part of group security policy.
A prospective member needs to learn these admission rules,
which triggers the need to codify such rules in a readily
available document. We refer to this document as the group
charter [15].

In addition to the group charter, a well-defined proce-
dure for admitting a new member is needed. The simplest
way to admit a new member is to enumerate all potential
group members a priori via a (signed) public Access Con-
trol List (ACL). This method is ideally suited for a static
group, where the information about all prospective group
members is known in advance. However, in a dynamic
group, such as the kind we are considering, membership
might be impossible to enumerate.

An alternative way is to appoint a trusted Group Author-
ity [15] to handle admission procedures. Having a single
trusted authority, however, not only violates the peer na-
ture of the group, but also introduces a single point of fail-
ure (and attack) and limits scalability. Although the Group
Authority can be replicated for better availability, the scal-
ability can not be addressed by replication alone. Further-
more, unpredictable network faults and partitions compli-
cate placement of Group Authority "replicas” in the net-
work. Our approach is to let the group members themselves
to handle admission procedures. Concretely, any subset of
at least ¢ members (where ¢ is a threshold) can jointly decide
to admit a new member to their group. This distribution of
responsibility for member admission among all group mem-
bers is clearly in line with the peer spirit of the group where
all members have equal rights and duties. It also ensures
that any ¢ (or more) members can provide requested service.
The decision to admit a prospective member is made via a
voting protocol which is based on a (¢, n)-threshold signa-
ture scheme where n (n > t) is the current group size.
Details of this protocol are presented in the subsequent sec-
tions. The high-level description is as follows:

1. Every group has a group public key PK and a corre-
sponding private key S K which are used primarily for
verifying and generating signatures, respectively.

2. The group secret key SK is securely shared among all
group members using a (¢, n) threshold scheme; each
member has her own unique secret share.

3. Using her secret share, a member can generate a partial
signature on any message.

4. In a (t, n) threshold scheme, any subset of at least ¢
current members can “pool” their partial signatures to
produce a valid signature (with the group signing key
SK) on any message.

5. Using this feature, a quorum of ¢ members can effec-
tively sign on behalf of the group to generate a Group
Membership Certificate (GMC) for a new member.

Note that a signed membership certificate is insuffi-
cient to fully admit a member: the new member must
also be issued her own (new) secret share which would
allow her, hereafter, to take part in admitting future
members. In other words, an (¢, n) scheme must be
dynamically adjusted to become (¢, n + 1) scheme.

2.1 Architectural Details

Membership dynamics: Group membership dynamics can
influence the basic design of membership control mecha-
nisms. As stated earlier, we consider dynamic groups in
which any member may join and leave the group over time.

Threshold and group size: We distinguish between fixed
and dynamic thresholds. A threshold may be specified as

either the minimum number of votes (say, t) or as a fraction
of the current group size depending on the group security
policy. A fixed threshold is essentially a ¢-out-of-n model
where ¢ is fixed and n (current group size) may vary over
time. In contrast, in a dynamic threshold setting, ¢ increases
or shrinks in proportion to n.

With the fixed threshold policy, the minimum number
of votes (t) required for admission is constant throughout
the group’s lifetime. However, fixing a static value ¢ for a
dynamic group at the time of group formation may not be
efficient. For instance, assume that an adversary manages
to permanently compromise ¢ group members. In this situ-
ation, refreshing individual members’ secret shares using a
proactive secret sharing scheme is not always sufficient. In
this case, proactive secret sharing does not help if the resul-
tant size of the group (excluding ¢ compromised members)
is less than ¢, i.e., (n — t) < t. In such cases it is necessary
to reduce the threshold ¢ in order for the group to operate.
A similar situation can also arise when a large number of
members leave the group, resulting in a new group size be-
ing less than ¢. Similar issues arise at group inception time
when first few (fewer than ¢) members join the group. In
such cases, special admission rules are needed. On the other
hand, with the dynamic threshold, the minimum number of
votes is a fraction of the number of current group members.
The main problem here is the need to securely and reliably
determine the number of current group members, which,
unfortunately, turns out to be a major problem in practice.
Techniques to increase or decrease the threshold form a core
part of the peer group admission mechanism.

Determining group size: In order to support a dynamic
threshold (where threshold size ¢ is a fraction of the current
group size n), it is necessary to securely and reliably de-
termine the current group size. This is a challenging prob-
lem, especially, in a completely distributed, asynchronous
and decentralized dynamic group setting. One trivial way
to solve it is by imposing or assuming a trusted authority
charged with maintaining up-to-date membership informa-
tion. Every member is then required to periodically send a
heart-beat message to this trusted authority which aids in
maintaining the current group size. Clearly, the “peer” na-
ture of the group is violated by the presence of the trusted
authority. Nonetheless, we stress that the authority is only
trusted to keep track of the membership information and not
the actual group secret. We recognize that a trusted author-
ity can represent a single point of failure and an adversary
can launch denial-of-service attacks against it and disrupt
service. Although replication can be used to reduce expo-
sure and improve availability of the trusted authority, some
environments (e.g. highly volatile MANETS) would not fit
this model.

