
TERA: Topic-based Event Routing for peer-to-peer
Architectures∗

Roberto Baldoni
Dipartimento di Informatica e

Sistemistica “A.Ruberti”
Sapienza, Universit«a di Roma

Via Ariosto 25
00185, Roma, Italy

baldoni@dis.uniroma1.it

Roberto Beraldi
Dipartimento di Informatica e

Sistemistica “A.Ruberti”
Sapienza, Universit „a di Roma

Via Ariosto 25
00185, Roma, Italy

beraldi@dis.uniroma1.it

Vivien Quema
LSR-IMAG Laboratory, Sardes

project
INRIA Rhône-Alpes

655, avenue de l’Europe
38334 Saint-Ismier, France

vivien.quema@inrialpes.fr

Leonardo Querzoni
Dipartimento di Informatica e

Sistemistica “A.Ruberti”
Sapienza, Universit«a di Roma

Via Ariosto 25
00185, Roma, Italy

querzoni@dis.uniroma1.it

Sara Tucci-Piergiovanni
Dipartimento di Informatica e

Sistemistica “A.Ruberti”
Sapienza, Universit«a di Roma

Via Ariosto 25
00185, Roma, Italy

tucci@dis.uniroma1.it

ABSTRACT
The completely decoupled interaction model offered by the
publish/subscribe communication paradigm perfectly suits
the interoperability needs of todays large-scale, dynamic,
peer-to-peer applications. The unmanaged environments,
where these applications are expected to work, pose a se-
ries of problems (potentially wide number of partipants,
low-reliability of nodes, absence of a centralized author-
ity, etc.) that severely limit the scalability of existing ap-
proaches which were originally thought for supporting dis-
tributed applications built on the top of static and man-
aged environments. In this paper we propose an archi-
tecture for implementing the topic-based publish/subscribe
paradigm in large scale peer-to-peer systems. The archi-
tecture is based on clustering peers subscribed to the same
topic. The major novelty of this architecture lies in the
mechanism employed to bring events from the publisher to
the cluster (namely outer-cluster routing). The evaluation
shows that this mechanism for outer-cluster routing has a
probability to bring events to the destination cluster very
close to 1 while keeping small the involved number of out-
of-cluster peers. Finally, the overall architecture is shown to
be scalable along several fundamental dimensions like num-
ber of participants, subscriptions, and to exhibit a fair load
distribution (load distribution closely follows the distribu-

∗This work has been partially supported by the RESIST
NoE, funded by the EU, and by the ESTEEM project,
funded by the Italian Ministry of Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20-22, 2007 Toronto, Ontario, Canada
Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

tion of subscriptions on nodes).

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

Keywords
Data Distribution, Publish-Subscribe, Gossip-based algo-
rithms

1. INTRODUCTION
Publish/subscribe is a communication paradigm of grow-

ing popularity for information dissemination in large scale
distributed systems. Participants to the communication can
act both as producers (publishers) and consumers (subscri-
bers) of information. Publishers inject information in the
system in the form of events, while subscribers declare their
interest in receiving some of the published events, issuing
subscriptions. Subscriptions express conditions on the con-
tent of events (content-based model) or just on a category
they should belong to (topic-based model). The paradigm
states that once an event is published, for each subscrip-
tion whose conditions are satisfied by the event (we say that
the event matches the subscription), the corresponding sub-
scriber must be notified. The basic building block of sys-
tems implementing the publish/subscribe paradigm is a dis-
tributed event dissemination mechanism able to bring any
published event from the publisher to the set of matched
subscribers, while completely decoupling their interaction
[13].

While publish/subscribe for managed systems has been
widely studied and various solutions exist in the literature
[21, 9, 6], publish/subscribe for unmanaged systems, like
peer-to-peer systems, is today an active field of research
[11, 3, 27]. In peer-to-peer systems, the event dissemina-
tion mechanism is usually implemented on top of an over-
lay network connecting all user nodes (both publishers and
subscribers). Overlay networks [2, 26] are specifically de-

2

signed to support information diffusion characterized by a
high-level of reliability in large scale and unreliable environ-
ments.

Event dissemination in such systems can be trivially im-
plemented flooding each event in the overlay and then filter-
ing out events that do not match local subscriptions at each
single node. However, the semantics of the publish/subscribe
paradigm can be leveraged to confine the dissemination of
each event only in the set of matched subscribers, without
affecting the whole network (traffic confinement) [23, 3, 27].
This is particularly important when the event matches very
specific interests which have a small number of subscribers
with respect to the total number of nodes.

Even though traffic confinement brings obvious advan-
tages (as it potentially saves traffic in the network), its im-
plementation poses non-trivial problems. Basically, traffic
confinement should be realized through the following three
steps:

1. Interest Clustering. Subscribers should be arranged
trying to cluster those that have common interests. In
this way, once the event reaches one member of the
cluster, its dissemination can be limited to the clus-
ter itself. Ideally, each cluster should contain all sub-
scribers interested in a given event in order to avoid
a loss of reliability (i.e. the capacity of the system to
notify each event to the set of matched subscribers).

2. Inner-Cluster Dissemination. Once the event reaches
one member of the interested cluster, the dissemina-
tion inside the cluster can follow a simple flooding
scheme or more sophisticated routing techniques can
be used to save more traffic [27].

3. Outer-Cluster Routing. An event can be published on
any node, therefore it must be routed from it, to one
node belonging to the target cluster. Note that traffic
confinement is fully satisfied when non-interested sub-
scribers do not receive the event. Then, the goal of
outer-clustering routing is to reach the target cluster
while involving a number of non-interested subscribers
as small as possible.

To the best of our knowledge, current solutions [23, 3,
27] mainly deal with the first two points, i.e. the problem
of clustering all subscribers with common interests together
and the problem of how to efficiently disseminate the event
inside the cluster. Less attention has been devoted to the
routing from the publisher to the target cluster. In this pa-
per we propose a novel architecture, namely TERA (Topic-
based Event Routing for peer-to-peer Architectures), for the
implementation of topic-based publish/subscribe systems in
large-scale, unmanaged peer-to-peer environments and we
specifically evaluate the impact of the TERA outer-cluster
routing in getting traffic confinement.

More specifically, TERA realizes interest clustering by in-
stantiating a dedicated overlay network for each topic (topic
overlay) and including in it all subscribers subscribed to
that topic. Then, in order to realize outer-cluster routing,
each node is equipped with an access point lookup table (of
limited size) containing a set of pairs < topic, subscriber >,
in which the subscriber represents an access point for the
cluster it belongs to. Thanks to the mechanisms employed
by TERA to update these tables, topics are uniformly rep-
resented and, given a specific topic, each subscriber of that

topic has the same probability to appear as an access point.
These properties hold even with uneven interest distribu-
tions among topics, i.e. when some topics are more popular
than others. Outer-cluster routing of an event follows a
random walk in order to find an access point for the tar-
get topic. We show how, thanks to a uniform distribution of
topics and subscribers in lookup tables, routing of each event
from the source node to the target overlay has a probability
of successes close to 1 with random walks involving a small
number of outer cluster nodes and a reasonable access point
lookup table size. As regards inner-cluster dissemination,
we evaluate the performance of a simple flooding protocol
inside the topic overlay network we use. However, more so-
phisticated mechanisms could be embedded in TERA as the
ones proposed in [23, 27] to reduce traffic of the inner-cluster
dissemination.

