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Abstract

We consider efficient communication schemes based on both
network-supported and application-level multicast techniques for
content-based publication-subscription systems. We show that the
communication costs depend heavily on the network configurations,
distribution of publications and subscriptions. We devise new al-
gorithms and adapt existing partitional data clustering algorithms.
These algorithms can be used to determine multicast groups with as
much commonality as possible, based on the totality of subscribers’
interests. They perform well in the context of highly heterogeneous
subscriptions, and they also scale well. An efficiency of 60% to 80%
with respect to the ideal solution can be achieved with a small num-
ber of multicast groups (less than 100 in our experiments). Some of
these same concepts can be applied to match publications to sub-
scribers in real-time, and also to determine dynamically whether to
unicast, multicast or broadcast information about the events over
the network to the matched subscribers. We demonstrate the quality
of our algorithms via simulation experiments.

1 Introduction
Publication-Subscription systems (pub-sub for short) provide

information on specific real-time events from publishers to inter-
ested subscribers. The subscribers express their interest in the form
of multiple subscriptions. The publishers and subscribers may be
located at arbitrary nodes in a distributed network.

Pub-sub systems can be characterized into two broad types
based on the degree of generality, usability and personalization al-
lowed to the subscribers. We focus in this paper on the more so-
phisticated of these, namely content-based pub-sub. See, for ex-
ample, the pioneering work of the Gryphon project [2, 4, 14], as
well as NEONet [21] and READY [8]. Borrowing extensively from
the classic stock market example used by Gryphon, a subject-based
pub-sub system would allow subscriptions based on broad criteria
only. A subscriber might request all events related to IBM, for in-
stance. Such a system is powerful but relatively inflexible. The sub-
scriber might receive many publications involving IBM stock mar-
ket events of little interest. Expanding on the stock market scenario
originally discussed by Gryphon, a content-based pub-sub system
would allow subscriptions which are based on the conjunction of

�This work was done while the author was at IBM Research.

potentially multiple predicates concerning different attributes. The
motivating Gryphon subscription example was based on three dis-
tinct attributes:

� The first was an equality predicate based on a character string
referring to the stock name. name=IBM would be an example,
though one could also imagine categories (“blue chip”, for
instance) being specified instead.

� The second could be one or two inequality predicates based on
a two decimal numerical attribute referring to the stock price,
such as 90.00 < price� 110.00. Alternatively one could nor-
malize these by the price of the stock at the start of the day, so
that a subscription might look for changes in price within 10
percent in a day.

� The third could be one or two inequality predicates based on
an integer attribute referring to the volume: volume > 10,000
might be an example. One could easily imagine translating
these volumes into dollars to ensure a common basis amongst
differing stocks, so that one might look for volume whose
monetary equivalent exceeds one million dollars.

A client with this (expanded) subscription would receive informa-
tion about all trades of “blue chip” stocks whose price stays within
a 10 percent range during the day and involves more than a million
dollars in start-of-day units.

So content-based pub-sub is more general and personalizable
than subject-based pub-sub. In general, we can assume that content-
based pub-sub systems allow each predicate to be range-based,
composed of intervals in the underlying domain of the predicate.
(Because computers can handle only inherently finite and discrete
attribute values, one can assume without loss of generality that all
possible intervals are actually open on the left and closed on the
right. This assumption allows the intervals to ‘fit together’ more
cleanly.) By decomposing a subscription with multiple such ranges
into multiple subscriptions consisting of single ranges we can see
that it is sufficient only to consider intervals, albeit at a cost of
more subscriptions. And even attributes such as name, not typically
thought of as numerical, can be indexed and therefore linearized
in some fashion. A predicate involving “blue chip”s can thus be
decomposed into the union of several conjunctions.

This perspective allows us to think of a subscription as a half-
open, half-closed aligned rectangle in space, each dimension corre-
sponding to a different attribute. (The term aligned means that the
rectangle is parallel to the various axes.) A published event becomes
a point in the underlying space.
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Clearly, the extra function involved with pub-sub systems comes
at a price. It is technically challenging for a content-based pub-sub
system to efficiently distribute the many publication events to the
interested subscribers over the network. And it is technically chal-
lenging to do so in a manner which scales with the dimensionality
of the underlying event space, the number of publishers and the
number of subscriptions.