Need for proactive secret sharing: In traditional threshold

secret sharing, an adversary needs to compromise ¢ entities
in order to expose the secret. Gradual break-ins into ¢ en-
tities over a long period of time might be possible since in
normal secret sharing, the secret shares that have been dis-
tributed remain unchanged. Therefore, traditional threshold
secret sharing is not sufficient for long-lived secrets. This
prompts the need to refresh individual secret shares, peri-
odically, without changing the existing group secret SK.
To this end, Proactive Secret Sharing mechanisms refresh
individual secret shares under such constraints.

Secret share acquisition: A newly joining member must
acquire a secret share of the group secret SK for herself.
This enables her to participate in future voting procedures
in order to admit other new members. The secret share ac-
quisition also needs to be carried out in a distributed man-
ner. The newly joining member should be able to receive ¢
partial secret shares from each of the ¢ members that elect to
admit her to the group. The new member can then securely
combine these partial shares to obtain her own secret share
of the group secret key SK.

Verifiable secret shares: If there are malicious secret share
holders in the group, values other than the actual shares
may be used by these members to generate false partial sig-
natures or partial secret shares. Thus, when a prospective
member gets a partial signature (or a partial secret share)
from a current member, a verification mechanism to check
if the received value is valid must be provided.

PKC based approach for identity binding: Possession of
a GMC does not prove that the GMC actually belongs to
the bearer. There needs to be some binding information that
asserts ownership to the bearer. One way to accomplish this
is by requiring for every group member to have a standard
X.509 public key certificate (PKC) issued by a recognized
Certification Authority (CA)[13]. The GMC simply needs
to incorporate the public key of the member from her PKC.
Now the member (bearer of a GMC) can prove ownership
of the GMC by demonstrating knowledge (e.g., by signing
a message) of the private key corresponding to the public
key referred to in in the GMC.

2.2 Notation
The notation used in this paper is summarized below:
t | threshold

TD | trusted dealer
GID | group identity
M; | agroup member ¢
SK;,PK; | M;’s secret key and public key
SIG;(z) | signature of message x generated with SK;
ss; | secret share of M;
pss;j(4) | partial secret share for M; by M;
SL; | asigner list to generate M;’s signature
PKC; | public key certificate of M;
GMC; | group membership certificate of M;

3 Membership Control Protocol

In this section, we describe the general group member-
ship protocol. At the end of the protocol, given that enough
members (> t) approve admission, the prospective member
who initiated the protocol becomes a member of the group
and obtains her own membership certificate GM Cheq.

Step 0. Setup: In the initial (bootstrapping) phase, each
group member M; obtains her secret share ss; and a mem-
bership certificate GM C; from a centralized dealer or by
collaborative computation among initial group members.
For example, the threshold RSA scheme described in sec-
tion 5.1 only supports share distribution by a trusted dealer,
while the threshold DSA scheme (section 6.1) provides
share distribution by both the dealer and the group founders.
In both schemes, after initializing ¢ group founders, the cen-
tralized dealer is no longer needed.

Step 1. Join Request: A prospective member M,,,, ini-
tiates the protocol by sending a JO N_REQ message to
the group. This message is signed by M., and con-
tains, among other values, M,.,,’s public key certificate
(PKChrew) and the target group name. How this request
is sent to the group is application-dependent. Note also that
M ,e,,’s certificate does not have to be an identity certificate
(i.e., PKCpey); it could as well be a group membership
certificate for another group.

Step 2. Voting: Upon receipt of the JO NLREQ a group
member first extracts the sender’s PK C,,.., and verifies the
signature. If a voting member approves of admission she
replies to M., With a signed (and well-typed) message.
Threshold signature schemes in sections 5 and 6 are applied
for this step.

Step 3. GMC Issuance: Who issues the GM C,e,, for
M .., depends on the security policy and accordingly has
several choices. In the fully distributed setting that we are
considering, once enough votes are collected, M,,¢,, Veri-
fies the individual votes, and computes her own GM C',qp -

Step 4. Share Acquisition: If M,,.,, becomes a legitimate
member, she needs to obtain her own secret share ss,,c4
which enables her to participate in future admission pro-
tocols. M., obtains ss,e, by combining partial secret
shares generated by a group of ¢ members in a distributed
manner. We emphasize that these shares, which are sup-
plied by current members, must be verified because some
of the current members can be malicious.

4 Cryptographic Primitives

In this section, we briefly describe various cryptographic
techniques underlying threshold RSA and DSA signature
schemes. We assume the reader is familiar with the basics of

plain (i.e., non-threshold) RSA[25] and DSA[21] signature
schemes.

