
A Fast and Robust Content-based Publish/Subscribe Architecture

Hojjat Jafarpour, Sharad Mehrotra and Nalini Venkatasubramanian
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Email: {hjafarpo,sharad,nalini}@ics.uci.edu

Abstract

We present cluster-based publish/subscribe, a novel ar-
chitecture that is not only resilient to event broker failures
but also provides load balancing and fast event dissemina-
tion service. Our proposed approach achieves fault toler-
ance by organizing event brokers in clusters. Multiple inter-
cluster links provide continuous availability of dissemina-
tion service in presence of broker failure without requir-
ing subscription retransmission or reconstruction of broker
overlay. Furthermore, the proposed architecture provides
a fast event dissemination infrastructure that significantly
reduces subscription and publication dissemination traffic
and load on event brokers. Our experimental results show
that even in the presence of 10% failure rate in broker net-
work, event dissemination is not interrupted and dissemina-
tion speed and load are not affected significantly.

1 Introduction

Content-based publish/subscribe (pub/sub) is a content
distribution paradigm where a message is routed based on
its content rather than specific destination address attached
to it [1]. Subscribers specify their interest in certain events
and will be notified afterward if a published event matches
their interest. For scalability reasons, a large-scale, content-
based pub/sub systems is often implemented as a distributed
service network where a set of dedicated broker servers
form an overlay network. Clients connect to one of these
brokers and publish or subscribe through that broker. When
a broker receives a subscription from one of its clients, it
acts on behalf of the client and forwards the subscription
in the broker overlay. Similarly, when a broker receives
an event from its client it forwards the event through the
broker overlay to the brokers that have matching subscrip-
tions. These brokers then deliver the event to their interested
clients.

Most of the existing pub/sub systems including [2,4] use
content-based routing algorithm introduced in [1, 2]. These
systems construct a spanning tree on the pub/sub overlay

network to forward subscriptions and publications. This al-
lows avoiding diffusion of content in parts of the pub/sub
network where there are no subscribers and prevents multi-
ple deliveries of events. The other reason for using spanning
tree is to exploit subscription aggregation to reduce sub-
scription maintenance overhead. We refer to this approach
as tree-based pub/sub. Recently, some pub/sub systems
that use structured overlay networks for organizing broker
servers have been proposed [5, 6]. These systems partition
content space and map each partition to a broker using a
hash function. Subscriptions and publications are routed to
their corresponding brokers, Rendezvous Point (RP), using
DHT-based routing techniques such as Chord [7], Tapestry
[19] or CAN [8]. RP then matches event with stored sub-
scriptions and routes the event towards the brokers that their
subscriptions matched using the DHT-based routing.

Despite the rich functionalities that existing systems pro-
vide, most of these techniques assume a stable broker over-
lay network and do not deal with broker failure. The main
problem that arises in case of broker failure is loss of stored
subscriptions in the failed broker which results in inaccu-
rate content routing or even interruption in content dissemi-
nation process. Some tree-based pub/sub systems deal with
broker failure by establishing redundant paths in the bro-
ker overlay [10]. However, this results in sending every
subscription and event over multiple routes, resulting in
increased bandwidth consumption. Some DHT-based ap-
proaches such as [6, 12] propose fault tolerance by having
back up for brokers but if both broker and its back up crash,
subscriptions belonging to their partition are lost and con-
tent routing will be interrupted.

In this paper, we propose a new architecture for content-
based pub/sub that is not only resilient to broker failures,
but also provides fast content dissemination and load bal-
ancing among brokers. Our proposed architecture, called
Cluster-based pub/sub, organizes event brokers in clusters
where each broker is connected to all brokers in the cluster
it belongs to and at least one broker in every other clus-
ter. Subscription propagation is limited to clusters result-
ing in reduced subscription dissemination and storage load.

Event dissemination is done in two phases. An event first is
disseminated among clusters. Then, it is matched with sub-
scriptions in each cluster and is delivered to the brokers with
matching subscriptions. Our proposed approach also pro-
vides fault tolerance in case of broker failures through mul-
tiple connections between clusters and subscription replica-
tion in clusters. It speeds up event dissemination by reduc-
ing the number of brokers(hops) an event travels to reach to
subscribers and parallelizing content matching operation.

