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ABSTRACT
Despite proven successful in previous projects, the use of
formal methods for enhancing quality of software is still not
used in its full potential in industry. We argue that seamless
support for formal verification in a high-level specification
tool enhances the attractiveness of using a formal approach
for increasing software quality.

Commercial Complex Event Processing (CEP) engines of-
ten have support for modelling, debugging and testing CEP
applications. However, the possibility of utilizing formal
analysis is not considered.

We argue that using a formal approach for verifying a CEP
system can be performed without expertise in formal meth-
ods. In this paper, a prototype tool REX is presented with
support for specifying both CEP systems and correctness
properties of the same application in a high-level graphical
language. The specified CEP applications are seamlessly
transformed into a timed automata representation together
with the high-level properties for automatic verification in
the model-checker Uppaal.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and tech-
niques

General Terms
CEP, CASE, Timed automata
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Design, Verification, CEP, Timed automata
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1. INTRODUCTION
Nowadays, many companies and organizations use event-

driven applications as an approach to analyze and detect
patterns in large volumes of data as they become available.
Briefly, we can categorize these applications into: i) time
series filtering, and ii) track and trace.

Applications related to time series filtering use one or
more event streams as input and produce another event
stream as output. Every real-time index at a stock mar-
ket is a good example of this: multiple event streams with
new prices of all the constituent stocks are used as input
and the output is the index itself.

Events in track and trace applications carry information
about state changes emitted from entities. For example, a
door opens in building five, or an order changes state from
unconfirmed to confirmed. In contrast to time series filter-
ing, events in track and trace applications are not expected
to arrive in a steady flow of events with an update on the
latest value of an entity. Instead, the entity will generate an
event whenever something interesting has changed.

The abilities to detect complex event patterns on the fly
have led to a growing market of event and rule engines, e.g.,
Amit, ruleCore, Coral8, Aptsoft, Aleri, StreamBase. Re-
gardless of whether they support time series filtering appli-
cations or track and trace applications, few if any of them
have support for formally verifying that the events and rules
do not contain design errors.

As the area of complex event processing (CEP) is still
evolving and no wide spread development methodology is
available for CEP systems, we argue that it is now time
to introduce best practice methods for developing systems
within the area.

Verifying that a set of events or rules behave as intended
during runtime is not trivial due to the high complexity of
event composition and rule execution models. Thus, such
analysis should always be done by a tool, rather than by
manual inspection.

We have designed and implemented a prototype tool REX
(Rule and Event eXplorer) that acts as a front end to the
timed-automata CASE-tool Uppaal[7]. REX provides sup-
port for specification of composite events, rules, and verifi-
cation properties (e.g., termination, correctness) in a high-
level language. REX automatically transforms events, rules,
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and verification properties to a timed-automaton represen-
tation that can be used by Uppaal. After transformation,
REX seamlessly starts the model-checker in Uppaal to test
the verification properties and waits for the result from the
model-checker. Thus, using systems like REX and Uppaal

together during specification and design of an CEP applica-
tion facilitates tasks such as detecting design errors in events
and rules.

Similar to events and rules in active databases [24], ter-
mination and confluence are two key issues when analyz-
ing events and rules. An extensive body of knowledge al-
ready exist on termination and confluence within the active
database field (e.g.[5, 11, 2, 6]). However, events and rules
need to be analyzed beyond termination and confluence, i.e.,
they need to be analyzed with respect to application specific
properties. For example, detecting whether event e1 can oc-
cur in an interval started by event e2 and ending with event
e3, is neither related to termination nor to confluence.

Due to the lack of tools for formally analyzing events and
rules within the CEP area, we assume that many develop-
ers check termination, confluence, and correctness of their
events and rules by testing, debugging and analyzing traces
when errors have already occurred.

In this paper we present a novel approach for automati-
cally verifying application specific properties of events and
rules for CEP applications. We show how these proper-
ties can be described in the high-level property language in
REX and how these properties are transformed to a timed-
automata representation that can be used by Uppaal. For
in depth description of how the timed automaton represen-
tation of composite events is constructed we refer to [15,
16].

This paper is structured as follows; In section 2, prelim-
inaries about the area of complex event processing and the
CASE tool Uppaal is presented. Section 3 describes the cur-
rent status of our prototype tool REX followed by in depth
information about how to specify and transform property
specifications from REX to Uppaal.

2. PRELIMINARIES
This section present background knowledge about com-

plex event processing and Uppaal.

2.1 Complex Event Processing
A characteristic feature of a CEP engine is finding pat-

terns in an ordered (stream) or partially ordered (cloud)
set of events. A complex event processing engine typically
reacts to events occurring in predefined patterns. In this
paper, we use the word composite event as a synonym for
patterns possible to detect using a CEP engine.

Although no standard language exists for describing all
types of composite events possible to detect in a CEP engine,
some operators for combining events reappear in several en-
gines. A common set of supported operators are conjunc-
tion (

V

), disjunction (
W

), sequence (;) and non-occurrence.
These operators are extensively used in previous work in ac-
tive databases (e.g.[9, 18]). Additionally, functions perform-
ing calculation of, for example, average value, max and min
value of parameter values arriving with events and counting
occurrences of a specific type during a sliding time window
interval are supported. Further, CEP engines may have sup-
port for rule based specifications where occurring events are
triggering code (Action) if a specified condition is true.

Automaton1 Automaton2

S2 P2

S1 P1

E1!
message=my_mess

E1?
received_mess=message

Figure 1: Synchronizing timed-automata

2.1.1 Consumption policy
The initiator of a composite event is the event occurrence

initiating the composition of the composite event and the
terminator is the event occurrence terminating the event
composition. In this paper, an event occurrence is said to
contribute to a composite event if the event is a terminator
or initiator of the composite event.

If there are several occurrences of a contributing event
type, the time and number of triggerings of the composite
event depends on which instance of the contributing event
types that are used for combining the composite event. Ad-
ditionally, contributing event occurrences may carry param-
eters used in calculations implying that the choice of con-
tributing event instances can affect the resulting outcome of
running the CEP application.