4.1 Secret Sharing

The idea of secret sharing[20] is to divide a secret S into
pieces or shares which are distributed amongst users such
that pooled shares of certain subsets of users allow recon-
struction of the secret S. We use Shamir’s secret sharing
scheme[26] which is based on polynomial interpolation. To
distribute shares among n users, a trusted dealer chooses
a large prime ¢, and selects a polynomial f(z) over Z, of
degree ¢ — 1 such that f(0) = S. The dealer computes
each user’s share ss; such that ss; = f(i) mod ¢, and
securely transfers ss; to user M;. Then, any group of ¢
members who have their shares can recover the secret using
the Lagrange interpolation formula: f(z) = Zle s8; 1;(2)
(mod g), where 1;(z) = [} ;4 5% (mod g). Since
f(0) = S, the shared secret may be expressed as:.S =
£(0) = 324, 88: 1;(0) (mod g).

Thus, S can be recovered only if at least ¢ shares are
combined. In other words, no coalition of less than ¢ mem-
bers yields any information about S. The [;(0) are non-
secret constants, and may be precomputed.

4.2 Joint Secret Sharing (JSS)

This scheme (due to Pederson[23]) extends Shamir’s se-
cret sharing by removing the need for a centralized dealer to
choose a polynomial and distribute shares. In this scheme,
the group members collectively choose shares correspond-
ing to Shamir’s secret sharing of a random value without
the dealer. The main idea here is that the polynomial itself
is shared such that f(z) = f1(2)+- - -+ fn(z), Where f;(2)
is the polynomial of member A; over Z,,.

Suppose there are n members in a group (M1, - - - , My,).
It will be assumed that the members of the group have pre-
viously agreed on the prime q.

1. Each M; chooses at random a polynomial f;(z) € Z,
of degree ¢ — 1 such that f;(0) = S;. Let fi(2) =
fio+firz+- -+ fir 1281 (mod q), where f;o = S;.

2. M; computes M;’s share ss; = fi(j) for M; (j =
1,---,n), and securely sends it to M (in particular
M; keeps sst). Note that the transmission of share val-
ues should be done through the secure channel.

3. M computes her share ss; of the secret S as the sum
T :
of all shares received; ss; = > 7., ssj

Let f denote the group polynomial over Z,. It is given
by: f(2) = f1(2)+---+fn(z). By construction ss; = f(4),
i = 1,---,n, and therefore ss; is a share of S = f(0) =
(= Xr, S = Y fio). Once again, any coalition of
t members can jointly recover the secret S using Lagrange
interpolation as in basic Shamir’s secret sharing [26].

4.2.1 Joint Zero Secret Sharing

This is a variant of joint secret sharing where the shared se-
cret is zero. It is used in proactive secret sharing[12] for
re-randomizing a secret share. In other words, this scheme
can be used to change the individual secret shares of the
users without changing the group secret. It can be achieved,
quite simply, as follows: suppose f(z) is the original poly-
nomial such that f(0) = S, and g(z) is another polynomial
such that g(0) = 0. The interpolation of shares by addi-
tion of two polynomials, h(z) = f(z) + g(z), provides the
same secret S since h(0) = f(0) + g(0) = S. We note
that proactive secret sharing assumes that members follow
the protocol faithfully and destroy (or erase) their previous
shares as soon as they obtain new ones.

4.3 \Verifiable Secret Sharing

If we suppose that some group members can become
malicious or compromised by an adversary, they may at-
tempt to “cheat” by using incorrect secret shares in order to
deny/disrupt the service. To remedy the situation, a more
advanced technique, Verifiable Secret Sharing (VSS) [7]
can be used. It basically provides a means to detect incor-
rect secret shares.

To be more specific, VSS setup involves two large primes
pand g, and an element g € Z7 chosen in a way that g di-
vides p — 1 and g is an element of Z; which has order q.
The procedure for the trusted dealer to distribute the shares
is the same as in section 4.1. VSS is achieved by the fol-
lowing procedure:

Witness generation: The trusted dealer "D randomly se-
lects a polynomial f(z) over Z, such that f(z) = ao +
a1z + --- + a;_12"7! (mod ¢), computes secret shares
ss;, and transfers them to each user securely. Also, T'D
chooses an element g € Zj of order ¢, and computes w;
(t=0,---,t—1), called the witness, such that w; = g%
(mod p). Then, T D publishes these w;-s in some public
domain (e.g., a directory server)™.

Share verification: When ¢t members receive their share
ss;, each member M; verifies ss; by checking that
t—1

H(wj)ij (mod p)

J=0

ssi L

g =

4.4 Partial Share Generation

A new member M,.,, receives t shares pss;(new)-s
from a group of ¢ members. It will be assumed that the ¢
number of indices, j(= 1,--- ,t), are given to each M; by
Mpew. The details are as follows: Each A; computes a par-
tial secret share for M., as: pss;(new) = ss; - 1j(new)

1In case of JSS, where the group polynomial is jointly selected by the
members, this step is carried out by each of the members individually

(mod p), where ss; is M;’s own secret share. Then, M;
securely sends pss; (new) to Mpe.,.