The rest of the paper is organized as follows. In the next
section we present the system design, subscription and pub-
lication propagation algorithms. Then, we present the algo-
rithms for dealing with changes in the broker overlay net-
work resulting from broker join and leave and failures. We
present our experimental results in Section 4 followed by
review of related work in Section 5. Section 6 concludes
the paper and provides some directions for future work.

2 Cluster-based Publish/Subscribe System
2.1 System Model and Notations

We assume the architecture of pub/sub system consists
of a set of dedicated brokers, B={B1,..., Bn}. Brokers com-
municate through reliable TCP links and have unique iden-
tification numbers. We also assume a fail-stop failure model
for broker overlay network that means once a broker fails, it
remains in that state and this can be detected by other bro-
kers [15]. Since we assume links between brokers are reli-
able, we focus on broker failures and ignore other failures
such as message lost.

The cluster-based pub/sub partitions brokers into clus-
ters where each broker belongs to one cluster. Brokers in
a cluster maintain connections with one another and can
directly communicate. Besides the brokers in its cluster,
each broker also maintains connections with at least one
broker from every other cluster which forms a ring. A
ring consists of a set of brokers, one from each cluster.
A broker Bi uses ClusterBrokerListi and RingBrokerList to
keep the list of brokers in its cluster and ring respectively.
Since each broker can be in only one cluster, it has only
one ClusterBrokerListi. On the other hand, a broker can
have one or more RingBrokerList meaning that it can be
part of multiple rings. Finally, Bi stores subscriptions and
subscribers from its clients in LocalSubscriptionListi and
all subscriptions and their subscriber brokers in the same
cluster in ClusterSubscriptionListi. Figure 1(a) illustrates
a sample system with nine brokers forming three clusters
with three rings.

2.2 System Initialization

Before the system starts its work, clusters and rings
should be formed. There are two main questions that should
be answered in clustering brokers. 1) How many clusters
should be in the system? 2) How many brokers should be in

each cluster? The answer for these questions directly affects
the performance of the proposed pub/sub framework in both
message forwarding load experienced by a single broker
and overall network traffic for dissemination of subscrip-
tions and publications. Assuming subscriptions and publi-
cations are distributed uniformly among brokers, we want
to form clusters and rings in such a way that subscription
and publication dissemination load is uniformly distributed
among brokers. We argue that this is achieved if the size of
clusters are the same.

Consider the subscription load on a broker is the number
of subscriptions that it receives and should store and ring
publication load on a broker is the number of events that it
receives in the ring dissemination phase. It is straightfor-
ward to show that if the size of clusters differ significantly,
the distribution of subscription and publication loads among
brokers will not be uniform. Thus, in order to distribute both
of these loads uniformly, at the initialization time our sys-
tems minimizes the difference of cluster sizes and generate
almost equal clusters.

Assuming that the cluster sizes should be equal, the next
step is to find the number of clusters in the system. As men-
tioned, the goal is to achieve better performance through re-
ducing overall network traffic resulted from dissemination
of subscriptions and publications. Therefore, we first com-
pute the overall network traffic in the system. Assume that
there are n brokers in the system and we clustered them into
m clusters with equal sizes. Also consider that the probabil-
ity for a broker to have subscription matching with a pub-
lication is represented by r(0 ≤ r ≤ 1), which we refer to
as matching ratio. The total network traffic is the sum of
publication forwarding traffic and subscription forwarding
traffic. The publication forwarding traffic resulted from one
publication in the system is computed as (m−1)+r(n−m).
The first part of this expression is the ring dissemination
traffic where the publication is disseminated to m− 1 clus-
ters and results in (m−1) messages. In this phase m brokers
have the published message. Now considering the matching
ratio is r, r(n −m) brokers out of the remaining (n −m)
brokers have matching subscriptions and must receive the
message. This results in an extra r(n−m) messages. There-
fore, if we have p publication with matching ratio r in the
system, the overall publication traffic for matching ratio r
becomes p[(m − 1) + r(n −m)]. Assuming that publica-
tions are uniformly distibuted for matching ratios, the over-
all publication traffic for all matching ratios is computed as
follows.