Our evaluation also shows that mechanisms employed in
TERA have a cost of dissemination per-event that scales
with respect to the number of nodes constituting the system,
the number of subscriptions/topics issued, and the event
publication rate. Finally, TERA is shown to fairly distribute
the system load according to the number of subscription
currently issued by each participant.

The paper is organized as follows: Section 2 gives an
overview on TERA’s infrastructure, while Section 3 details
its internal architecture. Section 4 evaluates, with both an-
alytical and experimental methods, TERA’s characteristics
with respect to the event dissemination mechanism by traf-
fic confinement and the overall system’s scalability. Section
5 offers an overview on related works, and, finally, section 6
concludes the paper.

2. AN OVERVIEW OF TERA
TERA is a topic-based publish/subscribe system designed

to offer an event dissemination service for very large scale
peer-to-peer systems. Each published event is “tagged” with
a topic and is delivered to all the subscribers that expressed
their interest in the corresponding topic by issuing a sub-
scription for it. The set of available topics is not fixed, nor
predefined: applications using TERA can dynamically cre-
ate or delete them.

2.1 Architecture
Nodes participating to TERA are organized in a two-

layers infrastructure (ref. Figure 1(a)). At the lower layer,
a global overlay network connects all nodes, while at the up-
per layer various topic overlay networks connect subsets of
all the nodes; each topic overlay contains nodes subscribed
to the same topic. All these overlay networks are separated
and are maintained through an overlay management proto-
col (detailed in the next Section).

Subscription management and event dissemination in
TERA are based on two simple ideas: nodes that want to
subscribe to a topic t are required to join the corresponding
topic overlay that connects at the upper layer all nodes sub-
scribed to t (interest clustering). When an event e, tagged
with topic t, is published by a node (not necessarily sub-
scribed to t), it is first routed at the lower layer to an ac-
cess point for topic t, i.e. one of the nodes subscribed to
t (outer-cluster routing); this node then diffuses e at the
upper layer in the topic overlay associated with topic t, in
order to deliver it to all the other subscribers of t (inner-
cluster dissemination). In this way the traffic generated for

3

Topic overlay

Node

Node used
as access point

Event routed
in the system

General overlay

(a) System overview

TERA

Applications

Overlay Management Protocol

Network

Event Management Subscription Management

Inner-cluster dissemination

Partition Merging

Access Point Lookup

Peer Sampling

Size Estimation

subscribe unsubscribe publish notify

(b) Node architecture

Figure 1: The TERA publish/subscribe system.

event dissemination remains confined within the target topic
overlay.

Figure 1(b) depicts a high level overview of a node’s in-
ternal architecture. TERA is a software layer that offers to
applications running on the same node an interface to sub-
scribe/unsubscribe topics, publish information and be noti-
fied of incoming events.

TERA’s internal components (Event Management, Sub-
scription Management, Access Point Lookup, Partition Merg-
ing, Inner-Cluster Dissemination), detailed in Section 3,
working on distinct nodes interact through an existing net-
work infrastructure, that is usually represented by the In-
ternet, and leverages services provided by an overlay man-
agement protocol (Size estimation, Peer sampling) detailed
in the following Section.

2.2 The Overlay Management Protocol
An overlay network is a logical network built on top of

a physical one (usually the Internet), by connecting a set
of nodes through some links. A distributed algorithm run-
ning on nodes, known as the overlay management proto-
col (OMP), takes care of managing these logical links. Each
node usually maintains a limited set of links (called view)
to other nodes in the system. The construction and mainte-
nance of the views must be such that the graph obtained by
interpreting nodes as vertices and links as arcs is connected.
Indeed, this is a necessary condition to enable communica-
tion from each node to all the others.

TERA requires the overlay management protocol to im-
plement (1) a peer sampling service, able to provide uniform
node samples, and (2) a size estimation service. Numer-
ous protocols exist today that can be employed to main-
tain a peer-to-peer overlay network. However, protocols best
suited to provide uniform samples of nodes are those based
on the view exchange technique [2, 26]. These protocols peri-
odically update views maintained at each node by swapping
random view entries between randomly chosen nodes. The
view exchange technique lets the protocol build and main-
tain overlay topologies that closely resemble random graphs.

Consequently, these overlays exhibit high connectivity and
low diameter, which make them resilient to massive node
failures, and adequate topologies for implementing efficient
broadcast primitives. Concerning the size estimation ser-
vice, many protocols working on view exchange-based over-
lay management protocols have been proposed [16, 18, 19,
20, 22]. Note that TERA also requires the OMP to expose
a primitive that can be used to force a view exchange with
some other node.

3. IMPLEMENTATION DETAILS
TERA’s internal structure is made of five main compo-

nents (Figure 2): Event Management, Subscription Manage-
ment, Access Point Lookup, Partition Merging and Inner-
Cluster Dissemination. In this section we describe the de-
tails of their implementation with the exception of the Inner-
Cluster Dissemination component. In this paper we will
adopt a simple flooding protocol for this component to eval-
uate TERA (Section 4). Note that many existing solu-
tions [12, 14, 7, 27] can be adopted accordingly to the spe-
cific application requirements. A pseudo-code description of
each detailed component can be found in [5].

Subscription Management.
The Subscription Management component handles new

subscriptions and unsubscriptions, updating the Subscrip-
tion Table — a data structure containing a list of couples
< t, i >, where t is a topic the node is subscribed to, and i is
the corresponding topic overlay identifier1 — and instruct-
ing the overlay management protocol to join/leave topic
overlay networks associated to subscribed/unsubscribed top-
ics.

A new subscription for a topic, causes the Subscription
Management component (i) to add and entry for the topic
to the Subscription Table, and (ii) to ask the overlay man-
agement protocol to join the corresponding topic overlay.

1The identifier is generated by the node that instantiated
the topic overlay.

4

To fulfill the latter point, the overlay management proto-
col needs at least one identifier of a node already part of
the topic overlay. This identifier can be obtained through
a lookup executed on the Access Point Lookup component.
Note that, if no identifier is returned, the node instantiates
a new topic overlay2.

Unsubscriptions are handled by removing an entry in the
Subscription Table and asking the overlay management pro-
tocol to leave the corresponding topic overlay.

The Subscription Management component is also respon-
sible for periodically advertising the list of currently sub-
scribed topics to a set of nodes randomly chosen in the gen-
eral overlay. For each topic, the advertised list contains the
corresponding topic overlay identifier and an estimation of
the topic popularity. The topic popularity is estimated by
the size estimation service provided by the overlay manage-
ment protocol running in the corresponding topic overlay.