Note that Lagrange coefficients I;(new) are publicly
known, and therefore, M., can derive ss; knowing
pss;j(new). In order to prevent this, the shuffling technique
proposed in [17] should be used. However, as a conse-
quence of using this technique, the partial secret shares can-
not be individually verified. VSS can be employed only to
check the correctness of the final sum of the partial shares.

5 Threshold RSA (TS-RSA)

Recently, Kong, et al. [17, 18, 16] proposed the use of
threshold signature schemes for distributing the functions
of a certification authority throughouta MANET. They sug-
gested an RSA threshold signature scheme. We will refer to
it as TS-RSA. In this section, we describe their scheme, ap-
ply it to membership control in P2P systems and analyze its
security.

5.1 Setup

During initialization, the T'D is involved in choosing a
secret polynomial and distributing the shares. T'D’s pres-
ence is only required during this bootstrapping phase to ini-
tialize the first ¢ members (¢ is the threshold). 7D gener-
ates an RSA private key d which forms the group secret key
SK and randomly selects a polynomial f(z) over Zy of
degree ¢t — 1 such that the group secret SK is f(0) = d;
f(z) =d+aiz+---+a; 12! (mod N) where N is
RSA modulus.

T D computes the witnesses (refer to section 4.3) and the
secret shares for each member M; (i = 1,2,...,t) as fol-
lows: ss; = f(i) (mod N). In addition, T'D issues M;’s
membership certificate GM C; signed with the group secret
key d, and distributes it with ss;.

5.2 GMC lIssuance

A new member M,,.,, can obtain her GM C,,.., with the
consent of at least ¢ existing members. Figure 1 shows the
procedure of certificate issuance. The protocol consists of
four rounds of communication.

Myew — M. SIGnew(PKCrew,GID,etc.) (1)
Mpew < M]’I SIGJ(GMC]) (2)
Mpew = Mj: SLpew, GMC _REQpew ©)
Mpew — M;: m% (mod N) 4

Figure 1. TS-RSA: Certificate Issue

1. The M, sends a signed JO N_REQmessage which
contains her public key certificate PKC),cq, group
name, etc. to at least ¢ current group members
M;(Ji] >).

2. Group members, who are willing to participate in the
voting, reply with their respective membership certifi-
cates GM C; to M,,.,, after verifying PK Cierp2.

3. My Picks, at random, ¢ responding GMC;(j €r
i,|4] = t), and constructs a signer list SL,,, with
the ID-s of selected members®. Then, M,,.,, sends
SLpeyw to each Mj, along with GMC_REQpeqw
which contains the content of GM C,,.,,. The reason
why we need to collect the signer list is that each M
should know the index of ¢ members (co-signers) in
advance to compute the Lagrange coefficient for the
partial signatures and shares.

4. Each M; computes her own partial secret key, d; by
multiplying her ss; with ;(0). Then, M; computes
the partial signature m% mod N where m is the cer-
tificate body derived from GM C_REQ ., and sends
itto Mpeq.

5. M,.. combines these partial signatures m%
(mod N) to generate the original signature m?
(mod N). (Please note that simply multiplying the
partial signatures will not give the actual signature,
ie., H;Zl m% # m? (mod N). In order to obtain
the true signature, the ¢-bounded coalition offsetting
algorithm given in [17] must be used. Please refer to
[17] for details.) Finally, M,,.,, gets her GM C,,¢yp.

5.3 Share Acquisition

When M,,..,, becomes a member of the group, she needs
her own secret share ss,,.,, in addition to the membership
certificate GM Cerp. The new member acquires the secret
share in the following manner: (Note: This procedure, in
reality, is combined with the step (4) of section 5.2)

Each M; calculates a partial secret share pss;(new) as
follows: pss;(new) = ss; - lj(new) (mod N).

M; shuffles pss;(new) (refer to section 4.4 for de-
tails) and sends the resulting value securely t0 M,,eqp.
Then, M., can obtain her secret share ss,¢.,, by sim-
ply summing up ¢ partial secret shares, pss;(new) since
> pssj(new) = sspew (mod N).

5.3.1 A Security Problem

After summing up all pss;(new) values to obtain sspeqw,
M e, must check if ss,,¢ IS correctly computed. Unfor-
tunately, the protocol cannot guarantee that each ssyeq, iS
correct, for the following reason:

Since $speq IS computed modulo N and not ¢(N), it is
impossible to verify the secret share using publicly known

2In order to secure the protocol against common attcks such as replay,
impersonation and interleaving attacks[20], we note that it is necessary to
include additional information such as timestamps and identity information
of the sender as well as the receiver. However, in order to keep the protocol
description simple, we omit these values.