Publication traffic =
∫ 1

0
[p(m− 1) + p(n−m)r]dr

= p(m− 1) + p
2 (n−m)

On the other hand, since subscriptions are only dissem-
inated in a cluster, the overall subscription dissemination
traffic in the system can be computed as follows where s is
total number of subscription in the system.

(a)
Sam-
ple
clus-
ter-
ing.

(b)
B9
joins
the
sys-
tem.

(c)
B7
leaves
the
sys-
tem.

Figure 1. Sample broker network after join and leave of a broker.

Subscription traffic = s(n
m − 1)

Using the computed values we can compute the overall
network traffic resulted from publication and subscription
dissemination.

Overall traffic = p(m− 1) + p
2 (n−m) + s(n

m − 1)
Assuming that the overall network traffic is a function

of m, the number of clusters in the system, we can achieve
the value for m that results in the minimum overall network
traffic as follows.

Number of Clusters = m =
√

2s
p n

This equation shows that the initial number of clusters
in the system has a direct relation with the number of sub-
scriptions and an inverse relation with the number of pub-
lications. By assuming the amount of publications is twice
the amount of subscriptions our system uses

√
n as the ini-

tial number of clusters.
After finalizing the initial number of clusters, the clus-

ters and rings are formed using the initial brokers. One way
to do this is that system administrator sets up the Cluster-
BrokerList and RingBrokerList for each broker and estab-
lishes the connections. The other technique to construct the
system structure is through an incremental process where
brokers join the system one by one. In this case, the first m
brokers form clusters and the first ring in the system. Then
other brokers are added to the system by joining to a cluster
and forming corresponding ring. The details of join process
are described in the next section.

2.3 Subscription and Unsubscription

When a broker Bi receives a subscription from its client,
it first adds it to the LocalSubscriptionListi and looks into
LocalSubscriptionListi to see if the subscription is covered
by previous subscriptions it has received from its clients.
If the subscription is not covered, the broker disseminates
the subscription among all other brokers in the same clus-
ter. Each broker Bj in the cluster after receiving the new
subscription from Bi adds it to its ClusterSubscriptionList.

When a client sends an unsubscription request to its bro-
ker Bi, the broker first looks into its LocalSubscriptionListi.
If the subscription was covered, the broker just removes it
from LocalSubscriptionListi. Otherwise, it finds all sub-
scriptions that have been covered by this subscription in
LocalSubscriptionListi and puts them into a list called Un-
coveredSubs. Then broker Bi sends this list along with the

request for unsubscription to all other brokers in the same
cluster. Any broker Bj in the cluster that receives this infor-
mation, first removes the subscription from its ClusterSub-
scriptionList and then adds the subscriptions in Uncovered-
Subs to its ClusterSubscriptionList.

2.4 Event Dissemination Algorithm

The event dissemination is done in two phases. The
first phase is Ring dissemination where a published event
is broadcast among all clusters through the publisher bro-
ker’s ring. The most straightforward way to disseminate
event among all brokers in the ring is that Bi sends it to
all brokers in its RingBrokerList. However, if event size is
large, faster broadcast dissemination techniques such as the
one presented in [16] can be used to speed up and scale ring
dissemination. In the second phase, which is Cluster dis-
semination phase, the event is matched to subscriptions in
each cluster and is delivered to the brokers with matching
subscription. Any efficient content matching technique can
be used in this phase [3]. The formal representation of the
dissemination algorithm is depicted in figure 2.

Bpub← The publisher broker
PubRing← The publisher broker’s ring
Ring Phase
1) For all Bi ∈ PubRing

Bpub sends the content to Bi

Cluster Phase
1) For all Bi ∈ PubRing

Bi matches the content with subscriptions in its cluster
Bi sends the content to the matched brokers in its cluster

Figure 2. Event Dissemination Algorithm

3 Changes in Broker Network
In this section we describe how our proposed system

deals with changes in broker overlay network in pub/sub
system. Changes in broker overlay network can be caused
by adding new brokers, removing existing brokers and fail-
ure of some brokers.