The list is advertised to D nodes whose identifiers are ob-
tained from the peer sampling service provided by the over-
lay management protocol; this guarantees that the list will
be advertised to a set of nodes randomly chosen from the
whole system population. The received advertisements are
used to update data structures in the Access Point Lookup
and Partition Merging components (more details will be
given in their corresponding sections).

Event Management.
The Event Management component implements the main

logic required for publishing and diffusing events, as well
as for notifying subscribers. An event dissemination starts
as soon as an application publishes some data in a topic.
It is done in two steps: the event is first routed to a node
subscribed to the topic (this node acts as an access point for
it); then, the access point diffuses the event in the overlay
associated to the topic. The first step is realized through
a lookup executed on the Access Point Lookup component:
if the lookup returns an empty list of node identifiers, the
node discards the event.

When a node subscribed to the topic receives an event
for which it must act as an access point, it uses the broad-
cast primitive provided by the Inner-Cluster Dissemination
service to forward the event to all nodes belonging to the
corresponding topic overlay. When a node subscribed to
the topic receives a broadcasted event, it notifies the appli-
cation.

Access Points Lookup.
The Access Point Lookup component plays a central role

in TERA’s architecture as it is used by both the Event Man-
agement and Subscription Management components to ob-
tain lists of access points identifiers for specific topics. Its
functioning is based on a local data structure, called Ac-
cess Point Table (APT), and a distributed search algorithm
based on random walks.

Each APT is a cache, containing a limited number of en-
tries, each with the form < t, n >, where t is a topic and n
the identifier of a node that can act as an access point for t.
APTs are continuously updated following a simple strategy:
each time a node receives a subscription advertisement for

2Different overlays might thus be created for the same topic,
which is handled by the merging mechanism described later
in the paper.

topic t from a node n, it substitutes the access point identi-
fier for t if an entry < t, n′ > exists in the APT, otherwise
it adds a new entry < t, n > with probability 1/Pt, where
Pt is the popularity of topic t estimated by n and attached
to the subscription advertisement. When an APT exceeds
a predefined size, randomly chosen entries are removed.

As a consequence of this update strategy, APTs have the
following properties:

1. APT entries tend to contain non-stale access points,

2. inactive topics (i.e. topics that are no longer subscribed
by any node) tend to disappear from APTs,

3. each access point is a uniform random sample of the
population of nodes subscribed to that topic,

4. the content of each APT is a uniform random sample
of the set of active topics (i.e. topics subscribed by at
least one node),

5. the size of each APT is limited.

The first property is a consequence of the way new entries
are added to APTs; suppose, in fact, that there is only one
topic t in the system subscribed by two nodes, na and nb;
suppose, moreover, that, at certain point of time, nb unsub-
scribes t. Starting from that moment, only na will advertise
t, therefore nodes containing an entry < t, nb > will eventu-
ally substitute it with entry < t, na >, as the uniformity of
node samples provided by the peer sampling service guar-
antees that na will eventually advertise t to all the system
population. The second property comes from the fact that
inactive topics are no longer advertised. They are thus even-
tually replaced by active topics in APTs (assuming that the
set of active topics is larger than the maximum APT size).
The third property is a consequence of the fact that sub-
scription advertisements are sent to nodes returned by the
peer sampling service that provides uniform random sam-
ples, and that each node advertises its subscriptions with
the same period. The fourth property is also a consequence
of this fact, and of the fact that the APT update mech-
anism uses estimations of topic popularities3 to normalize
APT updates. Let us remark that in the proposed update
mechanism, all subscribers periodically advertise their sub-
scriptions, and nodes drop these advertisements in inverse
proportion to the topic popularity. One might think that
this strategy induces the exchange of unnecessary messages.
Nevertheless, trying to reduce the number of sent messages
by having subscribers advertise their subscriptions in inverse
proportion to the topic popularity would increase the prob-
ability of APTs containing references to stale access points4.

Note that the APT update algorithm described above has
been designed with the goal of maintaining fresh APTs con-
tent. Other strategies can be employed as well. For instance,
the algorithm could use some form of knowledge about the
stability (i.e. uptime) of a node, or its distance from the up-
dated node to choose whether to keep or replace an access
point.

3A highly popular topic (i.e. a topic subscribed by many
nodes) will be advertised more often than a less popular
one.
4This comes from the fact that advertisements are also used
to update access point for topics that are yet contained in
APTs, regardless of their popularities.

5

Overlay
Network

ACCESS
POINT

LOOKUP

Applications

Network

TERA

Overlay Management Protocol

General overlay

peer sampling

Topic 1 overlay

peer sampling

size
estim.

Topic 2 overlay

peer sampling

size
estim.

Topic n overlay

peer sampling

size
estim.

EVENT MANAGEMENT SUBSCRIPTION MANAGEMENT

INNER-CLUSTER

DISSEMINATION

PARTITION

MERGING

ACCESS
POINT
TABLE

SUBSCRIPTION

TABLE

pu
bl

ish
ed

 e
ve

nt
s

(lo
w

er
 la

ye
r)

pu
bl

ish
ed

 e
ve

nt
s

(u
pp

er
 la

ye
r)

ev
en

ts

no
de

 ID
s

lookup

check
subscription

ad
d

or
re

m
ov

e

to
pi

c
ov

er
la

y
siz

e

in
st

an
tia

te
/jo

in
/le

av
e

a
to

pi
c

ov
er

la
y

su
bs

cr
ip

tio
n

ad
ve

rt
ise

m
en

ts

fo
rc

e
vi

ew

ex
ch

an
ge

su
bs

cr
ip

tio
n

ad
ve

rt
ise

m
en

ts

view
exchange

join
overlay

publish notify subscribe unsubscribe

ra
nd

om
 w

al
ks

no
de

 ID
s

topic overlay id

Figure 2: A detailed view of TERA’s architecture.

Given the APTs limited size, nodes may only have a lim-
ited knowledge of the set of active topics. To solve this
problem, the Access Point Lookup component searches for
access points in APTs stored at other nodes. This search is
implemented as a random walk in the global overlay. The
rationale behind this search mechanism is that, given the
uniform randomness of APTs’ content and of node identi-
fiers returned by the peer sampling service, it is possible to
set the lifetime of the walks and the APT table size such
that, given a topic, with a certain probability either (i) an
access point for it will be found, or (ii) it will safely be con-
sidered as inactive.

Note that the reliability of event dissemination in TERA
strongly depends on the behaviour of the Access Point Look-
up component. Section 4 reports a detailed evaluation of
this aspect.

Partition Merging.
The Partition Merging component implements mechanisms

used to maintain topic overlay networks. It is motivated
by the fact that if two nodes concurrently subscribe to a
same topic for which no access point exists, the system may
end up with two disconnected topic overlay networks for the
topic. It is thus necessary to define a mechanism to detect
the presence of partitioned topic overlays and merge them.