There are two key dynamic problems that a content-based pub-
sub system needs to solve:

1. One must match a real-time event to determine the set of rele-
vant subscribers. This is the so-called matching problem.

2. One must decide to unicast, multicast and/or broadcast in-
formation about the event over the network efficiently to the
matched subscribers (or possibly to a superset of those de-
scribers, if that is more algorithmically reasonable, to be fil-
tered out as necessary). We shall call this the distribution
method problem.

Both of these problems must be solved in real time as new events
are published. However, there is a related, static “preprossessing”
problem that should be solved in order to enable the real-time al-
gorithms to function efficiently. Basically we must precompute a
set of high quality multicast groups having as much commonality
as possible, based on the totality of subscribers’ interests. We shall
call this the subscription clustering problem. This paper will be
focused on the clustering problem, whereas the matching problem
will be analyzed in more detail in a companion paper [16].

The Gryphon papers do tackle these problems in elegant ways.
In [2] and [4], for instance, the authors consider the matching prob-
lem. The interested reader is referred to [7] for a detailed descrip-
tion of the matching algorithm, a performance analysis and a com-
parison with existing matching algorithms. In [4] and [14] the au-
thors consider multicasting techniques. It seems fair to say, how-
ever, that the authors base their algorithms primarily on subscrip-
tions in which each dimension is based on either equality or wild-
card predicates. (A wild-card (*) indicates that the subscriber does
not care about the value in that dimension.) While their algorithms
will certainly work in full generality, we believe that they are opti-
mized for their motivating predicate types.

However, the above mentioned earlier work of Gryphon project
(see, for example, [14]) concluded that multicast mechanism does
not provide substantial benefits in many pub-sub systems, and that
given the multicast overhead, unicast and broadcast are sufficient
for these systems. We believe that the conclusions would be very
different depending on the network configurations, distribution of
publications and subscriptions. In this paper we consider larger net-
works with fewer number of subscriptions from each node. We
think this setting could be closer to the real-world environments.
This leads to the potentially large advantage of forming multicast
groups. We will evaluate the benefits of employing (both network-
supported and application-level) multicast mechanisms. We shall
show that the communication costs depends crucially on how we
form the multicast groups. Specifically, in this paper:

� We examine the various assumptions in the Gryphon frame-
work and investigate quantitatively different impacts from
several aspects of the pub-sub framework.

� We introduce a general framework that allows to adapt parti-
tional data clustering algorithms for pub-sub systems in which

subscriber preferences are described more generally than in
previous work.

� We devise a number of new clustering algorithms and enhance
some others. Among the algorithms we now consider are K-
means, a variant called Forgy K-means, a hierarchical clus-
tering algorithm based on Minimum Spanning Trees (MST),
the Pairwise Grouping algorithm and a variant called Approx-
imate Pairwise Grouping, and finally a so-called No-Loss al-
gorithm. (The no-loss strategy implies that a publication never
needs to be filtered out in the dynamic stage: Every subscriber
that receives a publication is indeed interested in that message.
The other algorithms described in this paper do not have this
property.) Our comparisons show new leaders among these
algorithms, and our results are more robust and realistic.

� We evaluate our algorithms on a large network model. Our
subscriptions are based on three different models of interest,
and the same is true for our publication model. We analyze
the effects of regional subscriber preferences relative to the
network topology. We show that the conclusions in this paper
depend dramatically on assumptions about the size and struc-
ture of the network.

We will consider two flavors of multicasting in this paper, net-
work supported and application level schemes. The interested
reader is referred to [3] for a description of the various tradeoffs.
See also [15] for a description of application level multicasting.