3.1 Broker Join

When a new broker wants to join to the system, it should
become part of a cluster and a ring in the broker overlay
network. Assume broker Bnew wants to join the system

and knows at least one of the brokers in the system. It first
contacts a broker in the system and receives its RingBro-
kerList which consists of one broker in each cluster. The
new broker then requests brokers in the RingBrokerList to
send it the size of their clusters. Based on this information,
the new broker finds the cluster with the fewest number of
brokers and joins to this cluster. This minimizes the differ-
ence between cluster sizes in the system which is one of the
objectives in forming the clusters. After selecting the clus-
ter to join, Bnew requests the ClusterBrokerList from the
broker in the selected cluster. It also receives the Cluster-
SubscriptionList for the selected cluster. To join the cluster,
Bnew sends a join request to each broker in the cluster. Each
broker after receiving the join request from the new broker,
adds Bnew to its ClusterBrokerList and sends the number
of its rings to the new broker. After receiving the number
of rings from these brokers, if there is a broker with more
than one ring, the new broker receives the RingBrokerList of
one of the rings from the broker and substitutes that broker
with itself in the RingBrokerList. This becomes new bro-
ker’s RingBrokerList. Now the new broker sends a request
to the brokers in its RingBrokerList and asks them to re-
place the previous broker with the new on in their RingBro-
kerList. Otherwise, if all the brokers have only one ring, the
new broker chooses one broker randomly and receives its
RingBrokerList. Similar to the previous case the new bro-
ker sends join requests to all brokers in its RingBrokerList
but in this case it asks them to add a new ring which con-
tains the new broker. Figure 1(b) depicts the broker overlay
network in figure 1(a) after adding broker B9.

3.2 Broker Leave

When a broker Bi wants to leave, it first sends a leave
request to all brokers in its cluster. Brokers in the cluster re-
spond to the request by sending the number of rings that
they belong to and also by removing subscriptions from
Bi from their ClusterSubscriptionList. When Bi receives
the response from the brokers, it selects the broker with
the minimum number of rings, Bj , and sends its RingBro-
kerList to Bj . Now Bj sends a message to all brokers in the
RingBrokerList that it received from Bi and informs them
about Bi’s leave. If all brokers in the RingBrokerList have
another ring containing a broker in Bj’s cluster, they send a
message to Bj and inform it that the ring is deleted and all
of these brokers delete this ring. Otherwise, all brokers after
receiving this message from Bj , replace Bi with Bj in their
corresponding RingBrokerList. Then, Bj sends a message
to Bi and informs it that it can leave the system and Bi sim-
ply leaves the system. Figure 1(c) represents the structure
of broker overlay in figure 1(a) after broker B7 leaves the
system.

3.3 Broker Failure

As mentioned in Section 2, one of the main goals of our
approach is to provide fault tolerance in such a way that de-
spite failure of some brokers, event dissemination service
remains available and works correctly. Here we describe
our approach for detecting failures, masking them in order
to provide continuous service availability and eventually re-
covering from them.

Failure Detection: As mentioned in Section 2, we as-
sume brokers follow a fail-stop failure model. We use two
strategies to detect failures. The first strategy is based on
heart beat messages that brokers in clusters and rings ex-
change. In this case, each broker periodically sends probe
messages to the brokers in the same cluster and ring. If
a broker stops receiving heart beat messages from another
one for a certain period of time, it assumes that the broker
has failed. The other way of failure detection is done dur-
ing event dissemination. When a broker wants to send a
message to another one, if the TCP connection cannot be
established after a certain period of time, the sender bro-
ker assumes that the other broker has failed and uses failure
masking algorithm. It is possible that link between two bro-
kers fails. In this case, we assume the underlying network
will eventually fix the failed route and brokers can com-
municate with each other before connection establishment
time expires. If the sender broker cannot establish the con-
nection after this time, it concludes that the receiver broker
has failed.

Masking Failures: If a broker fails while content dis-
semination is in progress it is desired that the failure be
masked for the dissemination process so it can progress
without being interrupted. In this case there is no need
for restructuring broker overlay network and retransmitting
subscriptions. To achieve this goal, we propose a modified
version of content dissemination algorithm that tries to de-
liver content to all clusters despite failure of some brokers.
The algorithm is presented in figure 3.