The issue of combining contributing event occurrences are
previously addressed in, for example, [9, 23] and [28]. In this
paper, we use the chronicle and recent consumption policies
defined in [9]. In chronicle consumption policy, events are
composed in chronicle order (e.g. the first unused event
occurrence of initiator type is combined with the first un-
used occurrence of terminator type). In recent consumption
policy, composite events are composed by the most recent
occurrence of each contributing event type.

2.1.2 Expiration time
The expiration time determines for how long an initiated

composite event should wait for its terminator. It may be
the case that the composite event is useless if it is not trig-
gered within a predefined time span, for example, if the com-
posite event triggers a rule whose action part has already
expired. Additionally, it is beneficial to clean the system
from semi-composed events in order to save memory[8].

2.2 Uppaal

Timed automata are finite automata extended with a set
of real-valued clocks[4]. Timed-automata are designed for
specifying and verifying real-time systems. Uppaal is a
toolbox for modelling and analyzing specifications built on
the theory of timed-automata extended with additional fea-
tures. The tool is developed jointly by Uppsala University
and Aalborg University[7]. A model in Uppaal is built by
a network of synchronizing timed automata. Each timed
automaton simulates a process which is able to synchronize
with other automata.

2.2.1 Specifying models inUppaal

Each automaton in an Uppaal model contains a set of
locations S with an initial location s0 ∈ S. A state of a
timed automata is defined as a pair consisting of a location
and an assignment mapping all clocks and variables to values
in their domains.

Each location of a timed automaton can be labelled with
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a location invariant described as a constraint on clocks that
may force a transition from the location to be taken. If, for
example, c1 is a clock variable, and the invariant c1 <= 4
is defined in location s0, the automaton is not allowed to
operate in location s0 if c1 > 4.

A transition can be associated with three parts; (i) con-
straints on clocks and variables specified by a guard g,(ii)
reset clock values and change variable values with action a,
and (iii) communicate with other automata by synchroniz-
ing on global channels.

To send data on channel x (! is the notation for send),
another automaton must simultaneously receive the mes-
sage on the same channel (? is the notation for receive).
Synchronizing transitions imply parallel composition of two
automata. If the channel is defined as a broadcast chan-
nel, several automata may receive a message sent by one
automaton simultaneously.

In Figure 1, Automaton1 and Automaton2 synchronizes
on channel E1 when Automaton1 is in location S1 simulta-
neously as Automaton2 is in location P1. During the transi-
tion, Automaton1 sends the content of the variable my mess
to Automaton2 by assigning my mess to the global variable
message read by Automaton2.

In a network of timed-automata modelling a system in Up-

paal, the order in which different automata perform their
transitions may be controlled by attaching different priori-
ties to the automata.

2.2.2 Analyzing models inUppaal

Given an Uppaal model of a system, model-checking can
be performed by specifying the properties needed to be checked
in CTL (computation tree logic) [3].

The syntax for describing that process (automaton) P has
property i is P.i where i can be a location, a variable or a
clock defined in automaton P. Given a state formula, for
example, P.i < 5, the path formula E <> P.i < 5 (E<>
is the syntax for ∃♦ in Uppaal) is used to check whether
there exists a path where i is less than 5 in process P.

The result of querying the model is either that the prop-
erty is satisfied or not satisfied. The property can quantify
over specific states or over a trace of states. It is, for ex-
ample, possible to ask if variable x will always have a value
less than 5 in location S1 in process P (A[]P.S1 and x < 5)
or if it is possible to reach location S2 within 3 time units
(E <> P.S2 and globalClock < 3).

Uppaal supports a subset of CTL for expressing proper-
ties. In some cases, an additional test-automaton needs to
be provided to be able to express the desired property [22].
The test-automaton must be constructed so that it is only
possible to reach a designated state in the test-automaton
if the questioned property is satisfied in the original model.
For an in depth description and tutorial on the capacity of
model-checking in Uppaal we refer to [20].

3. REX
The Rule and Event eXplorer (REX) utilizes the capa-

bility of verifying systems in Uppaal. REX automatically
transforms specifications of rule based systems and property
specifications to timed-automata and thereby allows seam-
less verification of composite events and rules in Uppaal.

3.1 Rule specification
The rule paradigm supported in REX is event condition

Figure 2: Example of a property table for an event.

action (ECA) rules. The most expressive part of a rule in
REX is the event part, allowing REX to be utilized for ana-
lyzing CEP specifications with or without support for trig-
gering rules.

In REX, an ECA rule is built up by four different items.
Besides the event, condition and action items, an additional
item is used named DataObject. A DataObject is an ab-
straction of, for example, a variable, a sensor or a tuple in
a database. A DataObject can trigger an event, be read by
a condition or changed in the action part of a rule.

The set of rules, events, conditions, actions and DataOb-
jects in REX are graphically viewed in tree structures (one
tree for rules, one for events etc.). When an item in a tree
structure is selected, a property table is viewed showing the
properties of the selected item. An example of a property
table for an event is shown in Figure 2.

3.1.1 Event
When a new event is created, properties of the event are

specified in the new events property table. Each event must
have a unique name (the type of the event). When a new
event type is created, it is available to be chosen as an initia-
tor or terminator for a composite event or as the triggering
event in a rule property table.

REX supports transformations of events from REX to Up-

paal of both primitive and composite events. Primitive
events can be time events, triggered on a definite time or
a time relative to some other occurrence, an external event
(e.g. sensor event) or internal event (e.g. update of a tuple
in a database). The operators currently supported for com-
posite events are Times(n,E) (triggered after n occurrences
of event type E), sequence, conjunction, disjunction, non-
occurrence, delay, and a sliding window type which can be
constructed to perform some operation and leverage result
over a sliding time window.

The consumption policies currently supported are recent
and chronicle with or without expiration times and with
or without parameters and filters. Filters can be used to
model parameter matching, i.e. that events are only seen
as contributing events if a certain parameter has a specific
value.