Partitioning detection is performed each time a subscrip-
tion advertisement, sent by a node n, is received by a node
n′. n′ checks for each advertised topic it is also subscribed
to, if the local topic overlay identifier corresponds to the
one contained in n’s advertisement. A mismatch between
the two identifiers shows that two distinct partitions exist
for the same topic overlay. In order to merge these two
partitions, the merging mechanism on n′ forces the overlay
management protocol to execute a view exchange for the

partitioned topic overlay with node n. The aim of this view
exchange is to mix nodes belonging to partitioned overlays
in the views of both n and n′. From this time on the topic
overlay is no more partitioned (therefore, an event can be
successfully broadcasted reaching all the subscriber) even if
two different overlay identifiers can still exist in the system.
Resynchronizing different overlay identifiers is needed any-
way to prevent further useless forced view exchanges. The
Partition Merging component must thus resynchronize iden-
tifiers of nodes belonging to the same overlay5.

Note that the partition merging mechanism is fundamen-
tal to limit the influence of our traffic confinement strategy
on global event dissemination reliability. Section 4 reports
a detailed evaluation of this aspect.

4. EVALUATION

4.1 Experimental setup
We implemented a prototype of TERA using Peersim [15],

an open source Java simulation framework for peer-to-peer
protocols. Peersim allowed us to test TERA on large sim-
ulated networks, modeling with sufficient precision the en-
vironment where TERA is supposed to work. The overlay
management protocol employed in our prototype is Cyclon
[26], which provides every node with a view representing a
uniform random sample of the system. Cyclon is a cycle-
based protocol: at each cycle a node executes a view ex-
change phase. Phases among nodes are supposed to have
the same duration, but are not synchronized. A peer sam-
pling service is built upon Cyclon just picking up random

5This can be simply accomplished by exchanging identifiers
during each view exchange, and by deterministically choos-
ing one of them.

6

node identifiers from the view. These samples are then used
to feed a size estimation service built through the algorithm
introduced in [19]. We assume cycles as the reference time
unit in the rest of this section. During a cycle, a process
can handle the messages that were sent to it in the previous
cycles.

Concerning the workload model, there is currently no pub-
licly available data traces of real pub/sub applications. Con-
sequently, we tested our algorithm on various synthetic sce-
narios, following the approach used in other studies [24, 8,
10]. In particular we characterized the set of events and
subscription used in our tests as follows.

The set of subscriptions is characterized by the following
four properties: number of topics, number of subscriptions,
topic popularity distribution (i.e. how subscriptions are dis-
tributed on topics), and subscription distribution on nodes.
Subscriptions are distributed on nodes following a uniform
distribution6. Concerning topic popularity, we consider two
distributions:

• Uniform: each subscription can be issued with the
same probability on any topic.

• Power-law (also called Zipf): topic popularity distri-
bution follows a zipf curve, leading to systems where
few topics are highly popular, while a lot of topics are
not popular.

The set of events is characterized by the following four
properties: number of topics, number of events, event dis-
tribution on topics, and event distribution on nodes. In our
tests, we consider uniform distributions for event distribu-
tion on both topics and nodes.

4.2 Outer-cluster routing assessment
In this section we show, through an evaluation of both

the Access Point Lookup and the Partition Merging com-
ponents, how outer-cluster routing realized through TERA
performs.

4.2.1 Topic distribution in APTs
We start by presenting an experiment showing that the

method used in TERA to update APTs content ensures a
uniform distribution of topics in every APT. This is a fun-
damental property for APTs as it allows TERA to use their
content as a uniform random sample of the active topic pop-
ulation and build on it the access point lookup mechanism.
We ran tests over a system with 104 nodes, each advertising
its subscriptions every 5 cycles to 5 neighbors out of 20 (the
overlay management protocol view size). APT size was lim-
ited to 10 entries. We issued 5000 subscriptions distributed
in various ways on 1000 distinct topics, and we measured,
for each topic, the number of APTs containing an entry for
it. The expected outcome of these tests is to find a con-
stant value for such measure, regardless of the initial topic
popularity distribution.

Figure 3(a) shows the results for an initial uniform distri-
bution of topic popularity. The X axis represents the topic
population (each topic is mapped to a number). Each black
dot represents the number of times a specific topic appears
in APTs, while the grey dot represents its popularity. The

6Subscriptions regionalism is not considered as it would be
“destroyed” by the continuous exchange of views in the gen-
eral overlay.

Distribution of subscriptions on APTs
(uniform)

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

Topics

N
u

m
b

e
r

o
f

p
re

se
n

ce
s

Distribution on APTs

Popularity

Std.Dev=1,11

(a)

Distribution of subscriptions on APTs
(zipf a=0,7)

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

Topics

N
u

m
b

e
r

o
f

p
re

se
n

ce
s

Distribution on APTs

Popularity

Std.Dev=2,16

(b)

Distribution of subscriptions on APTs
(zipf a=2,0)

0

250

500

750

1000

1250

1500

1750

2000

0 20 40 60 80

Topics

N
u

m
b

e
r

o
f

p
re

se
n

ce
s

Distribution on APTs

Popularity

Std.Dev=51,49

(c)

Figure 3: The plot shows how topics are distributed
among APTs (black dots) when the topic popular-
ity distribution (grey dots) is (a) uniform and (b-c)
skewed (zipf with parameter a).

7

Random Walk success rate.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1 2 3 4 5 6 7 8 9 10

Random walk lifetime

S
u

cc
e
ss

 r
a
te

APT 50 Sim

APT 50 Theo

APT 100 Sim

APT 100 Theo

APT 400 Sim

APT 400 Theo

(a)

Cycles needed to merge a partitioned node

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 50 100 150 200

Cycles

P
ro

b
a
b

il
it

y
 o

f
m

e
rg

e

|G|=4 Sim

|G|=4 Theo

|G|=16 Sim

|G|=16 Theo

|G|=64 Sim

|G|=64 Theo

(b)

Figure 4: (a) The plot shows how the success rate for access point lookups changes when varying the maximum
APT size and the random walk lifetime. Solid lines represent results from the simulator, while dashed lines
plot values from the formula. (b) The plot shows how the probability to detect a topic overlay partition
increases with time (cycles). Solid lines represent results from the simulator, while dashed lines plot values
from the formula. The tests were run varying the number |G| of nodes subscribed to the topic.

plot shows that each topic is present, on average, in the same
number of APTs, with a very small error that is randomly
distributed around the mean. This confirms that the topic
distribution in APTs can be considered uniform.

Figures 3(b) and 3(c) show the results for an initial zipf
distribution of topic popularity. The two graphs report the
results for differently skewed popularity distributions (dis-
tribution parameter a = 0.7 and a = 2.0). As these graphs
show, TERA is always able to balance APT updates, and
delivers an almost uniform distribution. Even in an extreme
case (a = 2.0), the APT update mechanism is able to bal-
ance the updates coming from the small number of active
topics (in this scenario only 79 topics share the whole 5000
subscriptions), maintaining their presence in APTs around
the same average value with a small standard deviation (al-
ways below 5%). In the next evaluations, we only report re-
sults for zipf popularity distribution with a = 0.7, as results
for other values of a did not exhibit significant differences.