We explain the algorithm with respect to the sample in
figure 1(a). Assume broker B4 publishes an event and bro-
ker B3 has failed. Now in the ring phase of dissemination,
B4 cannot deliver the event to B3. Therefore, B4 contacts
another broker, for instance B1, in its cluster and asks it
to deliver the event to cluster C0 which is the cluster that
B3 belongs to. If B1 also cannot deliver the event to the
cluster, it asks another broker, here B7, to send the event to
cluster C0. This process continues until the event gets de-
livered to the cluster unless all the links between the two
clusters have failed. Lets assume B0 is alive. As a result,
B1 sends the event to B0 and B0 matches the event and dis-
seminates it among brokers with matching subscriptions in
Cluster C0. The adapted dissemination algorithm can dis-
seminate events as long as there is one link between any two
clusters. This condition holds until the failure of k brokers

in the two clusters where the cluster size is k. Therefore, as
long as the number of broker failures is less than k, cluster
connectivity exists and masking algorithm can disseminate
event despite failures.

Bpub← The publisher broker
PubRing← The publisher broker’s ring
Ring Phase

For all Bi ∈ PubRing
if(Bi has failed)

Find Bf ∈ Bpub.ClusterBrokerList and send the content
to Bi.Cluster through Bf

else
Bpub sends the content to Bi

Cluster Phase
For all Bi ∈ PubRing

if(Bi has failed) ignore it.
else

Bi matches the content with subscriptions in its cluster
Bi sends the content to the matched brokers in its cluster

Figure 3. Failure masking event dissemina-
tion algorithm

Note that it is possible some of events do not get deliv-
ered to all subscribers because of failures. For instance if a
broker after receiving an event in ring dissemination phase
fails before or during dissemination of the event among
matched subscribers in its cluster, the subscribers in the
cluster do not receive the event. An acknowledgement
based extension of the algorithm can solve this problem to
the cost of adding acknowledgement load.

Failure Recovery: By masking failures, our approach
can provide continues pub/sub service. However, when the
number of failures increases, it increases content dissemi-
nation time and load. It also results in higher load on some
brokers that are in the clusters of failed brokers. Therefore,
after detection of broker failure, our proposed system re-
pairs the broker overlay network structure by reconstructing
the affected rings and replacing the failed broker with an-
other one in its cluster for the rings that have been affected
by failure. The recovery process is similar to broker leave
process except that here another broker initializes recovery
process.

4 Evaluation
In this section we present our experimental methodology

and simulation results for our cluster-based approach. We
compare our proposed architecture with two major existing
architecture, tree-based pub/sub and DHT-based pub/sub.

4.1 Experimental Methodology

Data model: One of the main challenges in evaluat-
ing pub/sub systems is lack of real-world application data.
However, previous work shows that in most applications
events and subscriptions follow Zipf or uniform distribu-
tions [?]. For comprehensiveness, we did our experiments

with both of these distributions. We use Matching Ratio as
our main parameter [9]. Matching ratio is the fraction of the
brokers that have matching subscriptions for an event. Us-
ing wide variety of matching ratios in our simulations, the
results can be interpreted for both Zipf and uniform distri-
butions. High and low matching ratio implies Zipf distri-
bution where some events are very popular and have many
subscribers while other events are very selective and a small
fraction of brokers have subscribers for these events. Aver-
age matching ratio implies uniform distribution where the
probability of subscription is almost equal for all events.

Figure 4. Subscription dissemination traffic.

Simulation setting: We performed our simulations on top
of J-Sim real-time network simulator [17]. The network
topology is generated by GT-ITM random graph generator
using the transit-stub model [18]. There are 20 transit do-
mains with an average of 5 routers in each. There are 3
stub domains attached to each transit router in average and
each stub domain has an average of 8 routers. All together
there are 2500 routers and 10660 links. 100 brokers are ran-
domly attached to routers by links with latency between 10
to 90 ms. Subscriptions and events are uniformly distributed
among brokers and measurements are averaged for 500 pub-
lications. Events are small java objects with maximum size
of 1KB. The simulations were done for three different set-
tings with 5, 10, 20 clusters. In the overlay setting with 10
clusters we considered two faulty cases where 5% and 10%
of brokers have failed. Failures are distributed uniformly.
The connection establishment time out that is used for de-
tecting failures is set to 30 seconds which means if a broker
cannot establish a TCP connection to another one in 30 sec-
onds it assumes the other broker has failed. We also sim-
ulated a tree-based pub/sub system where brokers are con-
nected through a spanning tree and a DHT-based pub/sub
using Tapestry [19] routing scheme that utilizes dynamic
multicast technique proposed in [5] to achieve higher speed
and less network traffic.