3 Mp,eqw Obtains member I D-s from their respective GM C-s

witnesses (refer to section 5.3). The value of ¢(V) is known
only to the dealer during group initialization and destroyed
thereafter. Obviously, group members must not know the
value of ¢(IN). Therefore, it appears that this scheme does
not provide verifiability of secret shares. In other words,

t—1)
goee # [Lw)™ (mod V).
i=0

We now provide a trivial example to illustrate the prob-
lem. Let us assume that the secret polynomial is f(z) =
77 + 22 + 522 (mod 119), where N = 119 the product
of two primes: 7 and 17, and ¢ = 3. (Note that the
degree of the polynomial is 2, hence, the threshold ¢ =
3). The witnesses of f(z), which are publicly known,
are as follows: wg = 377 = 12, w; = 32 = 9, and
wy =35 =5 (mod 119). Suppose a new member M-
receives the following partial shares from ¢ existing mem-
bers M, M3, and Ms: psso(7) = T1, pss3(7) = 74,
and psss(7) = 72 (mod 119). M; computes her share
ss7 = pssa(7) + pss3(7) + psss(7) = 98 (mod 119). To
check verifiability of the secret share, she computes

g7 =3 =9 (mod 119).
Also, using the witness values, M, can get the right hand
side of the verifiability checking equation (given above) as

follows:)
(wo) (w1)"(w2)"™ =1

Therefore, even though ss is correctly computed,
2

g*" # [Jw)™ (mod 119).
1=0

(mod 119).

5.4 Summary

As illustrated above, the otherwise elegant scheme by
Kong, et al. [17, 18, 16] fails to provide verifiability of
partial signatures as well as partial secret shares. As a re-
sult, malicious or compromised users can send fake shares
to new members without being detected. This limits the
scheme’s applicability in providing security services in a
dynamic group setting. Another drawback of this scheme
(albeit, a relatively minor one) is that it requires a trusted
dealer to generate the group secret (RSA key) and share it
among the initial members. Although presence of the dealer
is limited to a short period of time (bootstrapping), assum-
ing such a trusted authority may not be feasible in certain
application scenarios.

Other schemes have been proposed in the cryptographic
literature. Notably, Gennaro, et al. [9] and Shoup [27] pro-
posed threshold RSA signature schemes that provide verifi-
ability. However, their schemes still require a trusted dealer
to generate the RSA keys. Boneh and Franklin [1] devel-
oped a method to generate an RSA modulus in a distributed

fashion. Alas, it might not be possible to use this method,
since both [9] and [27] require that the common RSA mod-
ulus N be a product of two safe primes. (Informally, a large
prime p is safe if p = 2¢g + 1 where g is itself a large prime.)
Furthermore, we believe that using any method to gener-
ate RSA keys in a distributed manner involves prohibitively
high communication and/or computation overhead which
severely impacts the practicality of such techniques in many
group setting (such as MANETS). In the next section, we
present an alternative solution, based on threshold DSA,
which addresses both aforementioned problems.

6 Threshold DSA (TS-DSA)

In this section, we present a scheme which uses threshold
DSA signatures, denoted by TS-DSA, to implement mem-
bership control mechanism. This is an extension of the
threshold DSA signature scheme presented in [10] where
n, the number of group members, can be increased with-
out changing the group secret. Similar to [10], this scheme
is secure only if there are less than ¢ = |“£1] malicious
(subverted) members. Below, we mention the details of our
scheme, without any formal proof of security. However,
since our scheme is a simple extension of [10], we believe
our scheme provides the same security as the underlying
threshold DSA signature scheme.

6.1 Setup

The TS-DSA scheme can be initialized by either: 1)
a trusted dealer similar to the TS-RSA scheme described
above, or 2) a group of ¢ or more founding members. Next,
we consider both techniques in detail.

Initialization by dealer: TD generates DSA keys
(p,q,9,%,y) where z is the group secret key. Then, T'D
selects a random polynomial f(z) over Z, of degree t' — 1,
such that the shared secret is f(0) = z. In order to enable
VSS, TD computes and published the witnesses w; = ¢
for (i =0,---,t'—1). TD also computes the secret shares
ss; = z; = f(i) (mod gq), and issues GM C; for each M;.

Self-initialization by founding members: The initial
group founding members M;([i| >) select individual
polynomials f;(z) over Z,, of degree ' — 1, such that f;o =
x;. Then, using JSS, each M; computes her own secret
share ss;, such that ss; = Y°._; f;(i) (mod q) (1| >).
Once M; gets her share, it is rather easy to recover the se-
cret using Lagrange interpolation. Also, the dealing process
supports VSS since each f;(z) isinZg,and g? = 1 (mod p)
(g is an element of order g in Zy). For more details, refer to
[23].