4.2.2 Access Point Lookup
In this section, we evaluate the probability for the access

point lookup mechanism to successfully return a node identi-
fier for a lookup operation (in the case such node exists). We
denote by K the lifetime of the random walk (the maximum
number of visited nodes), by |APT | the size of APT tables,
and by |T | the number of topics7. The probability p to find

an access point for a specific topic in an APT is p = |APT |
|T | .

Assuming that every APT contains the maximum allowed
number of entries, the probability that an access point can-
not be found within K steps is Pr{fail} = (1 − p)K . Thus,

7Thanks to the fact that APTs can be considered as uniform
random samples of the set of active topics, each node can
estimate at runtime the value of |T | [19].

the probability to find the access point visiting at most K

nodes is Pr{success} = 1 − (1 − p)K = 1 −
“
1 − |APT |

|T |

”K

.

Therefore, to ensure with probability P that an access point
for a given topic will be found, it is necessary that sizes K
or |APT | be such that:

K =
ln(1 − P)

ln
“
1 − |APT |

|T |

” or |APT | = |T |
“
1 − K

√
1 − P

”

Note that, given K and P , |APT | linearly depends on |T |.
In order to reduce APT size, it would be necessary to in-
crease random walks length (i.e. using a large value for K)
negatively affecting the time it takes to find an access point.
To mitigate this problem, it is advisable to launch r multiple
concurrent random walks, each having a lifetime dK

r
e. In-

deed, the fact that topics are uniformly distributed among
APTs guarantees that launching multiple concurrent ran-
dom walks does not impact the lookup success rate. In this
way, access point lookup responsiveness is improved at the
cost of a slightly larger overhead due to the independency
of each random walk lifetime.

We ran experiments to check that TERA’s behavior is
close to the one predicted by the analytical study. Tests were
run on a system with 1000 nodes, each having Cyclon views
holding 20 nodes. At the beginning, 5000 subscriptions
were issued uniformly distributed on 1000 distinct topics.
Lookups were started after 1000 cycles. Each lookup was
conducted starting four concurrent random walks (r = 4).

Figure 4(a) shows how the access point lookup success ra-
tio changes when varying the lifetime of each random walk
(K) for different values of |APT |. For each line, we plotted
both simulation results (solid line) and values calculated us-

8

ing the analytical study (dashed line). The plot confirms
that TERA’s lookup mechanism is able to probabilistically
guarantee that an access point for an active topic will be
found with probability P . Note that this plot also shows
that the actual memory size required by APTs is limited.
Indeed, consider the biggest APT size plotted on the graph:
400 entries. Assuming that each entry in an APT is a string
containing 256 characters, the memory size occupied by an
APT containing 400 entries is about 104kB.

4.2.3 Partition Merging
In this section, we analyze the probability for the partition

merging mechanism to detect a very small overlay partition,
and the time it takes for this to happen. Suppose that there
is a topic represented by an overlay network partitioned in
two clusters containing |G| and 1 nodes, respectively8. Let
us call n this single node. The probability p to detect the
partition in a cycle can be expressed as p = 1−(pa·pb), where
pa is the probability that none of the nodes in G advertise
its subscriptions to n, and pb is the probability that n does
not advertise its subscriptions to any of the nodes in G.

Probability pa can be expressed as

pa = (1 − Pr{a node advertises to n})|G|

Every node in G advertises its subscription to n only if
n is contained in its view for the general overlay, and if n
is one of the D nodes selected for the advertisement. Let
us suppose, for the sake of simplicity, that D is equal to the

view size. In this case Pr{a node advertises to n} = |V iew|
(N−1)

,

where N is the total number of nodes. Consequently, pa =“
1 − |V iew|

N−1

”|G|
.

Probability pb is equal to the ratio between the number
of views a node n can have that do not contain nodes sub-
scribed to t (i.e. nodes in G), and all the possible views.

Therefore, pb = C(N−1−|G|,|V iew|)
C(N−1,|V iew|) , where C(n, k) is the num-

ber of k-combinations of a set with n elements. Note that,
correctness of pb formula is guaranteed by the fact that,
thanks to the uniform randomness of the peer sampling ser-
vice provided by the OMP, every view has the same proba-
bility to appear on a node.

It follows that the overall probability is

p = 1 −

 „
1 − |V iew|

N − 1

«|G|

· C(N − 1 − |G|, |V iew|)
C(N − 1, |V iew|)

!
From the expression of p, we can derive the probability

that a merger will happen in H cycles:

Pr{merger within H cycles} = 1 − (1 − p)H =

= 1 −

 „
1 − |V iew|

N − 1

«|G|

· C(N − 1 − |G|, |V iew|)
C(N − 1, |V iew|)

!H

This formula shows that the merger probability tends to
1 as cycles pass by, regardless of the topic popularity. More-

8Note that the case where a partition is constituted by a
single node is the most difficult to solve as the probability for
nodes belonging to distinct partitions to meet is the lowest
possible one.

over, not surprisingly, the amount of cycles needed to ob-
serve a merger is conversely proportional to the popularity
|G| of the topic.

To confirm this result, we tested the partition merging
mechanism in networks made up of 1000 nodes, with a sin-
gle topic. In these tests, G subscriptions for the topic are
initially issued on various nodes, that quickly form a topic
overlay. Then, a new subscription is issued on a node not
yet subscribed, and a failed lookup is simulated, in order to
create a second topic overlay. We observed the time it took
to the partition merging mechanism to detect the partition.
Note that considering one single topic does not impact this
time. Indeed, this assumption has only for consequence that
this topic will be present in every APT. Nevertheless, APTs
are not used in the merging mechanism (received subscrip-
tions are only checked against the node subscriptions and
not against entries in its APT). Figure 4(b) reports the re-
sults for tests conducted varying |G|. We plot both simula-
tion results (solid line) and expected values calculated with
the formula (dashed line). The results confirm the analytical
study9: as cycles pass by every topic partition is detected.
Moreover, it is harder to detect partitions for less popular
topics (i.e. lower values for |G|), with respect to highly pop-
ular topics.

4.3 Scalability assessment

4.3.1 Node stress distribution
A very important aspect that must be taken into account

is node stress distribution, i.e. the fraction of the whole over-
head generated by TERA experienced by each single node.
In particular, the burden imposed on nodes should be fairly
subdivided among all participants to avoid the appearance
of hot spots.

To test node stress under various possible workloads, we
ran tests with both uniform and zipf topic popularity distri-
butions. Tests were run on a system with 104 nodes. We is-
sued 2 ·105 subscriptions distributed on 1000 distinct topics,
and then diffused one event by cycle during the whole simu-
lation duration. Events were uniformly distributed over top-
ics. In order to evaluate how the load is distributed among
nodes, we measured the fraction of messages handled by
each node during the tests, separating figures for messages
exchanged in the general overlay and for those exchanged in
topic overlays.