The remainder of this paper is organized as follows. We intro-
duce some notation in Section 2. In Section 3 we describe some pre-
liminary investigations which illustrate potential impacts of com-
munication algorithms on the communication costs. Then in Sec-
tion 4 we describe the algorithms for solving common interest clus-
tering problems. In Section 5 we present the results of our experi-
ments and comment on the relative performance of the algorithms.
Finally, in Section 6 we summarize the results and discuss future
work. The many items there are indicative of the newness and im-
portance of this area of research.

2 Problem Notation
In this section we define some key parameters. Let 
 denote

the publication event space. Each event being published within the
system can be uniquely described with a single value ! such that
! 2 
. Let N denote the number of dimensions (or attributes) in

, so that 
 � R

N . Let pp(x) be the probability that publications
events are within set x � 
. Define the underlying network topol-
ogy as an undirected graph G = (V;E). Define the communication
costs to be ce � 0 for each edge e 2 E. Let VP � V be the set of
nodes containing publishers. Let VS � V be the set of nodes con-
taining subscribers. Let NS be the number of subscribers. In this
paper we shall assume that each subscriber vi 2 VS; i = 1; :::; NS ,
has a set of subscription preference expressed by (possibly infinite)
rectangles Ii = fbijg

ri
j=1 associated with it. Each bij � 
 is an

aligned rectangle in space 
. We define I :=
S
v2VS

Iv to be the
set including all subscription rectangles. We define k := jIj to be
the number of subscriptions.

The size of the clustering problem depends on the dimension
of the event space N and the number of subscriptions k. We are
interested in algorithms that scale well with respect to these values.

Typically the number K of available multicast groups is known
in advance. In the case of network-supported multicast, this is the
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number of multicast IP addresses purchased. In the case of applica-
tion level multicast this number is limited by the amount of memory
and processing power of participating computers.

3 Preliminary Analyses
Earlier Gryphon project work [14] demonstrated that the multi-

cast mechanism does not provide substantial benefits in many pub-
sub systems. Given the well-known structural and performance
overhead for applying multicast, unicast and broadcast are sufficient
for these systems, having little or no overhead and insignificant in-
crease in the delivery cost. We examine the various assumptions in
Gryphon and investigate quantitatively different impacts from sev-
eral aspects of the pub-sub framework. The conclusions are very
different depending on the network configurations, distribution of
publications and subscriptions.

In our model, events are generated in 4 dimensions, the first one
corresponding to “regional attribute”. When a publication event oc-
curs, the publication is always set to the identification number of
originating subnet (“stub”) for this message. The degree of region-
alism parameter is the probability that in a subscription this attribute
equals the corresponding subnet number. Zero degree of regional-
ism corresponds to no regionalism, and degree 1 to absolute region-
alism. Regional subscriptions in this table are generated with this
parameter set to 0.4. Non-regional subscriptions have this parame-
ter set to 0 during the generation of subscriptions.

The other 3 attributes of events can take on integer values be-
tween 0 and 20, according to either uniform or gaussian distribu-
tions. Preference in each parameter can be either a “don’t care”
parameter, denoted “*”, which means that all values of this param-
eter are of interest, or can be specified as an interval. In the uniform
case, the probabilities of not having “*” in position 2 is 0.98, and
then decreases at a rate of 0.78 for subsequent parameters. Thus
the parameter 3 preference is specified with probability 0:98 � 0:78,
and parameter 4 with probability 0:98 � 0:782 . If parameter prefer-
ence is specified, then two random numbers between 0 and 20 are
generated, sorted if needed, and assigned to the ends of the pref-
erence interval. For the gaussian distribution each of the 3 param-
eters preference can have a value of “*” with probability q1, can
be a left-ended interval with probability q2, a right-ended interval
with probability q3 and an interval with both ends with probability
1 � q1 � q2 � q3. If both ends of the interval are specified, the
center of the interval follows a gaussian distribution with param-
eters (�3; �3) and the length of the interval follows a Pareto-like
distribution with a given mean. If the interval is one-ended, then
the end of the interval is chosen from gaussian distribution with
parameters (�1; �1) and (�2; �2) for left-ended and right-ended
intervals. The parameters in the experiment are chosen from the
following table, to simulate stock name, price and trading volume:

Para q1 q2 q3 �1; �1 �2; �2 �3; �3 mean
2 0.1 0 0 8,2 10,2 9,6 1
2 0.15 0.1 0.1 8,1 10,1 9,2 4
2 0.35 0.1 0.1 8,1 10,1 9,2 4
The networks were generated by the GT-ITM

package [20] using the transit-stub model with
one transit block and the following parameters:

Node Trans node Stubs/trans node Nodes in a stub
100 4 3 8
300 5 3 20
600 4 3 50

More details can be found in section 5.1.
Tables 1 and 2 show the communication costs for broadcast, uni-

cast and ideal multicast, where ideal multicast stands for the distri-
bution scheme in which a multicast group is formed for each pub-
lication event and is composed only of the subscribers interested in
this event. The ideal multicast could thus use all the possible 2NS

groups. We observe that for the same network, the difference in cost
between the broadcast and ideal multicast is small for cases with a
large number of subscriptions, and becomes larger as the number
of subscriptions decreases. This gap can be as large as 4 times the
ideal solution. Thus there is a need to investigate more sophisticated
content delivery mechanisms.

Table 1. Degree 0.4 regionalism
Node Sub’n Dist’n Unicast Broadcast Ideal

100 5000 uniform 31351 1430 1334
100 5000 gaussian 48805 1430 1415
100 1000 uniform 5846 1430 867
100 1000 gaussian 9513 1430 1134
100 80 uniform 750 1430 310
100 80 gaussian 548 1430 287
300 5000 uniform 38612 5079 3453
300 1000 uniform 8181 5079 867
300 350 uniform 3638 3880 1065
600 10000 uniform 92178 10235 6720
600 10000 gaussian 139020 10235 8212
600 5000 uniform 45320 10235 4820
600 5000 gaussian 69179 10235 6431
600 1000 uniform 5477 10235 1350
600 1000 gaussian 9408 10235 1823

Table 2. No regionalism
Node Sub’n Dist’n Unicast Broadcast Ideal

100 5000 uniform 50737 1430 1377
100 5000 gaussian 81779 1430 1428
100 1000 uniform 9409 1430 1039
100 1000 gaussian 16314 1430 1301
100 80 uniform 816 1430 328
100 80 gaussian 1580 1430 545
300 5000 uniform 61513 5079 4019
300 5000 gaussian 98735 5079 4751
300 1000 uniform 13384 5079 2026
300 1000 gaussian 21167 5079 2918
300 80 uniform 61513 5079 1113
300 80 gaussian 6113 5079 1598
600 10000 uniform 151270 10235 7993
600 10000 gaussian 232405 10235 9382
600 5000 uniform 73830 10235 6184
600 5000 gaussian 116952 10235 8000
600 1000 uniform 8276 10235 1791
600 1000 gaussian 14428 10235 2502

The Gryphon framework has a 100 node network, with an av-
erage of 125 subscriptions for each of the 80 nodes. For networks
with a small number of nodes, each node having many subscriptions
per publication, there is a very high probability that at least one of
the subscriptions at this node includes this publication. Therefore,
the number of nodes interested in this publication will either be very
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high or very low. This means that the system needs to deliver the
publication either to almost every node or to a very small set of
nodes. We believe that this accounts for the conclusion by Gryphon
that broadcast is sufficient for such systems. For larger networks
with relatively fewer subscriptions, on the other hand, it is unlikely
that publications need to be delivered to almost every node in the
network. Multicast is most beneficial in this kind of setting, be-
cause messages must be delivered to only part of the network.

In Tables 1 and 2 the unicast and ideal multicasts are in gen-
eral larger for the gaussian distributions than for the uniform. This
is due to the fact that more nodes are likely to be interested in the
publication events for the gaussian case, resulting in greater com-
munication costs. This shows that the publication distributions also
affect the multicast benefits.