52



3.1.2 DataObject
The DataObjects in REX represent abstractions of any-

thing that can be updated by an action, read by a condition
or used as an event parameter. A DataObject in REX is a
first class object keeping associations to the events it trig-
gers when it is updated, conditions reading it and actions
that can alter its value.

Since REX utilizes Uppaal for model-checking, and the
variable types supported in Uppaal are integer, clocks, boolean
and arrays of the previous types, DataObjects are also lim-
ited to be of these types.

A DataObject can be chosen to trigger an event when it is
updated, be read by a condition or be updated by an action.
For each DataObject, the property table shows which events
are triggered by this DataObject, the conditions that read
the DataObject and the actions that may alter the DataOb-
ject.

3.1.3 Condition
The different types of conditions that can be analyzed in

the current version of REX is limited to expressions over
integer values and data objects. (e.g. dataobject1 < 4).
The set of operators supported in conditions are {<, >,==
, <=, >=, ! =}.

3.1.4 Action
The action part of an ECA rule can often execute an arbi-

trary sequence of code. In REX, functions possible to write
in Uppaal is supported (e.g. for loops and if statements). A
data object can be assigned an arbitrary integer or another
data object. Additionally, simple functions can be written
as actions, for example, starting a new task with a loop in-
creasing the value of a data object each time unit during an
interval.

If the execution time of the rules action part is known,
it can be specified in REX and this information will be in-
cluded in the model. If the execution time is not specified
it is assumed that the time it takes to execute the action is
irrelevant for the analysis.

3.2 Transformation approach
The result of transforming a specification from REX to

Uppaal is a timed-automaton model representing the be-
havior of the specified set of rules. The automaton can be
divided into three different parts; environment, event com-
poser and rule executer.

The environment is not a part of the specified rules, but
it needs to be included in the timed-automaton model since
events occurring in the environment affect system behav-
ior. The different parts of the model are described in the
following subsections.

3.2.1 Environment
The run-time behavior of the system is dependent on the

time and order in which primitive events arrive from the
environment. Independently of type of source (e.g. sensor
activation, user input etc.), primitive events stemming from
the environment are modelled as a channel in one or several
dedicated environment automata.

The default environment automaton created by REX is
an automaton where all specified primitive events occur in
non-deterministic time and order and keep on occurring in-
finitely. However, REX allows users to tailor the environ-

Initial

Triggered

Composing

Ea?
OEa++,
Estate=COMPOSING

Eb?

Estate=TRIGGERED

Ea?
OEa++,
Estate=COMPOSING

OEa>IEa
Estate=COMPOSING

OEa==IEa

E!
IEa++,IEb++,
Estate=TRIGGERED,
Ec++

Eb?

Figure 3: Example of composite event E = Ea; Eb in

chronicle consumption policy.

ment automaton to specific needs by restricting the time and
order of event occurrences or specify an upper limit for the
number of rule triggerings for events. It may, for example,
be the case that event E1 can not occur before event E2 and
if the model-checker is not provided with this information,
it may find combinations of events or rule executions that
can never occur in the actual environment. A specific time-
sequence can be specified for each primitive event containing
a sequence of time points when the primitive event occur.
Apart from the benefit of controlling the environment under
test, restricting the order in which events can occur decrease
the search space for the model-checker.

3.2.2 Event Composer
The event-composer consists of several automata where

each automaton is modelling the behavior of a composite
event type. Each composite event type possible to spec-
ify in REX has a corresponding timed-automaton operator
pattern modelling the behavior of that composite event in
a specific consumption mode. When a composite event is
transformed to Uppaal, a new automaton is created by in-
stantiating the operator pattern modelling the composite
event. A timed automata operator pattern listens to chan-
nels representing contributing event occurrences and sends
on a channel representing the composite event occurrence
when the event occurs.

An example of a timed automaton modelling the behavior
of the composite event E = Ea; Eb in chronicle consumption
policy is shown in Figure 3. An event of type E is generated
when there is an unused occurrence of type Ea followed by
an unused occurrence of type Eb in the event history.

The automaton starts in location Initial. If an event of
type Eb occurs in location Initial the automaton remains in
the initial location since Eb is not initiator in E. However,
if an event of type Ea occurs the automaton enters loca-
tion Composing. The variable Estate is tracking the location
changes of the composite event. The counter OEa counts
number of occurrences of the initiator type Ea since each
terminator Eb must be matched with an initiator that has
occurred but is not used yet.

If there is a new occurrence of type Ea when the automa-
ton is in location Composing, the counter OEa is increased,
however the automaton remains in location Composing. If
an event of type Eb occurs, the automaton enters location
Triggered. In location Triggered there is an unused occur-
rence of both Ea and Eb in the event history and a new
occurrence of the composite event E is generated (the au-
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Initial Activated

Executing

Processing
extime <= time

e3==0
E3!
e3++

E1?

!(x4==3)

e2==0
E2!
e2++

x4==3
extime = 0extime == time

e2==1&&e3 ==1
e2=0,e3=0

Figure 4: Example of a rule automaton.

tomaton is synchronizing on channel E!). The variables IEa

and IEb counting the number of used occurrences of type Ea

and Eb are increased since, in chronicle consumption policy,
the generated composite event is consuming the contributing
event occurrences. If there exist one or more unused occur-
rences of type Ea in the event history (guard OEa > IEa is
true) the automaton takes the transition to Composing wait-
ing for a new event of type Eb to occur, else, the automaton
takes the transition back to Initial.

Additional examples and in depth descriptions of timed
automata patterns simulating the behavior of different com-
posite events can be found in our previous work [15, 16].

3.2.3 Rule Executer
The rule execution model consists of at least one automa-

ton for each rule in the rule set. Uppaal provides the abil-
ity to set different priorities on different automata implying
that a rule automaton gets the same priority as the rule it
is modelling.