6.2 GMC lIssuance

Let n be the number of current group members. We as-
sume that each M;(i = 1,---,n) has the necessary group

public key parameters (p,q,g) as well as her own secret
share ss; of the group secret. A coalition of ¢ members
can recover the group secret x using Lagrange interpolation.
Also, unlike RSA, in order to generate a DSA signature, a
random secret k is required. We apply JSS to collectively
generate a random secret k. Figure 2 shows the message
flow to obtain GMC using TS-DSA scheme.

Myew — M;: SIGnew (PKCnew, GID, etc.) (1)
Mpew — MjI SIGJ(GMC]) (2)
Mpew — M]’I SLew (3)
Mpew Mj: Uj, Vj (4)
Mpew = M 1, GMC-REQew ()
Mpew < M;: 85 (=kj(m+ zjr) mod p) (6)

Figure 2. TS-DSA: Certificate Issue

1. M., broadcasts signed JO N_REQ containing the
public key certificate PK C),¢., the group name, etc,
to at least ¢ current group members M;(|i| > t).

2. The group members, who wish to participate in the ad-
mission, reply with their respective membership cer-
tificates GMC; t0 M, after verifying PKC)¢
(Refer to footnote 2).

3. Mpew picks at random ¢ responders M;(j €g i, |j| =
t), collects their I.D; from their respective GM C-s to
form a signer list SL,,.,, and sends it to each A;.

4. Each M; randomly chooses her polynomial
k;j(2),a;(z) in Z, of degree ¢ — 1. M; com-
putes k;(¢) and a;(3) for all signers M;(i = 1,--- ,t)
in SLyew, and then distributes &;(:) and a;(¢) to all
her co-signers. After receiving her partial shares from
the other co-signers, M; computes k; and a; such that
ki = k() = YXiss ki), a5 = a(f) = Ly (i)
(mod g). Then, M; computes u; and v; such that
uj = kj -a; (mod q), v; = g% (mod p), and sends
u; and v; back to M,,.,,. Why each M; must take (at
least) two polynomials is referred to [10].

5. My computes » without knowing k£ and k~! as
follows: First, she computes » and v such that
w = Y. u;1;(0) (mod g) which finally equals
to ka (mod q), v = H§:1 ()4 (mod p) which
equals g% (mod p). Next, she computes the in-
verse u~—! (mod ¢) and finally computes r as r =
(v*"" mod p) mod ¢ which equals (¢ mod p)
mod ¢q. Then, My, sends r to M;, along with
GMC_REQnew-

6. M; computes partial signature s; such that s; =
kj(m + z;r) mod g, where z; is M;’s share of
group secret z, and m is information derived from the
GMC_REQnew. Then, M sends s; t0 Mi,qy.

7. M,., computes the complete signature s such that
s= Ej.:l s; -1;(0) (mod g¢) which equals k(m+xr)
(mod q). Thatis, M., obtains her own GM C,eqp .

6.3 Share Acquisition

The share acquisition procedure — through which M,,¢,,
obtains her own new share ss,,.,, from current group mem-
bers —is performed as part of message (6) of certificate issue
(refer to section 6.2).

t' members (M;-s) compute partial secret share
pss;(new) for Mpe,, aspss;(new) = z;-l;(new) mod g,
where [;(new) = Hflzlyl# new=l (mod ¢). Each M;

=1
sends pss;(new) t0 Mpe,. Then, Mpe, computes her
own share ss; by summing up pss;(new) (j = 1,--- ,t')

and verifying her correctness by checking g®éme» =
[Tizo (w)™™’] (mod g).

7 Discussion

The solution presented above provides basic secret shar-
ing functions. However it does not address proactive secret
sharing as well as the issue of dynamically changing the
threshold in proportion to the current group size. Although,
due to space limitations, we do not elaborate on the details
of these mechanisms, we note that it is possible to achieve
proactivity by following the methods outlined in [18] in a
fully distributed fashion. Furthermore, there have been a
few results that allow changing the threshold dynamically
[14, 19, 5]. In particular, we can apply the scheme pro-
posed by Jarecki [14] which suggests reducing the degree
of the secret-sharing polynomial in order to decrease the
threshold and vice-versa. This causes the secret shares of
all the members to be re-randomized, while the group secret
remains the same?. However, implementing this scheme in
a fully distributed manner without involving all members
remains an open challenge.