Furthermore, Tables 1 and 2 show that the communication costs
for regional-specific subscriptions are smaller than those for non-
regional subscriptions. More generally, the dependence of the sub-
scriptions by different nodes can have a big impact on the multicast
benefits. Consider independent subscriptions by the nodes for a par-
ticular publication. The nodes that are interested in this publication
would likely be scattered around the network evenly. The multicast
benefit of delivering messages to such a scattered network would
not be significant. On the other hand, if the subscriptions have a
regional concentration, the interested nodes of a publication would
very likely be more localized. It would not be surprising to observe
substantial benefits from employing multicasts.

In addition, if the probability that each node subscribes to a
given message is independent of the other nodes, and there is no
concentration of common interest in the event space, then it is diffi-
cult to form only a few groups and greatly improve communication
efficiency – each of (2NS � 1) possible multicast groups would be
needed with roughly equal probability.

The rest of this paper considers larger networks with fewer num-
ber of subscriptions from each node. We think this setting is closer
to real-world environments. This leads to the potentially large ad-
vantages in forming multicast groups. For such pub-sub systems,
using broadcast to deliver messages would not be appropriate due
to the large communication overhead. We will evaluate the bene-
fits of employing multicast mechanisms. The communication ben-
efits of multicast depends crucially on how one forms the multi-
cast groups. Due to the overhead of managing a large number of
multicast groups, we need to consider forming a limited number
of groups. We develop several algorithms for constructing multi-
cast groups and evaluate their performance benefits. Algorithmic
complexity is also a key factor for these real-time applications. We
further study the cost benefit and running time trade-offs of these
algorithm and discover good algorithms for practical applications.

Before going into details on the algorithms, it is important to
describe the assumptions of our studies. First, we assume that the
peaks in density of subscriptions follow peaks in density of the mes-
sages. It seems likely that multicast will not provide comparable
improvements in communication costs without this assumption.

We further assume that the subscriber preferences are regional
in the network topology. In our experiments, for example, stock
name preference (mean of the distribution) was assigned according
to the transit block in the network. In addition we assume sub-
scriptions themselves are unevenly distributed in the network, with
higher concentrations of interest in some areas, and lower in others.

Under these assumptions forming a limited number of groups

using subscription clustering algorithms can potentially lead to a
large reduction in communication costs when compared to unicast
and broadcast. While relatively restrictive, the assumptions still
seem to be practical. Indeed, in many real-life pub-sub systems
we would expect that events, in which more people are interested,
are typically published more often, than the less interesting events.
Also, we can expect the regionalism of subscriptions, with more
concentration of users in certain parts of the network, and regional-
ism of interest, with interest distribution being different in different
parts of the network. The model formally presented in section 5.1
follows the above assumptions.

4 Algorithms for Subscription Clustering
There are two distinct categories of subscription clustering al-

gorithms that we present. First category, the Grid-Based cluster-
ing algorithms, extends earlier work on subscription clustering in
content-based pub-sub systems for the case of rectangular prefer-
ence sets. Work by the Gryphon group [4] and by Katz et al [19]
employ similar data algorithms for clustering of point subscriptions.
In the first subsection we describe the framework that allow us to
use data clustering algorithms for clustering subscriptions. In the
following subsections we illustrate our approach by describing how
four clustering algorithms: K-means, Forgy K-means, MST, and
Pairwise Grouping can be used for subscription clustering.

The second category of subscription clustering algorithms pre-
sented in this section includes just one algorithm – No-Loss. While
grid-based algorithms sometimes can “lose” messages, sending
them to subscribers who are not interested in the particular mes-
sage, but only happen to have close interests, the No-Loss algorithm
guarantees that all subscribers receiving a message are interested in
it, thus avoiding redundant communication in the network.

Subscription clustering algorithms form multicast groups, as
well as produce data structures that are used for matching events
to multicast groups. The last subsection describes matching algo-
rithms for the two categories of clustering algorithms.

4.1 Grid-Based Clustering Framework
Grid-based subscription clustering algorithms (or cell clustering

algorithms) apply data clustering heuristics to the cells of a regular
grid in event space 
. Data clustering algorithms are widely used
for grouping “similar” objects. Similarity of objects is determined
based on the value of a distance function. In this subsection we
define feature vectors and distance function for clustering, and de-
scribe the application of several data clustering algorithms to our
model in the following subsections.