An example of a rule automaton is shown in Figure 4. The
automaton starts in location Initial. When the event trigger-
ing the rule (event E1) occurs, the rule automaton synchro-
nizes on the events channel and enter location Activated.
When a rule is activated, the condition is immediately eval-
uated (x4 == 3). If the condition is evaluated to true, the
action part of the rule is executed. The rule in the example
has a specified execution time attached to its action. The
execution time is modelled as a local clock which is reset
(extime = 0) when the rule leaves location Activated. In lo-
cation Processing, the invariant (extime <= time) and the
guard on next transition (extime == time) ensure that the
execution time is modelled properly.

If executing the action part of the rule is causing new
events to be generated, the rule synchronizes on the channels
representing the triggered events (E2! and E3! in Figure 4).
The Executing location is marked as committed implying
that no time passes while simulating that the new events
are generated.

Depending on how rules are processed in the forthcoming
platform for execution, the rule automaton may have to be
constructed differently. If, for example, a rule can generate
the same type of events that it is triggered by, it will not
be triggered by that event in the previous model since the
rule is in location Executing when the event is generated.
In such cases, the action part of the rule is be modelled in
a separate automaton that is started by a synchronization
when the rules condition is true.

4. VERIFICATION PROPERTIES
Given a timed-automaton specification of a system, cer-

tain kinds of errors can be detected by verifying proper-
ties in a model-checker. However, the verification proper-
ties needed to be checked is often application specific. This
makes it impossible to develop a set of predefined properties
to run for verifying all different applications.

For example, in a scenario where the specification models
an application with the aim of detecting fraud-attempts in
a banking system, the application is required to generate a
fraud alarm when a certain sequence of events has occurred.
The requirement that the alarm will always be raised when
a suspicious sequence of events occurs is one of many prop-
erties that needs to be verified in that system.

In a second scenario, the specification models a control
application monitoring the temperature in a tank where it
is paramount that the temperature remains within a spe-
cific interval. In such a system, practitioners need to verify
that the system reacts correctly to a specific sequence of
temperature readings.

4.1 Verification issues
REX supports automatic transformation of rule based

specifications into timed automata. However, in order to uti-
lize the generated timed-automaton specification for model-
checking, verification properties specific to the specified set
of rules must be formulated. Since the target tool for the
transformation in REX is Uppaal, the system requirements
must be specified in the subset of CTL supported by Up-

paal.
Specifying a correct CTL question for a rule or event-

based property is not trivial. First, it requires that the
practitioner is familiar with CTL. Additionally, specifying
correct verification questions requires detailed knowledge of
the timed automaton model. Hence, in the case of REX,
one of the main ideas of the tool is to be able to perform
formal analysis without detail knowledge of the actual timed
automaton model.

Our approach to overcome these difficulties is to support
specification of properties in the same level of abstraction
as the CEP specification. The properties possible to specify
are based on the rules and events currently specified in the
system together with predefined property patterns.

According to Dwyer et al.[14], most of the property spec-
ifications that practitioners write tend to reappear as pat-
terns in different specifications. Based on that observation,
Dwyer et al. [13] present a set of property patterns where ap-
plication specific states can be included in predefined spec-
ification patterns.

Since, as far as we know, no previous work has addressed
the issue of what properties are most common in a CEP ap-
plication, we utilize the patterns in [13] to achieve a struc-
tural approach for specifying a useful set of verification prop-
erties in a high-level language. The transformation from
properties to specific CTL questions is automated by REX.
The patterns and transformation process is described in the
following subsections.

4.2 Property Patterns
Dwyer et al. [13] propose a set of property patterns to fa-

cilitate the use of finite-state verification in practice. Their
aim is to reuse property specifications for finite-state verifi-
cation by defining a collection of simple patterns that can be
transformed to, for example, CTL (Computation tree logic),
LTL (Linear temporal logic) or regular expressions.
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Figure 5: Scopes, i.e. duration of execution.

Each pattern has a scope, which is the extent of the pro-
gram execution over which the pattern must hold. There
are five scopes as shown in Figure 5. The scopes are defined
as follows: global (property holds during entire program ex-
ecution), before ( property holds up to a given state), after
(property holds after a given state), between (property holds
in an interval between two states) and after-until (like be-
tween but the end state is not required).

The following patterns are presented in Dwyer et al.[13],
(capital letters, e.g. P,Q,R,S represent states).

• Absence describes that the defined scope is free from
state P

• Existence describes that a state P occur within the
scope

• Bounded Existence describes that a state P must occur
k times within the scope

• Universality describes that a state P is true through-
out the scope

• Precedence describes that a state P must always be
preceded by state Q in the scope

• Response describes cause-effect relationships. An oc-
currence of the state P must be followed by an occur-
rence of state Q.

• Chain Precedence sequence of state P1...Pn must al-
ways be preceded by sequence of state Q1...Qm in the
scope

• Chain Response sequence of state P1...Pn must always
be followed by a sequence of state Q1...Qm in the scope

4.3 Verification in REX
The property patterns are used for structuring the high-

level property language in REX. One of the issues with
transforming a property specified in REX to CTL is that
the requirement properties for the REX system are likely
to include both state information and event occurrences. It
may, for example, be interesting to verify whether the event
of type E shown in Figure 3 always is in state Composing

(i.e. the transformed automaton is in location Composing)
simultaneously as another event of type E5 occurs. For the

Figure 6: Example of Predicate Tree.

user of REX, defining states and event occurrences are per-
formed by selecting a leaf in a tree structure. However,
in the transformation process, event occurrences and states
are treated differently. In the following, the lower-case let-
ters (e.g. p, q, r, s) denotes predicates instead of states since
event occurrences are not states, however, the fact that an
event occur may be characterized by a predicate.

4.3.1 State definitions in REX
In REX, a rule can be in one of three different states;

Initial, Activated and Executing. The rule states defined in
REX are represented as locations in the automaton. A rule
is said to be in Initial state in REX when its automaton
model is in location Initial, in Activated state when its au-
tomaton is in location Activated etc. (see example of a rule
automaton in Figure 4).

A composite event in REX may be in state Initial, Com-
posing or Triggered. The event states in REX are repre-
sented as locations in the automaton representing the be-
havior of the composite event (see example of a transformed
automaton in Figure 3).