To evaluate subscription dissemination load we used a
five dimensional event space and considered subscription
covering relation between subscriptions. We generated sub-
scriptions using Zipf distribution. Dimension domain is
[0,1000] and each subscription range size is at most half
of the dimension domain.

Subscription dissemination traffic. Dissemination of
subscriptions among brokers in a pub/sub system imposes
significant traffic to the broker overlay network. Tradi-
tional tree-based pub/sub systems broadcast subscriptions
in the broker overlay network. However, to reduce sub-
scription dissemination load they use subscription covering
to prevent further dissemination of covered subscriptions.
In DHT-based pub/sub depending on the event space parti-

Figure 5. Event dissemination times.

tioning a subscription may be stored in more than one bro-
ker. Also in case of having back up for RPs, a subscription
should be replicated on back up brokers too. On the other
hand, in cluster-based pub/sub, subscription dissemination
is limited to clusters which significantly reduces subscrip-
tion propagation load compared to tree-based approach.

Figure 4 depicts the subscription dissemination traffic
in tree-based, DHT-based and cluster-based pub/sub with
different number of clusters for Zipf distribution. As it
can be seen, subscription dissemination traffic in tree-based
pub/sub is significantly higher than DHT-based and cluster-
based pub/sub. The main reason, as mentioned, is that
subscriptions are broadcast in tree-based pub/sub and even
though the covering relation among subscriptions reduces
subscription dissemination load, this reduction just prevents
small fraction of subscriptions from being broadcast. On
the other hand, in cluster-based pub/sub, although the use
of subscription covering is limited to subscriptions from the
same broker, since the subscription dissemination is limited
to clusters, it generates considerably less amount of traffic.
Also as it is shown, subscription dissemination traffic for
cluster-based system with fewer number of cluster is higher
that the traffic in a system with more clusters. The reason
is that the fewer clusters means that the cluster sizes are
bigger. This results in dissemination of subscription among
more brokers that generates higher amount of traffic. Note
that the resulted traffic from DHT-based pub/sub is also con-
siderably small and is almost equal to the Cluster-based ap-
proach. This is because subscriptions are forwarded only
to the small subset of brokers and use of dynamic multicast
to reduce the number of sent messages [5]. However, since
subscriptions belonging to a specific event space partition
are stored in one or at most two brokers if there is back
up for brokers, this results in more vulnerability for loosing
stored subscriptions in DHT-based pub/sub approach.

Figure 6. Average event dissemination traffic.

Event dissemination latency. In most of pub/sub appli-
cations event dissemination time is a critical factor and it
is desired to disseminate publications among subscribers as
fast as possible. To evaluate the dissemination time in our
approach we measured average dissemination time which is
the average time it takes from publishing an event till bro-
kers with matching subscription receive it. We also mea-
sured Total dissemination time which is the amount of time
takes a published event be delivered to all brokers with
matching subscriptions. Figure 5 plots the average and total
dissemination time. As it can be seen, our proposed ap-

proach in all settings outperforms traditional tree-based and
DHT-based approaches. Also the difference between results
for different number of clusters is not significant. The main
reason is that the number of brokers an event should travel
to reach to its subscriber broker is the same (two brokers,
one in the ring dissemination and the other in the cluster
dissemination) despite the difference in the number of clus-
ters. Also dissemination time stays steady for all matching
ratios. This is because of uniform distribution of brokers in
tree-based and DHT-based approaches and constant num-
ber of hops (two) that an event passes in our cluster-based
approach. The other important fact depicted in the graphs
is that despite 5% or 10% broker failures in our approach,
still average dissemination time is considerably less than the
time for tree-based approach without failures. Also the av-
erage dissemination speed in cluster-based pub/sub is less
than DHT-based approach without any failure.