Feature Vectors. Each cell a � 
 has a subscriber membership
vector s(a) 2 f0; 1gNS associated with it. By definition,

s(a)i :=

(
1 if there exists index j s.t. bij \ a 6= ;;

0 otherwise:
(1)

In this vector non-zero elements correspond to subscribers inter-
ested in the cell.

The most commonly used strategy for partitional clustering is
the square-error minimization criterion, which amounts to minimiz-
ing the sum of the squared Euclidean distances between feature vec-
tors corresponding to objects over the entire set of objects. We use
membership vectors as feature vectors of cells instead of using, for
example, the coordinates of the cell center in event space 
. Using
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coordinates in 
 for this purpose would lead to poorer solutions,
since our goal is to create groups based on common as opposed to
similar interest. Grouping based on similar interest is considered,
for example, in the work by Katz et al [19]. In our model, however,
we assume that subscribers are only interested in events for which
they have directly expressed interest, and there is a performance
penalty to be paid when a message is delivered to a subscriber who
not interested in it. On the other hand, when several subscribers
are interested in the same events, possibly scattered over 
, it is
still logical to assign these subscribers to the same multicast group.
Therefore we conclude that the comparison of sets of interested sub-
scribers is more suitable for identifying common interest than com-
parison of coordinates in the event space.

Distance Function. Squared Euclidean distance between cells
a and b can be computed as d2e(a; b) =

P
i

�
s(a)i � s(b)i

�2
=P

i

�
s(a)i � s(b)i

�
, where “�” denotes a binary operator of

exclusive or. In our model, the probability density func-
tion of publications can be taken into account in order to bet-
ter characterize our objective. We define the distance func-
tion d as: d(a; b) := pp(a)

P
i2VS

max
�
[s(a)i � s(b)i]; 0

	
+

pp(b)
P

i2VS
max

�
[s(b)i � s(a)i]; 0

	
: The value of d(a; b) is the

expected number of messages sent to subscribers who are not in-
terested in them, if the cells a and b are combined in one group.
Note that we can similarly define membership vectors and distance
functions for sets of cells, simply replacing cells a and b with sets
of cells instead.

The function d characterizes expected waste, the notion first in-
troduced in work by Gryphon group [4]. The objective of cluster-
ing in this formulation is to form groups in a way that minimizes
expected waste. It is known that the heuristics used for clustering
are not guaranteed to achieve a global optimum, but in practice the
quality of the solution may be sufficient.

Implementation Notes. If for cells a and b it is true that
s(a) = s(b), then the cells can be combined in one group induc-
ing zero expected waste. Our implementation during preprocessing
stage scans continuous blocks of cells searching for repeating sets
of subscribers, and joining the cells into hyper-cells, in other words
sets of cells having the same membership vector.

Since the number of cells might become too high for the al-
gorithm to handle, it would be helpful if we could somehow se-
lect the “most popular” cells for clustering, leaving the rest for
unicast. Our implementation sorts hyper-cells (after the grouping
step described above) by the “popularity rating” r(:) defined by
r(a) := pp(a)

P
i2VS

s(a)i and keeps only a fixed number of cells
having the largest values of popularity rating.

Our experiments show that after some number of cells, the im-
provement gained from feeding more cells to the algorithm becomes
negligible. In fact, the more cells are given to clustering algorithm,
the worse the quality of solution becomes. This justifies the need
for the implementation of outlier removal algorithms for detection
of cells that have rather unique combination of subscribers. On the
other hand, even without the outlier removal algorithm, clustering a
large enough fraction of cells can lead to good results.

4.2 K-Means and Forgy K-Means Clustering
The use of k-means clustering algorithm in pub-sub systems

(with different objective, and therefore different feature vectors and
distance functions) was proposed by Katz et al in [19]. We have

studied the performance of the original algorithm by McQueen and
as well as the one of its variants by Forgy. See [9] for details.