The fact that an event occurs (e.g. when the automaton
in Figure 3 is synchronizing on channel E!) is denoted Occur
in Figure 6 and this is when a new instance of an event is
generated.

A predicate can be defined by combining the states of
different rules, states of events, event occurrences and values
of DataObjects in the specification.

REX supports a graphical description where predicates
are chosen in a tree structure. A tree structure for select-
ing predicates to a property specification is exemplified in
Figure 6. The predicate tree supports a structured method
to choose all different predicates available for the specified
items. The available predicates are modelled as leaf nodes in
Figure 8. For each DataObject leaf, the predicate is repre-
sented by an expression ( DataObject ∼ x where x ∈ N and
∼∈ {=, ! =, <, >, <=,>=}). If DataObject is chosen in the
predicate tree, a new dialog box appears, allowing the user
to specify constraints on rule counters, event parameters or
DataObjects included in rule-conditions or rule-actions.

Once the predicates are defined, a pattern is instantiated
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Figure 7: Example of Property selection table.

by selecting a set of choices in a pattern-property table.
First, the pattern and scope of choice is selected. Based
on the choice of pattern and scope, one, two, three or four
defined predicates can be chosen to represent p, q, r and s in
the pattern before the model-checking can start.

If, for example, pattern P Absence and scope Before R is
selected as shown in Figure 7, then the predicates p and r are
selected in comboboxes containing all previously specified
predicates.

4.4 Transformation of properties
In Dwyer et al.[13] the property patterns are defined in

CTL as well as LTL and regular expressions. However, the
transformation to Uppaal is not straightforward since the
current version of Uppaal does not support verification of
liveness properties in models with priorities.

A test-automaton (AT ) must be generated by REX to
model and verify liveness properties. In order to achieve
a uniform transformation method, all property transforma-
tions are modelled with a test-automaton AT .

Automaton AT contains specific locations named Satisfied
and Fail which are only reachable if the timed-automata rep-
resentation of the CEP application satisfies (or not satisfies
for contradiction proofs) the specified property.

Automaton AT is decorated with guards modelling the
predicates that must be true for the property to be satisfied.
Additionally, AT has the highest priority of all generated au-
tomata to ensure that the guarded transition is always taken
when the guard becomes true before some other automata
can change the guard to false.

In the following subsections, transformations from predi-
cates to guards is described followed by a description of how
the patterns Absence and Response are transformed for the
different scopes.

4.4.1 Transforming predicates to guards
The OCCUR predicate is transformed to a synchroniza-

tion in the test automaton while all other predicates are
transformed to conjuncts in guards.To represent the infor-
mation that an item is in a specific state, a state variable is
used for tracking the items state (see section 3.2.2). For ex-
ample, the predicate En.INITIAL characterizing that event
En is in state Initial is transformed to Enstate == Initial.

DataObjects in REX can be global variables used in con-
ditions or actions as well as parameters in events or coun-
ters counting the number of occurrences of specific items.
All DataObjects are transformed to variables in Uppaal,
hence DataObject expressions are already in a valid format
for guards.

The CTL experssion generated for the model-checker is

DataObject

EXECUTING

ACTIVATED

INITIAL

TRIGGERED

OCCUR

COMPOSING

INITIAL

DataObject

TRIGGERED

OCCUR

INITIAL

DataObject

Composite

Primitive

global DataObject

Rule

Event

Figure 8: Tree modelling possible predicates to

choose.

denoted ϕ. For properties that require ∃2,∀♦ or → a finite
event sequence is required since these expressions can not
be used with prioritized models.

If a finite event sequence is required, the user of REX is
asked to define an upper limit of the number of generated
primitive events in the model. The stop state named θ is
a CTL property specifying that all rules specified in the
system under test are in location Initial, all primitive events
in the environment have reached their maximum number of
triggerings and none of the composite events are in location
Triggered. Hence, the stop state is a deadlock where no more
events will occur and all rules have finished executing.

Most of the presented properties are modelled as a con-
tradiction proof. This means that a satisfied result from
Uppaal is a non-satisfied result on the property asked in
REX and vice versa. The user of REX is not concerned of
whether the proof is transformed to a contradiction proof or
not.

In the following sections, the AT and ϕ for verifying prop-
erties combined by the Absence and Responds pattern in all
different scopes are presented. All predicates p, q, r, s are
transformed to conjuncts in guards p′, q′, r′, s′.

4.4.2 Example application
A subset of an example application for controlling pres-

sure and temperature in a tank is used for exemplifying the
use of property verification. The tank has a valve that can
be opened or closed to regulate pressure and heaters and
coolers for regulating temperature. The valve is opened by
assigning value OPEN to variable valve and closed by as-
signing CLOSE to the same variable.

The event stream read by the application contains events
of type Et(tmp) and Ep(press). When an event of type
Et(tmp) or Ep(press) occurs, a composite event Etp(tmp, press)
is generated, forwarding the parameters tmp and press re-
trieved from its contributing events.

Events of type Etp(tmp, press) trigger rules of type RvOpen.
When RvOpen is triggered, the condition tmp ∗ press >
MAX is evaluated where MAX is a predefined maximum
value. If the condition evaluates to true, variable valve is
set to OPEN implying that a valve should be opened to
decrease the pressure in the tank. A sensor is attached to
the valve signaling EvOpened when the valve is opened and
EvClosed when the valve is closed.
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Figure 9: AT for Pattern: P Absence,

Scope: Global

The rule RvClose is triggered by Etp(tmp, press). The
condition in RvClose checks if tmp ∗ press < MIN . If the
condition evaluates to true, variable valve is set to CLOSE
implying that the valve should be closed to increase the pres-
sure in the tank.

The rules Rdecrease and Rincrease are triggered each time
an event of type Et(tmp) occurs. If the temperature is above
10000 and the valve is set to open, the temperature should
be decreased. However, if the temperature is less than 5000
and the valve is closed, the temperature should be increased.