8 Performance

We implemented our membership control mechanisms
on Gnut-0.4.21[11] (an open-source Gnutella [28] imple-
mentation) in order to measure their performance in the con-
text of a real P2P application. We refer to the resulting soft-
ware as Secure Gnut. At the setup phase of the Gnutella
protocol, the connection is established by communicating
so-called pi ng and pong messages which are based on IP
addresses. Since the same user can submit multiple votes
with different IP addresses[6], we modified our implemen-
tation so that the connection is made only if the responder
answers with her valid GMC. For this purpose, we speci-
fied new messages, called spi ng and spong. The spi ng

“We believe that it is reasonable to assume that all adjustments to the
threshold value ¢ proceed in a lock-step fashion. In particular, each change
in ¢ causes a simultaneous change in the maximum number of members
that can be compromised (or malicious) in that time-period. We emphasize
that the transition from a (¢1, 1) system to a (¢2, n2) system is a discrete
event taking place at some time 7. At all times preceding 772, at most
(t1 — 1) compromised (or malicious) members can be present.

contains the requester’s PKC, and the spong is composed
of the responder’s GMC and her signature to prove the pos-
session of her own private key.

The cryptographic functions are developed using the
OpenSSL library[22]. Our membership control toolkit is
written in C on Linux, and currently consist of about 30,000
lines of code. The source codes for both the membership
control toolkit and Secure Gnut are available in [24].

We performed measurements on the following Linux
machines connected on a high-speed LAN: P4-1.2GHz, P3-
977MHz, P3-933MHz, and P3-797MHz. For the sake of
fairness, each machine ran the same number of Secure Gnut
processes. We measured the basic operations and then com-
pared three cryptographic protocols with both static and dy-
namic thresholds. We used 1024-bit modulo NV in RSA and
TS-RSA, and 160-bit ¢ and 512-bit p in DSA and TS-DSA
for fair comparison. Since each protocol has different num-
ber of communication rounds, we measured total process-
ing time from sending of the JO N_REQto combining new
GMCs®.

8.1 Basic operations

Table 1 shows the time for signature generation and sig-
nature verification in terms of key size with plain RSA and
TS-RSA, respectively. For both TS-RSA and TS-DSA, we
set t=3. In plain RSA, the cost of signature verification
is much cheaper than that of signature generation, while,
in TS-RSA, verification cost is extremely expensive. This
is because the computation of m~ (mod N) in t-bounded
offsetting algorithm[17] has to be done every time we verify
the signature. Unlike private key encryption in plain RSA,
we can not apply the Chinese Remainder Theorem to speed
up computation, since the verifier does not know the prime
factors of N. From our experiments, we found that this
computation takes more than 95% of the total verification
cost. This is a critical observation. Contrary to our intuition,
the performance result of join cost shows that TS-RSA is no
better than TS-DSA.

are reversed (generation is much slower than verification).
This is because JSS requires some extra exponentiations in
the process of computing r in step (5) of section 6.2.

Key DSA TS-DSA

(bits) Sign Verify | P-Sign Verify
512 1.609 4.084 6.863 4.480
768 2.769 6.840 | 11.495 7.182

1024 4.017 8.494 | 16.880 8.870

Key RSA TS-RSA

(bits) Sign Verify | P-Sign Verify
1024 7.395 | 0.249 24.093 24.802
2048 43.169 | 0.576 | 143.534 | 148.034
4096 278.141 1.693 | 971.893 | 981.270

Table 1. Comparison of RSA and TS-RSA (P3-977MHz, time unit:
msec, t=3)

Table 2 compares the performance of the standard DSA
and TS-DSA in terms of the size of parameter p. Most com-
putations in DSA are performed using a 160-bit prime ¢. In
standard DSA measurements, signature generation is faster
than signature verification. However, in TS-DSA, the costs

5In these experiments we did not consider the partial share shuffling
for both TS-RSA and TS-DSA.

Table 2. Comparison of DSA and TS-DSA (P3-977MHz, time unit:
msec, t=3)

8.2 Case I: Fixed Threshold

Figure 3 shows the cost of a new member joining the
group when the group threshold is static. We performed
this test with 25 processes on each machine and measured
the join cost by changing the threshold. As expected, plain
RSA is the best performer in terms of computation time.
However, we also see that both TS-RSA and TS-DSA ex-
hibit reasonable costs (e.g., < 1 sec.) at least until t=20,
which is large enough for membership control.

3

RSA 7
—-— TS-RSA -
----TsDsA e ’

N

Average Join Time (seconds)
\

Threshold (t)

Figure 3. Join cost with fixed threshold

8.3 Case II: Dynamic Threshold

In most P2P systems, such as Gnutella, group size can
fluctuate drastically within a short time. As the group grows
or shrinks, we need to increase or decrease the threshold
without changing the current group secret. Changing the
threshold dynamically requires all current members to up-
date their shares. Any ¢ members can collaboratively in-
crease or decrease the current threshold without keeping
track of the previous polynomial. This is a relatively simple
process. However, in Gnutella, it poses a problem. The rea-
son being that, after updating the polynomial collectively,
the ¢ members must broadcast the update to other n — ¢
members in a secure and synchronous fashion. While this
may be feasible in peer group settings which have an un-
derlying relaible, synchronous group communication sys-
tem, there is no protocol message in Gnutella to achieve
this goal. Therefore, in our simulation, we only measure
the cost of actually updating the threshold, without consid-
ering the associated communication costs.