Figures 5(a) show the results for a test with uniform topic
popularity, while figures 5(b) show the same results for an
initial zipf distribution with parameter a = 0.7. Pictures on
the left show how load is distributed in the general overlay.
As shown by the graphs, TERA is able to uniformly dis-
tribute load among nodes, avoiding the appearance of hot
spots. This result is obtained regardless of the distribution
of topic popularities. Pictures on the right show the global
load experienced by nodes; in these graphs, nodes on the X
axis are ordered in decreasing local subscriptions count (i.e.
points on the left refer to nodes subscribed to more topics),
in order to show how the global load is affected by the num-
ber of subscriptions maintained at each node. The number
of subscriptions per node is also plotted with grey dots. The
graphs show how load distribution closely follows the distri-

9The differences shown in the figure, between theoretical
and simulation values are a consequence of simplifying as-
sumptions done in the analytical study.

9

 Node stress distribution
general overlay - uniform popularity

1,E-05

1,E-04

1,E-03

Node population

P
e
rc

e
n

ta
g

e
 o

f
m

e
ss

a
g

e
s

h
a
n

d
le

d

Std.Dev.=4,04E-06

 Node stress distribution
global - uniform popularity

1,E-05

1,E-04

1,E-03

Node population

P
e
rc

e
n

ta
g

e
 o

f
m

e
ss

a
g

e
s

h
a
n

d
le

d

1

10

100

N
u

m
b

e
r

o
f

lo
ca

l
su

b
sc

ri
p

ti
o

n
s

Messages (percentage)

Subscriptions

Std.Dev.=1,23E-05

(a)

 Node stress distribution
general overlay - zipf popularity

1,E-05

1,E-04

1,E-03

Node population

P
e
rc

e
n

ta
g

e
 o

f
m

e
ss

a
g

e
s

h
a
n

d
le

d

Std.Dev.=4,13E-06

 Node stress distribution
global - zipf popularity

1,E-05

1,E-04

1,E-03

Node population

P
e
rc

e
n

ta
g

e
 o

f
m

e
ss

a
g

e
s

h
a
n

d
le

d

1

10

100

N
u

m
b

e
r

o
f

lo
ca

l
su

b
sc

ri
p

ti
o

n
s

Messages (percentage)

Subscriptions

Std.Dev.=1,23E-05

(b)

Figure 5: The plots show how the load generated by TERA is distributed among nodes when the distribution
of topic popularity is either uniform (a) or zipf (b). For both popularities, the figure shows in the left graph
the load distribution in the general overlay and, in the right graph, the global load distribution (black points),
together with the subscription distribution on nodes (grey points).

bution of subscription on nodes, actually implementing the
pragmatic rule “the more you ask, the more you pay”, then
fairly distributing the load among participants.

4.3.2 Message cost per notification
The traffic confinement strategy implemented by TERA

induces some overhead. In order to assess the global impact
of this overhead, we evaluated the average cost incurred by
TERA to notify a single event to a subscriber, namely the
total number of generated messages divided by the number
of actual notifications10. This cost includes both messages
generated to disseminate the event, and messages generated
for TERA’s maintenance. To offer a reference figure, we also
evaluated the cost incurred by a simple event flooding-based
approach 11 in the same settings.

Figure 6(a) reports the results when the total number of
subscriptions varies between 102 and 106. The number of
topics is fixed and equal to 100. The network considered in
this test was constituted by 104 nodes, while the event pub-
lication rate was maintained constant at 1 event per topic
in each cycle. For the evaluation to be meaningful, we re-
quired each topic to be subscribed by at least one subscriber;
therefore, each curve is limited on its left end by the num-
ber of available topics. Moreover, we required each node to
subscribe each topic at most once; therefore, each curve is
limited on its right end by the number of nodes in the sys-
tem times the number of available topics (e.g. the curves
start from 100 subscriptions and end at 102 · 104 = 106 sub-
scriptions).

The reference cost expressed by the simple event flood-
ing algorithm decreases as the number of subscriptions in-
creases. This behaviour is justified by the fact that the total
cost incurred by the algorithm for each event dissemination
is constant, regardless of the number of subscriptions (as
it only depends on the popularity of each topic). Conse-

10In our tests this number always corresponded to the ex-
pected number of notifications, i.e. no notifications were
missed.

11Each event is broadcast in an overlay network containing all
participants. The overlay is built and maintained through
the same overlay management protocol employed by TERA
(Cyclon). Also the mechanism is the same considered for
TERA.

quently, increasing the number of subscriptions has a posi-
tive impact on the algorithm efficiency: each event broad-
cast in the overlay network will generate a higher number of
notifications.

TERA’s behaviour is more complicated, as various factors
have an impact on its global cost. This global cost is the
sum of two contributions: a constant amount and a vari-
able one. The former does not depend on the total number
of subscriptions: it corresponds (i) to the cost induced by
the overlay management protocol’s view exchange mecha-
nism for the general overlay, and (ii) to the cost induced by
the access point lookup mechanism. The latter is propor-
tional to the total number of subscriptions per topic issued
in the system, and includes the cost (i) of subscription ad-
vertisements, (ii) of the view exchange mechanism for topic
overlays, and (iii) of the broadcast service used to implement
inner-cluster dissemination.

When the number of subscriptions per topic is close to one
(on the left end of the curve), the constant part of the total
cost is dominant. Therefore, the average notification cost
decreases as for the simple event flooding algorithm. On
the contrary, when the number of subscriptions per topic
increases, the variable part of the cost becomes dominant.
Consequently, the average notification cost quickly reaches
a lower bound that is defined by the out degree used in the
broadcast service (in our experiments we considered an out
degree equal to the view size, i.e. 20). Note that, the employ-
ment of smarter broadcast mechanisms could, in principle,
further reduce the asymptotic notification cost.

As expected, TERA and the event flooding protocol have
a comparable behavior when the number of subscribers per
topic is close to the total number of nodes. Indeed, in such
case, each node is subscribed to every topic; therefore, it is
interested in every event published in the system, making
differences between the two approaches negligible.