The application is specified in REX and transformed to
Uppaal. All rules are transformed according to the method
exemplified in Figure 4 and the composite event Etp is trans-
formed to a specific automaton modelling conjunctions in re-
cent consumption policy. The example application consists
of the following events and rules:

EvOpened Signalled by sensor when valve is opened.

EvClosed Signalled by sensor when valve is closed.

Et(tmp) Triggered by sensor reading temperature periodi-
cally. Parameter tmp represent current temperature.

Ep(press) Triggered by sensor reading pressure periodically.
Parameter press represent current pressure.

Etp(tmp, press) is a conjunction in recent policy
Etp(tmp, press) = Ep(press)

V

Et(tmp)

RvOpen is an ECA rule defined as follows:
Event: Etp(tmp, press),
Condition: tmp ∗ press > MAX,
Action: valve = OPEN

RvClose is an ECA rule defined as follows:
Etp(tmp, press),
Condition: tmp ∗ press < MIN ,
Action: valve = CLOSE

Rdecrease is an ECA rule defined as follows:
Et(tmp),
Condition: tmp > 10000 and valve == OPEN ,
Action: decreaseTmp()

Rincrease is an ECA rule defined as follows:
Et(tmp),
Condition: tmp < 5000 and valve == CLOSE,
Action: increaseTmp()

4.4.3 Pattern: P Absence, Scope: Global
If P Absence is satisfied in scope Global it implies that

predicate p is never satisfied during the entire execution.
The automaton AT shown in Figure 9 is generated to-

gether with the specified system and the CTL expression
ϕ = ∃♦AT .Fail is run to verify the property.

If guard p′ becomes true, AT takes the transition to loca-
tion Fail. However, if p′ remain false, AT remains in location

Satisfied Initial FailWaiting

p’

r’ p’ r’

Figure 10: AT for Pattern: P Absence,

Scope: Before R

Waiting FailInitial

p’ s’

p’s’

Figure 11: AT for Pattern: P Absence,

Scope: After S

Initial. Hence, if it is possible to reach AT .Fail, predicate p
is not absent in the global scope.

If, for example, p is defined as Rincrease.EXECUTE and
tmp > 6000, then P Absence Global is satisfied if the au-
tomaton modelling Rincrease never is in location Executing

simultaneously as the value of the DataObject representing
temperature is above 6000.

4.4.4 Pattern: P Absence, Scope: Before R
Selecting the P Absence pattern together with the Before

R scope creates a property that is satisfied if predicate p is
never satisfied before predicate r.

The generated AT for property P Absence Before R is
shown in Figure 10. AT is created as a contradiction proof
where ϕ = ∃♦AT .Fail. A non-satisfied result from the
model-checker implies that p is absent before r is satisfied.
Note that the property only test whether p is absent before
r is satisfied for the first time during execution.

If p is defined as Etp(tmp, press).COMPOSING and r is
defined as Et(tmp).OCCUR, a satisfied result on the prop-
erty P Absent Before R imply that Etp(tmp, press) will not
reach state Composing before Et(tmp) occur. In the example
application, this implies that Et(tmp) is never the initiator
of the first event occurrence of type Etp(tmp, press).

4.4.5 Pattern: P Absence, Scope: After S
Selecting the Absence pattern together with the After S

scope creates a property that is satisfied if p is never satisfied
after s is satisfied.

The generated test-automaton AT for property P Absence
After S shown in Figure 11 together with ϕ = ∃♦AT .Fail
forms a contradiction proof. Note that the property does
not check whether p is satisfied before s or not, only if p is
satisfied after s is satisfied for the first time.

If s is defined as RvOpen.EXECUTING and p is defined
as EvOpened.OCCUR, a satisfied result on the property P
Absent After S imply that EvOpened is not triggered by ex-
ecuting the action of RvOpen.

4.4.6 Pattern: P Absent, Scope: Between R and S
Selecting the Absence pattern together with the scope Be-

tween R and S creates a property that is satisfied if p is never
satisfied in an interval starting when r is satisfied and ending
when s is satisfied.

The generated AT is shown in Figure 12 and ϕ = ∃♦-
AT .Fail. The verification property is a contradiction proof.
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Figure 12: AT for Pattern: P Absent,

Scope: Between R and S
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Figure 13: AT for Pattern: P Absent,

Scope: After R Until S

To reach AT .Fail, p′ must be true between r′ and s′. The
property does not concern whether p′ is true before r′ or
after s′, only if it is possible for p′ to be true in an interval
starting with r′ and ending with s′.

If p is defined as Et(tmp).OCCUR, r is defined as RvOpen.-
EXECUTE and s is defined as RvClose.EXECUTE, a satis-
fied result received by running the property P Absent Be-
tween R and S imply that Et(tmp) never occur in an inter-
val started when RvOpen execute its action and ending when
RvClose execute its action.

4.4.7 Pattern: P Absent, Scope: After R Until S
The scope After R until S is similar as the between scope,

the difference is that the end of the scope is not closed, i.e.
S is not required to be satisfied.

The AT for P Absent After R Until S shown in Figure
13 together with ϕ = ∃♦AT .Fail forms contradiction proof.
The property is satisfied if p′ is true after r′ and before s′ is
true. However, unlike the between scope, s′ is not required
to be satisfied after p′ for the property to be satisfied.

4.4.8 Pattern: P Responds to Q, Scope: Global
The P Responds to Q Global property is satisfied if when-

ever Q is satisfied, P is eventually satisfied. Note that P can
be satisfied even if Q is not satisfied and that one P can be
responding to several Q.

The generated AT is shown in Figure 14 and the ϕ = ∃♦(θ
and AT .Fail) is a contradiction. If it is possible to reach
AT .Fail simultaneously as the model is in the stop state θ,
p has not always responded to q.

An alternative approach is to require p to respond to q
within a limited time period. The requirement of bounded
response times are previously modelled in [21]. If p is re-
quired to answer q within a bounded response time, a finite

FailInitial

q’p’

p’

q’

Figure 14: AT for Pattern: P Responds to Q,

Scope: Global with a stop state θ.
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Figure 15: AT for Pattern: P Responds to Q,

Scope: Global within time TMAX.