Additionally, since updating the threshold is an expen-
sive operation, it is not practical if every membership event
triggered an update process. In order to prevent this, we ap-
ply a simple window mechanism. Specifically, every mem-
ber keeps state of n,;4, which is the group size at the time of
the last threshold-update process. A new threshold-update
process is triggered only when the difference between the
current group Size n.qy and nqq is greater then Win where
Win is the window buffer. In other words, threshold update
process is triggered only when |ncyr — noia| > Win.

In Figure 4,we show the cost of a new member joining
the group when the group threshold varies dynamically ac-
cording to current group size. In this experiment, the partic-
ipating ratio (R) of the threshold is set to 20% of the current
group size. Note the ratio is dependent on admission pol-
icy. The threshold is determined by multiplying the group
size by R. We measured the performance until n=50. At
n=50, threshold is set to 10, the cost is less than 0.5 sec
with all mechanism. We also figure out the extra cost is
added whenever threshold changes in the figure.

035

025

Average Join Time (seconds)

Number of Current Members (n)

Figure 4. Join cost with dynamic threshold (R = 20%)

9 Conclusion

In this paper, we investigated the usefulness of thresh-
old cryptography in providing secure membership control
for dynamic peer groups common in P2P systems and
MANETSs. Specifically, we examined two threshold signa-
ture schemes: one based on RSA signatures and the other
based on DSA signatures and measured their performance.
We discovered that the threshold RSA scheme contains a
security flaw and, hence, cannot be used in a group set-
ting with potential malicious insiders. The threshold DSA
scheme overcomes this problem.

Perhaps more importantly, our work can be viewed as
a negative result as it casts doubt upon the practicality of
using threshold cryptography in peer-to-peer and MANET
settings. Nevertheless, further exploration of new, more ef-
ficient, threshold techniques is needed as well as further
experimentation with, and careful assessment of, existing
methods.

10

References

[1]
[2]

[3]
[4]
[5]

6]
[71

8]
[0
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]
(18]

[19]

[20]

[21]
[22]
[23]

[24]
[25]
[26]

[27]
[28]

[29]

D. Boneh and M. Franklin. Efficient generation of shared rsa keys.
In CRYPTO, 1997.

B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable se-
cret sharing and achieving simultaneity in the presence of faults. In
FOCS, 1985.

Y. Desmedt. Society and group oriented cryptosystems. In CRYPTO,
1987.

Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO,
1989.

Y. Desmedt and S. Jajodia. Redistributing secret shares to new access
structures and its applications. Tech Report TR-97-01, GMU, 1997.

J. R. Douceur. The sybil attack. In IPTPS, 2002.

P. Feldman. A practical scheme for non-interactive verifiable secret
sharing. In FOCS, 1987.

Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal-
resilience proactive public-key cryptosystems. In FOCS, 1997.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and
efficient sharing of rsa functions. In CRYPTO, 1996.

R. Gennaro, S.Jarecki, H.Krawczyk, and T.Rabin. Robust threshold
dss signatures. In EUROCRYPT, 1996.

Gnut v0.4.21, http://schnarff.confgnutelladev/
sour ce/ gnut .

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret
sharing, or: How to cope with perpetual leakage. In CRYPTO, 1995.
R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key
infrastructure certificate and crl profile. RFC 3280, 2002.

S. Jarecki. Efficient threshold cryptosystems, MIT PhD thesis, 2001.
Y. Kim, D. Mazzocchi, and G. Tsudik. Admission control in peer
groups. In IEEE NCA, 2003.

J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu. Adap-
tive security for multi-level ad-hoc networks. In Journal of Wireless
Communications and Mobile Computing, volume 2, 2002.

J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust
and ubiquitous security support for MANET. In IEEE ICNP, 2001.

H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang. Self-securing ad
hoc wireless networks. In ISCC, 2002.

K. Martin, R. Safavi-Naini, and H. Wang. Bounds and techniques for
efficient redistribution of secret shaers to new access structures. The
Computer Journal, 1999.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
applied cryptography. 1997. ISBN 0-8493-8523-7.

NIST. Digital Signature Standard. Technical Report 169, 1991.
OpenSSL Project, ht t p: / / www. openssl . or g/ .

T. P. Pedersen. A threshold cryptosystem without a trusted party. In
EUROCRYPT, 1991.

Peer Group Admission Control Project, ht t p: // sconce. i cs.
uci . edu/ gac.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Commun. ACM,
21(2), 1978.

A. Shamir. How to share a secret. Commun. ACM, 22(11), 1979.
V. Shoup. Practical threshold signatures. In EUROCRYPT, 2000.

The Gnutella Protocol Specification v0.4, htt p: / / wwv. cl i p2.
com Gnut el | aPr ot ocol 04. pdf.

L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network
Magazine, 13(6), 1999.