Figure 6(b) reports the same test, ran varying the amount
of topics and maintaining a fixed number of subscriptions
(104). In this case, the algorithm’s behavior is dual with
respect to the previous figure: a higher number of topics in-
creases the load for simple event-flooding (because it causes
each generated event to be matched by a smaller number
of subscribers), while TERA’s performance remain almost

10

Average notification cost

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+01 1,E+03 1,E+05 1,E+07

Subscriptions

M
e
ss

a
g

e
s

p
e
r

n
o

ti
fi

ca
ti

o
n

Event flooding TERA

nodes: 10000
topics: 100
event rate: 1

(a)

Average notification cost

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05

Topics

M
e
ss

a
g

e
s

p
e
r

n
o

ti
fi

ca
ti

o
n

Event flooding TERA

nodes: 10000
subscriptions: 10000
event rate: 1

(b)

Average notification cost

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E-05 1,E-03 1,E-01 1,E+01 1,E+03 1,E+05

Event publication rate

M
e
ss

a
g

e
s

p
e
r

n
o

ti
fi

ca
ti

o
n

Event flooding TERA

nodes: 10000
topics: 100
subscriptions: 10000

(c)

Average notification cost

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+01 1,E+03 1,E+05 1,E+07 1,E+09

Nodes

M
e
ss

a
g

e
s

p
e
r

n
o

ti
fi

ca
ti

o
n

Event flooding TERA

subscriptions: 10000
topics: 100
event rate: 1

(d)

Figure 6: The plots show the average number of messages needed by TERA to notify an event when the
number of subscriptions (a), of topics (b), the event publication rate (c) and the total number of nodes
in the system (d) varies. For each figure, results from a simple event flooding algorithm are reported for
comparison.

unchanged.
Figure 6(c) reports the same test when the number of sub-

scriptions and topics is kept constant (100 topics and 104

subscriptions), while the event publication rate per topic
varies between 10−5 and 105. The plots show a clear trade-
off: when the event publication rate is very low, the higher
overhead caused by TERA is not compensated by the ad-
vantages induced by traffic confinement. Nevertheless, these
advantages comes into play as soon as the event publication
rate raises. This result confirms TERA’s ability to better
scale in high load settings.

Finally, figure 6(d) reports how TERA scales with respect
to the number of nodes in the system. This test has been
run in a scenario where 104 subscriptions are uniformly dis-
tributed over 100 topics, and events are published with a
rate of 1 event per topic at each cycle. The number of nodes
varies between 100 and 109. The curves show that TERA
gracefully scales as the number of nodes increases, up to
a point after which the overhead due to view exchanges in

the general overlay becomes dominant and is no longer com-
pensated by event notifications (that only depends from the
constant amount of subscriptions).

5. RELATED WORK
Publish/subscribe systems based on peer-to-peer architec-

tures have been introduced a few years ago with the devel-
opment of topic-based systems built on top of Distributed
Hash Tables (DHTs). SCRIBE [11] and Bayeux [29] are two
pub/sub systems built on top of two DHT overlays (namely
Pastry [25] and Tapestry [28]), which leverage their scala-
bility, efficiency and self-organization capabilities. Systems
like SCRIBE use the decoupled key/node mapping provided
by the DHT to efficiently designate a rendez-vous node for
each topic. This node is responsible for collecting each event
published for that topic and diffusing it toward subscribed
nodes. The main drawbacks of this approach are the pres-
ence of a single node responsible for the management of each
topic (that can quickly become a hot spot for very popular

11

topics) and the usage of the standard DHT routing protocol
to disseminate each event (thus involving in the dissemina-
tion nodes that are not interested in the event).

An interesting variant of this technique was proposed by
CAN [23]: members of the system subscribed to the same
topic are clustered in a separate overlay where events belong-
ing to the corresponding topic are simply flooded. From this
point of view the architecture of [23] implements a mecha-
nism for traffic confinement that is quite similar to TERA’s
one. However, in [23] a single access point exists for each
topic overlay. Contrarily, TERA’s outer-cluster routing does
not impose a single access point for each topic overlay thus
avoiding issues related to traffic hot spots and single point of
failures, but rather makes every node subscribed to a topic
a possible access point. More complex techniques have been
employed in [4] and [1] to support more complex event se-
lection schemes (like content-based selection) on DHTs.

Note that problems linked to the presence of hot spots and
single points of failure in DHT-based systems can be miti-
gated introducing replication and load balancing techniques.
However, these techniques introduce other problems (e.g.
consistency of topic-related data structures) and, moreover,
force a larger number of nodes to handle all the load for a
specific topic, even if they are not interested in that topic.

Unstructured peer-to-peer systems were introduced as a
substrate for topic-based event dissemination in [3]. The
system proposed in that work maintains, through the wide-
spread use of probabilistic algorithms, a hierarchy of groups
that directly maps a topic hierarchy. Each group contains
nodes subscribed to a specific topic and is maintained through
a probabilistic membership protocol [17]. The lack in [3] of
a general overlay network, not related to any specific topic,
means that every publisher, before publishing an event, must
become part of the group corresponding to the topic it wants
to publish in. This also means that nodes playing the role
of simple publishers receive events they are not subscribed
to. Publishers in TERA are not required to join any topic
overlay before publishing events; they are part of the general
overlay, and the outer-cluster routing mechanism leverages
it to disseminate events they produce.

Recently, an interesting work by Voulgaris et al. [27], pro-
poses Sub-2-Sub, a solution to implement a content-based
publish/subscribe system. In Sub-2-Sub subscribers shar-
ing the same interests are clustered in ring-shaped overlay
networks through a self-organizing algorithm that continu-
ously analyzes overlapping intervals of interests. The work
mainly focuses on the evaluation of this novel method for
interest clustering and the related inner-cluster dissemina-
tion. Nevertheless, the outer-cluster routing issue is also
addressed, even if it is not fully evaluated. In particular,
a general overlay connects at lower level all nodes of the
system and the outer-cluster routing is based on a gossip-
based protocol which exploits the proximity of interests to
speed up the outer-cluster dissemination and to involve as
few non-interested nodes as possible. However, the outer-
cluster routing mechanism proposed is deeply related to the
content-based semantics, since it exploits partial overlapping
of interests. Its direct application to a topic based systems,
in which partial overlapping does not exist, reduces to a
simple gossip.

6. CONCLUSIONS
This paper introduced TERA, a novel scalable architec-

ture for topic-based event dissemination in unmanaged, large-
scale peer-to-peer environments. Scalability of the proposed
architecture has been assessed along several dimensions: num-
ber of nodes, subscriptions, topics and event publication
rate. The paper presented, through both analytical and
experimental studies, different aspects of the event dissemi-
nation mechanism paying most of the attention to the outer-
cluster routing assessment. Results showed how TERA sup-
ports event dissemination reliably while confining traffic and
achieving a fair load distribution.

After the encouraging results shown in this work, we are
currently working on several aspects of the TERA’s infras-
tructure to asses their performance. The first fundamen-
tal aspect that must be evaluated is TERA’s behaviour in
dynamic scenarios where nodes can subscribe/ unsubscribe
topics and join/leave the system at any time. TERA’s in-
ternal components and algorithms have been designed to be
resilient to the dynamic behaviour of nodes, but the actual
impact of such behaviours on system performance must be
carefully evaluated. Preliminary tests confirm our intuition:
the widespread adoption of randomized algorithms and data
structures renders TERA resistant and adaptable to both
subscriptions and nodes churn. A second aspect we are cur-
rently focusing on is the development of new algorithms for
building and maintaining more sophisticated topic overlay
networks. The main target is to improve inner-cluster dis-
semination by reducing generated traffic while achieving a
high level of reliability. The improvements provided by such
a solution, coupled with the outer-cluster routing mecha-
nism introduced in this work, would constitute the basis
for a highly reliable event diffusion infrastructure able to
effectively confine traffic. Finally, we would like to point
out that one of the most interesting properties of TERA
is its ability to uniformly spread load among participants.
However, while this characteristics is desirable in many set-
tings, there can be scenarios where nodes heterogeneity can
be smartly leveraged to ease the burden on less powerful
nodes. In this respect we plan, as a future work, to study
the impact of heterogeneous node capabilities (in terms of
memory, bandwidth, or computation resources) on current
TERA’s algorithms, and possibly modify them accordingly.