Satisfied
Waiting2

Fail

Waiting1
Initial

p’

q’

r’

r’

r’

q’p’

p’

q’

Figure 16: AT for Pattern: P Responds to Q,

Scope: Before R

sequence of primitive events in the environment is not re-
quired. The AT modelling bounded response time shown in
Figure 15 together with ϕ = ∃♦AT .Fail forms a contradic-
tion proof.

The AT for modelling bounded response times is an ex-
tension of the automaton modelling P responds to Q with a
stop state. The new automaton is extended with a clock, c
and a new location Fail which is reached when the maximum
time between Q and R has expired.

The clock c is reset when q′ is satisfied, the invariant c <=
TMAX in location Waiting ensure that the model will leave
location Waiting within TMAX time units. If p′ has not
responded to q′ within TMAX time units, location AT .Fail
is entered.

If q is defined as Etp(tmp)(press).OCCUR and p is defined
as RvOpen.ACTIVATED, p responds to q within 10 time
units is satisfied if RvOpen is always activated within 10 time
units after Etp(tmp)(press) occurs.

4.4.9 Pattern: P Responds to Q, Scope: Before R
Figure 16 shows the AT for the pattern P Responds to Q

Before R. This property is satisfied if predicate p responds
to predicate q before predicate r is satisfied for the first
time. Note that a satisfied result on this property does not
guarantee that R holds after P has responded to Q, only
that R never holds before P has responded to Q and that P
always respond to Q before R is satisfied for the first time.

The automaton AT for modelling P Responds to Q Before
R is shown in Figure 16. It is an extension of the AT shown
in Figure 14. A new location Fail is introduced which is
reached if property r is satisfied before q is satisfied for the
first time or if r is satisfied between q and r is satisfied. The
location Satisfied is reached if p has responded to q before r
is satisfied for the first time. The CTL property to run is a
contradiction proof where ϕ = ∃♦AT .Fail.

If q is defined as RvOpen.EXECUTING and p is defined as
EvOpened.OCCUR and r is defined as RvClose.ACTIVATED.
Property P responds to Q before R is satisfied if the event
EvOpened occurs in response to RvOpen.EXECUTING before
RvClose is activated for the first time.
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Figure 17: AT for Pattern: P Responds to Q,

Scope: After S within T time units.

4.4.10 Pattern: P Responds to Q, Scope: After S
The After S scope for P Responds to Q require a stop state

or time limit to be specified. Figure 17 shows the AT for the
pattern P Responds to Q After S within TMAX time units.
The AT in Figure 17 is an extension of the AT in Figure 15.
The automaton in Figure 17 is extended with a new initial
location requiring s to be satisfied for the property to reach
location Fail.

A non-satisfied result from running the CTL property ϕ =
∃♦AT .Fail ensure that q became true after s and p failed to
respond to q within the specified time limit.

If p is defined as R1.ACTIVATED, q is defined as E1.-
OCCUR and s is defined as E2.OCCUR, the property P
Responds to Q After S with time limit TMAX = 10 is
satisfied if after the first occurrence of an event of type E2,
R1 always reach state Activated within 10 time units after
E1 has occurred.

4.4.11 Pattern: P Responds to Q, Scope: Between R
and S

The property P Responds to Q Between R and S require
that P responds to Q within a closed interval, i.e. it requires
that in an interval starting with R and ending with S, P
always respond to Q.

The AT in Figure 18 for P Responds to Q Between R
and S is an extension of the AT modelling P responds to Q
Before R.

The Between R and S scope is specified with a stop state
and the generated CTL property is a contradiction proof
for ϕ = ∃♦(AT .Fail) or ((AT .Waiting1 or AT .Waiting2)
and θ).

If r is defined as tmp > 10000 and s is defined as tmp <
10000 and q is defined as Et(tmp).OCCUR and p is defined
as EvalveOpen, a satisfied result on the property P responds
to Q between R and S imply that if a temperature reading
occur when the temperature is above 10000, the valve is
always opened before the temperature is below 10000.

If p is defined as RvOpen.EXECUTE, q is defined as Et.-
OCCUR, r is defined as press > MAX/tmp and s is defined
as press < MAX/tmp a satisfied result on property P Re-
sponds to Q between R and S imply that if the relation
between pressure and temperature is above its max value
(r), an occurrence of the event carrying the temperature
value (q) is responded by RvOpen executing its action open-
ing the valve reducing the relation between temperature and
pressure below MAX value (r).

The P Responds to Q After R Until S property is almost
similar as the P Responds to Q Between R and S property.
The properties are modelled with identical AT , however, the
scope After R Until S does not require that S holds after P
has responded to Q, and hence, the disjunction AT .Waiting2
is removed from ϕ.
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Figure 18: AT for Pattern: P Responds to Q

Scope: Between R and S and

Scope: After R Until S

4.4.12 General properties
Previous research in analysis of rule based systems ad-

dresses general properties that are not covered by the prop-
erty patterns. For example, confluence and termination have
achieved big attention from researchers within the area of
active databases (e.g.[2, 5, 29]). A set of rules is confluent if
the outcome of simultaneously triggered rules is unique and
termination analysis is aiming to ensure that the set of rules
will not continue to trigger each other infinitely.

Verifying confluence in REX is ongoing work. For ter-
mination analysis, an extra automaton is created, initial-
izing rule-conditions to all different permutations of both
true and false values. The extra automaton is run before
the automata modelling rules and events implying that ter-
mination is checked for all different values on conditions.
Verifying termination can be performed in one of two ways
using REX. i) An upper limit of the number of allowed rule
triggerings is specified in REX and the verification property
to ask is whether the maximal number of rule triggerings
can be exceeded by any rule. ii) The reachability property
to ask is whether the model will always reach a state where
all rules and events are in their initial locations. The first ap-
proach is useful if the rules are specified for a system with a
maximum number of consecutive triggerings or if the search
space for the model-checker must be reduced.