Event dissemination traffic. We assume event dissemina-
tion traffic as the average number of transmitted messages
between brokers during event propagation process . Figure
4.1 plots the average event dissemination traffic. As it can
be seen, there is a direct relation between the popularity of
an event and the amount of traffic is generated for its dis-
semination. For less popular events where matching ratio
is small the dissemination traffic also is small. By increas-
ing the number of subscribers, event should be forwarded
to more brokers which results in higher traffic. The cluster-
based approach, specially with fewer clusters, performs bet-
ter than tree-based and DHT-based pub/sub. This differ-
ence is more in lower matching ratios where fewer brokers
have matching subscriptions. This is because in tree-based
approach in average an event is forwarded through higher
number of brokers to reach subscribers. Similarly, in DHT-
based approach multi-hop nature of routing results in higher
dissemination traffic. The other fact that is shown in this
figure is that by increasing the number of clusters, event
dissemination traffic also increases. This is because of big-
ger ring size caused by larger number of clusters. Since
the ring dissemination phase is broadcasting event to all
ring member irrespective of their subscriptions, many bro-
kers in the ring may receive the event while they have not
subscribed to it. This increases the number of transmitted
events. However, the difference in dissemination traffic re-
duces in higher matching ratios because there will be more
brokers in the ring with matching subscriptions. This re-
sults in fewer brokers without matching subscriptions that
receive an event. Also the graph shows that the generated
traffic to mask failures in our approach still is less than the
traffic in tree-based and DHT-based approaches. There is
an exception case that with 20 clusters and 10% matching

ratio, cluster-based pub/sub generates almost same amount
of traffic as tree-based approach. This is because of higher
traffic resulting from broadcasting content among 20 clus-
ters.

Broker load. We assume the event dissemination load
as the average number of messages that a broker processes
during content dissemination. Figure 4.1 shows the average
amount of load for different matching ratio and 500 pub-
lications. As it can be seen the average load increases by
popularity of events and again our approach outperforms
tree-based and DHT-based approaches. The difference is
more considerable in lower matching ratios. The main rea-
son for higher load on brokers in tree-based systems is that
many brokers may participate in event dissemination by just
forwarding events toward subscribers. This means despite
these brokers are not interested in an event, they receive the
event and process it and send it toward subscribers. In our
method, on the other hand, the only place that a broker with-
out having matching subscription may receive an event is in
ring dissemination phase. This clearly justifies why broker
load is lower for the setting with lower number of clusters
which implies smaller ring size. Therefore, in cluster-based
pub/sub, specially with fewer clusters, fewer number of bro-
kers with no matching subscription participate in event dis-
semination which results in lower average load on brokers.
The figure also shows that the failure masking algorithm
does not significantly increase the load and still results in
less load on brokers compared to tree-based and DHT-based
pub/sub without considering any failures for them.

Figure 7. Average load on each broker.

5 Related Work

Most of content-based pub/sub systems that use tree-
based content routing including [1, 2], assume a stable and
fault-free broker overlay network. However, some work
tried to address the broker crash problem in tree-based
pub/sub. Chand and Falber in [10] proposed a failure mask-
ing technique which is based on redundant routes where
there is more than one route from publishers to subscribers.
Since subscriptions and publications are forwarded through
redundant paths, this approach provides higher availability
to the cost of increasing already network traffic and bro-
ker load. [11] provides a broker failure masking mechanism
using replicated brokers. In this mechanism, each node in
the routing tree is a virtual broker containing a set of broker.
Subscriptions are replicated in all brokers in a virtual broker
while publication dissemination load is distributed among
brokers in a virtual broker. When a broker crashes, the other
brokers are used for forwarding event toward subscribers.
However, using tree structure still degrades the content dis-
semination process and as shown in previous section results

in higher network traffic and broker load. In [14], Baldoni
et al. present a crash-resilient topology management tech-
nique which can recover from broker failure by requiring
brokers to know subscriptions from their neighbor’s neigh-
bor. However, this method cannot address multiple broker
crashes.

Most of pub/sub systems on structured overlay networks
rely on the overlay network service for recovering from fail-
ures [5, 6, 12]. However, for preventing subscription lost
these system use back up nodes for brokers to replicate sub-
scriptions. In [6] each broker has a back up where is used
when the primary broker crashes. However, if both a broker
and its back up crash, subscriptions belonging to them will
be lost.