7. REFERENCES
[1] Ioannis Aekaterinidis and Peter Triantafillou,

Pastrystrings: A comprehensive Content-Based
Publish/Subscribe dht network, Proceedings of the
26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06), 2006, p. 23.

[2] A. Allavena, A. Demers, and J. E. Hopcroft,
Correctness of a Gossip Based Membership Protocol,
Proceedings of the ACM annual symposium on
Principles of Distributed Computing (PODC), 2005,
pp. 292–301.

[3] S. Baehni, P. Th. Eugster, and R. Guerraoui,
Data-aware multicast., Proceedings of the
International Conference on Dependable Systems and
Networks (DSN), 2004, pp. 233–242.

[4] R. Baldoni, C. Marchetti, R. Vitenberg, and
A. Virgillito, Content-based publish/subscribe over
structured overlay networks, Proceedings of the
International Conference on Distributed Computing
Systems (ICDCS) (Columbus, OH, USA), IEEE

12

Computer Society, Washington, 6-10 June 2005,
pp. 437–446.

[5] Roberto Baldoni, Roberto Beraldi, Vivien Quéma,
Leonardo Querzoni, and Sara Tucci-Piergiovanni,
TERA: Topic-based event routing for peer-to-peer
architectures, Tech. Report 2/07, Dipartimento
Informatica e Sistemistica “A. Ruberti” - Sapienza,
Università di Roma, 2007.

[6] G. Banavar, T. Chandra, B. Mukherjee,
J. Nagarajarao, R.E. Strom, and D.C. Sturman, An
Efficient Multicast Protocol for Content-based
Publish-Subscribe Systems, Proceedings of
International Conference on Distributed Computing
Systems (ICDCS ’99), 1999.

[7] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap,
Zhen Xiao, Mihai Budiu, and Yaron Minsky, Bimodal
multicast, ACM Transactions on Computer Systems
(TOCS) 17 (1999), no. 2, 41–88.

[8] Fengyun Cao and J. Pal Singh, Efficient event routing
in content-based publish-subscribe service networks,
Proceedings of the 23rd IEEE Conference on
Computer Communications (INFOCOM) (Hong
Kong, China), vol. 2, IEEE, Washington, 7-11 March
2004, pp. 929 – 940.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf,
Design and evaluation of a wide-area notification
service, ACM Transactions on Computer Systems 3
(2001), no. 19, 332–383.

[10] A. Carzaniga and A.L. Wolf, A benchmark suite for
distributed publish/subscribe systems, Tech. Report
CU-CS-927-02, Software Engineering Research
Laboratory, Department of Computer Science,
University of Colorado at Boulder, 2002.

[11] M. Castro, P. Druschel, A. Kermarrec, and
A. Rowston, Scribe: A large-scale and decentralized
application-level multicast infrastructure, IEEE
Journal on Selected Areas in Communications 20
(October 2002), no. 8.

[12] P. Th. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec, Lightweight
Probabilistic Broadcast, ACM Transanctions on
Computer Systems 21 (2003), no. 4, 341–374.

[13] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M.
Kermarrec, The many faces of publish/subscribe, ACM
Computing Surveys 35 (2003), no. 2, 114–131.

[14] I. Gupta, K. Birman, and R. van Renesse, Fighting
fire with fire: using randomized gossip to combat
stochastic scalability limits, Journal of Quality and
Reliability Engineering International (2002).

[15] Márk Jelasity, Gian Paolo Jesi, Alberto Montresor,
and Spyros Voulgaris, Peersim,
http://peersim.sourceforge.net/.

[16] Márk Jelasity and Alberto Montresor, Epidemic-style
proactive aggregation in large overlay networks,
Proceedings of The 24th International Conference on
Distributed Computing Systems (ICDCS), 2004,
pp. 102–109.

[17] A.-M. Kermarrec, L. Massoulié, and A.J. Ganesh,
Probabilistic Reliable Dissemination in Large-Scale
Systems, IEEE Transactions on Parallel and
Distributed Systems 14 (2003), no. 3.

[18] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and

A. Demers, Decentralized schemes for size estimation
in large and dynamic groups, Proceedings of the 4th
IEEE International Symposium Network Computing
and Applications (NCA), 2005.

[19] Laurent Massoulié, Erwan Le Merrer, Anne-Marie
Kermarrec, and Ayalvadi Ganesh, Peer counting and
sampling in overlay networks: Random walk methods,
Proceedings of the 25th Annual ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), 2006.

[20] E. Le Merrer, A-M. Kermarrec, and L. Massoulie,
Peer to peer size estimation in large and dynamic
networks: A comparative study, Proceedings of the
15th IEEE International Symposium on High
Performance Distributed Computing, 2006, pp. 7–17.

[21] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen, The
information bus - an architecture for extensive
distributed systems, Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP),
1993, pp. 58–68.

[22] D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and
A. Demers, Practical algorithms for size estimation in
large and dynamic groups, Proceedings of the 23rd
Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), 2005.

[23] Sylvia Ratnasamy, Mark Handley, Richard Karp, and
Scott Shenker, Application-level multicast using
content-addressable networks, Lecture Notes in
Computer Science 2233 (2001), 14–34.

[24] A. Riabov, Z. Liu, J.L. Wolf, P.S. Yu, and L. Zhang,
Clustering algorithms for content-based
publication-subscription systems, Proceedings of the
22nd International Conference on Distributed
Computing Systems (ICDCS), 2-5 July 2002,
pp. 133–42.

[25] A. Rowstron and P. Druschel, Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems, Proceedings of IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), 12-16 November 2001,
pp. 329–350.

[26] S. Voulgaris, D. Gavidia, and M. van Steen,
CYCLON: Inexpensive Membership Management for
Unstructured P2P Overlays, Journal of Network and
Systems Management 13 (2005), no. 2.

[27] Spyros Voulgaris, Etienne Rivière, Anne-Marie
Kermarrec, and Maarten van Steen, Sub-2-sub:
Self-organizing content-based publish and subscribe for
dynamic and large scale collaborative networks,
Research Report RR5772, INRIA, Rennes, France,
December 2005.

[28] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. Kubiatowicz, Tapestry: A Resilient
Global-scale Overlay for Service Deployment, IEEE
Journal on Selected Areas in Communications 22
(2003), no. 1, 41–53.

[29] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and
J. Kubiatowicz, Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination,
Proceedings of the 11th International Workshop on
Network and Operating Systems Support for Digital
Audio and Video, 25-26 June 2001, pp. 11–20.

13