Termination analysis for a set of rules specified in REX
is related to previous work performed in termination anal-
ysis for active databases. The issues of detecting whether
the action of one rule triggers other rules and if actions af-
fect condition evaluations of other rules are similar; how-
ever, REX does not deal with the state of a database or
SQL queries. On the contrary, REX provides a rich set of
composite events to be specified decorated with both filters,
parameters and time constraints, a combination that is pre-
viously not considered in the area of termination analysis
for active databases.

4.5 Discussion
REX supports combinations of the property patterns pre-

sented in [13] and application specific predicates. The ap-
proach provides a structured method for defining application
specific verification properties for rule based systems. How-
ever, only relying on the patterns for property verification
has a price, the ease of use is a trade-off against expres-
siveness of properties. If practitioners write CTL properties
directly in Uppaal and construct test automata themselves,
practitioners may construct properties that are more com-
plex and expressive than what is supported by REX. How-
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ever, writing CTL questions and test-automata is an error
prone task [22] which requires that the practitioner fully
understands the generated timed-automaton model.

According to [14], the property patterns cover 92 percent
of the properties that practitioners tend to write for finite-
automata models. However, the defined patterns are not
enough for the purpose of verifying all useful properties of
CEP systems. Previous work has been performed in both
extending [25, 19, 10] and fine tune [27] the patterns defined
in [13] for specific needs. For CEP systems with ability to
define time properties such as expiration times and delays,
the patterns obviously need to be extended with time prop-
erties, for example as proposed in [19].

The event language supported by REX is to a large ex-
tent inspired by Snoop[9]. The aim of REX is to serve as a
platform for implementing ideas for automatic verification
subsuming a large set of event languages. Snoop serves as a
starting point since it contains a set of commonly used op-
erators and well defined consumption policies. However, the
language supported by REX can be extended with any op-
erator whose behavior can be expressed as a separate timed
automaton.

5. STATE OF PRACTICE AND RELATED
WORK

The amount of support for modelling and analyzing design
of CEP specification differs between engines. TIBCO, for
example, supports an UML based modelling approach where
the relationships between events are captured in an UML
based model. The behavior of events are captured by a
state model representing interaction between applications
and services.

Some engines, such as Amit[1], supports developers with a
wizard based authoring tool and ability to simulate the def-
initions for testing purposes while RulePoint have a graph-
ical interface for modelling rules together with support for
logging and process monitoring facilities.

We are aware of that the list of exemplified engines is far
from complete, however, they represent CEP engines with
different approaches for supporting correctness analysis of
the CEP specification. The support currently available for
modelling debugging and testing in CEP engines are com-
plementary to our approach. It is, for example, not possible
to reveal performance of a specific system or monitor ongo-
ing event streams by utilizing REX. Additionally, modelling
a system in REX requires some abstractions to allow for-
mal analysis. On the contrary, it is not possible to perform
exhaustive tests on a system where all different paths of
execution are tested using available test methods. Hence,
REX provides means for detecting relations between events
and rules that would not be detected using other methods
and to check properties that are hard to verify using other
approaches.

Current state of practice use various forms of modelling
techniques, such as UML, and simulations for detecting de-
sign errors. However, this can be an error prone task, since
it can be problematic to detect a design error in a complex
event pattern simply by visualize and test it. Thus, in ad-
dition to being able to visualize and test the complex event
patterns, it should also be possible to formally check for
design errors. Our approach does not replace, but comple-
ments existing modelling and testing approaches.

In Ray and Ray [26] a method is proposed for reasoning
about active database applications using a model checker.
An example is shown where a small set of rules is trans-
formed to a representation of a finite automaton. In short,
each cell in the database is transformed to two variables in
the automaton and each rule is transformed to a Boolean
variable.

The idea of Ray and Ray [26] is similar with the ideas
motivating part of this work, namely utilizing an existing
model checker for verifying a set of rules. However, Ray
and Ray only address a specific execution model with prim-
itive events stemming from updates of cells in an active
database. The transformation from rules to the finite au-
tomata is made manually and the resulting finite automata
representation is very specific for the current set of rules. In
this project a more general approach to the formal verifica-
tion is taken where different execution models are considered
together with composite events and time constraints.

In the area of active databases, previous research has sug-
gested the use of petri-nets for analyzing rule termination
(e.g.[29, 17]). In this work, we take an additional step to-
wards performing model-checking on a set of rules. The
rules possible to express in our work may contain filters, pa-
rameters and composite events with different operators in
different contexts. Additionally, in this paper a method for
defining properties to check is presented.

The correctness properties possible to express in REX are
based on the property patterns defined in [13]. The re-
searchers behind the property patterns has extended the
work to a language framework for expressing correctness
properties of dynamic Java programs [12]. Although part
of this work is based on the patterns specified in [13], this
work is tailored to serve rule based languages and allows
practitioners to express their correctness properties in terms
of rules and events.

6. CONCLUSION
The novelty of this work is an approach for describing

verification properties for CEP systems in a high-level spec-
ification language. Additionally, mappings from the high-
level language to a property possible to formally verify in
the timed-automata based CASE tool Uppaal is presented.

Previous work in rule analysis is focused on general prop-
erties, such as, termination and confluence. The contribu-
tion of this work contains an approach for seamlessly utiliz-
ing the model-checker in Uppaal for formal verification of
both general and application specific properties.

The high-level property specification is implemented in
REX. REX is a research tool supporting graphical specifi-
cation of rule based applications and automatic transforma-
tion of the specification from REX to Uppaal. The ability
to specify and transform CEP applications to Uppaal to-
gether with the ability to specify verification properties in
REX enable non-experts in formal methods to utilize the
power of model-checking.

Our approach aims to lower the threshold for non-experts
in formal methods to analyze specifications in a model-checker
in order to increase software quality. If the application is
modelled in REX, the extra time and expertise needed to
perform formal analysis is decreased. We argue that the ap-
proach of seamlessly including formal verification in a high-
level CASE tool is a feasible approach for increasing the
utilization of formal verification in practice.
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