In [13] a semi-probabilistic approach for event routing is
introduced which is resilient to broker failures. Subscrip-
tion propagation is limited to a few brokers. To forward
events, each broker first uses the available information to
find the route. If there is not useful information in sub-
scription table, the event is randomly forwarded to subset of
neighbors. However, the correct event routing is probabilis-
tic and even in absence of broker failure, events may not
be delivered to subscribers. Medym is another failure re-
silient approach introduced in [9]. In Medym subscriptions
are broadcast to all brokers and when an event is published,
its subscribers are determined in publisher broker and using
a dynamic multicast algorithm event is propagated to them.
However, broadcasting all subscriptions to all brokers re-
sults in high network traffic and subscription maintenance
load on each broker.

6 Conclusions and Future Work

We presented a novel architecture for pub/sub based on
clustering brokers and forming rings between these clus-
ters. We showed how our proposed approach can mask bro-
ker failures and increase dissemination service availability.
We also showed our approach outperforms tree-based and
DHT-based pub/sub in dissemination time, traffic and load
even when 10% of brokers crash in the system. The key in-
sight enabling our approach to effectively mask failures is
the replication of subscriptions in clusters and having mul-
tiple links between any pair of clusters.

We believe the proposed cluster-based architecture
presents a novel pub/sub model that can be investigated
regarding different factors. We are studying the effect of
clustering based on different factors such as underlying net-
work topology on the performance of the pub/sub system.
We also aim to provide a hierarchical cluster-based architec-
ture which can dynamically tune to different cluster settings
based on subscription and event load.

References
[1] A. Carzaniga, M. Rutherford and A. Wolf, A Routing Scheme for

Content-Based Networking., IEEE INFOCOM 2004.

[2] A. Carzaniga, D.S. Rosenblum and A. Wolf, Design and Evaluation
of a Wide-Area Event Notification Service., ACM Trans. on Com-
puter Systems, (19)3, Aug 2001.

[3] A. Carzaniga and A. L. Wolf, Forwarding in a Content-Based Net-
work., ACM SIGCOMM 2003.

[4] G. Li, S. Hou, H. A. Jacobsen, A Unified Approach to Routing, Cov-
ering and Merging in Publish/Subscribe Systems Based on Modified
Binary Decision Diagrams., ICDCS 2005.

[5] R. Baldoni, C. Marchetti, A. Virgillito, R. Vitenberg, Content-Based
Publish-Subscribe over Structured Overlay Networks., ICDCS
2005.

[6] A. Gupta, O. Sahin, D. Agrawal, A. El Abbadi, Meghdoot: Content-
Based Publish/Subscribe over P2P Networks., Middleware 2004.

[7] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer
lookup protocol for internet applications., IEEE/ACM Trans. Netw.
11(1),2003.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scal-
able Content-Addressable Network., ACM SIGCOMM 2001.

[9] F. Cao, J. Pal Singh, MEDYM: Match-Early with Dynamic Multicast
for Content-Based Publish-Subscribe Networks., Middleware 2005.

[10] R. Chand and P. Felber, XNet: A Relliable Content-based Pub-
lish/Subscribe System.,IEEE SRDS, 2004.

[11] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, J. Auerbach, Exactly-once
Delivery in a Content-based Publish-Subscribe System., DSN 2002.

[12] P. Pietzuch and J. Bacon, Hermes: A Distributed Event-Based Mid-
dleware Architecture., DEBS02, 2002.

[13] P. Costa, G.P. Picco, Semi-Probabilistic Content-Based Publish-
Subscribe., IEEE ICDCS 2005.

[14] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito, A Self-
Organizing Crash-Resilient Topology Management System for
Content-Based Publish/Subscribe., DEBS04, 2004.

[15] F.B. Schneider, Byzantine generals in action: Implementing fail-
stop processes, ACM Trans. on Computer Systems, Vol. 2, 1984.

[16] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubra-
manian, S. Mehrotra, CREW: A Gossip-based Flash-Dissemination
System., IEEE ICDCS 2006.

[17] J-Sim Simulator. http://www.j-sim.org/
[18] E. Zegura, K. Calvert and S. Bhattacharjee, How to Model an Inter-

network., IEEE Infocom 96.
[19] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and

J. Kubiatowicz, Tapestry: A Resilient Global-scale Overlay for Ser-
vice Deployment,IEEE JSAC, January 2004, Vol. 22, No. 1.