0. Form initial K groups.
1. Re-assign each cell to a closest group.
2. Repeat step 1 until no cell can be moved.

Figure 1. K-Means Clustering

Figure 1 shows generic pseudo-code for a k-means clustering al-
gorithm to form K multicast groups. In step 0, the initial partition
is formed. For this purpose, K hyper-cells with the highest popu-
larity rating r(a) are chosen to be centroids of groups, and the rest
of hyper-cells is assigned to closest groups, based on the expected
waste distance function. In step 1 each of the hyper-cells is exam-
ined, and assigned to the “closest” cluster. We measure the distance
between the membership vector of the hyper-cell and the member-
ship vector of the cluster. The K-means algorithm updates the mem-
bership vector of the cluster each time a hyper-cell is moved. The
algorithm by Forgy updates the membership vectors of all clusters
after step 1 is finished. A hyper-cell cannot be moved to another
cluster if it is the last hyper-cell in its current cluster.

K-means type algorithms converge to a local optimum in a num-
ber of iterations, and in practice they converge quickly. Neverthe-
less, the processing can be stopped after any iteration, resulting in a
feasible partition into K groups. This also provides an easy way to
accommodate changes in cell membership, simply running a num-
ber of re-balancing iterations, when new subscribers arrive or sub-
scription rectangles are changed in some other way.

4.3 Pairwise Grouping

Pairwise grouping for clustering point interest (or pairs for
short) was proposed in the work of Gryphon [4], and we have ex-
tended these ideas to the case of interest rectangles. It is a top-down
clustering algorithm, which starts with each hyper-cell assigned to
its own cluster. If the total number of clusters is larger than the
required number K, the two groups with the minimum distance to
each other are chosen, and combined. The membership vector for
this group becomes a combination of vectors of the joined groups.
The process is repeated until no more than K groups are left. The
algorithm is summarized on Figure 2.

0. Given l cells, form l groups, one cell in each.
Group gi = faig, for each cell ai, and s(gi) = s(ai).

1. Find i and j such that i 6= j and d(gi; gj) is minimized.
Reset gi  gi [ gj , update s(gi), and remove gj .

2. Repeat step 1 until there are only K groups left.

Figure 2. Pairwise Grouping

An approximate version of this algorithm inspects a fraction 1=e
of the total number of the group combinations during the search for
best distance, stores the pair with the shortest distance from this
fraction of groups, and terminates the search after that, if a smaller
distance is found. This heuristic derives from a well-known solution
to the secretary problem ([17, p. 114]) for maximizing the chance
of choosing the maximum value. The algorithm modified in this
way works faster, but it may obtain a poorer solution.
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4.4 Minimum Spanning Tree Clustering
The use of the minimum spanning tree (MST) for clustering was

proposed by Zahn (1971). Suppose we have a graph G in which
nodes correspond to hypercells, and there is an edge between each
pair of nodes i and j of length d(i; j). We will say that each node
by itself is a component. We process the edges in non-decreasing
order of length, if the edge connects different components, combine
the components into one, and proceed to the next edge. We continue
until there are K components left.

0. Given l cells, form l groups, one cell in each.
1. For each pair in the order of increasing distance:
2. If the hyper-cells of the pair are not in same group,

combine the groups corresponding to cells.
Repeat step 2 (for next pair) until
there are only K groups left.

Figure 3. Minimum Spanning Tree Clustering
This algorithm is similar to Kruskal’s algorithm [11] for find-

ing MST in graph G, except that this version stops when exactly K
connected components are formed. Pairwise grouping proceeds in
the similar fashion as the MST algorithm, but in the pairwise group-
ing case the distances are calculated between groups, not between
cells. Therefore it is impossible to sort pairs by distance in advance,
which in effect leads to greater running time of the pairs algorithm,
compared to MST on the same data.

4.5 No-Loss Algorithm
The grid-based family of cell clustering algorithms works with

cells of a regular grid, and each cell of the grid can be associated
with one of the multicast groups. As a result, each subscriber whose
interest overlaps with the cell is assigned to the multicast group.
Since interest rectangles are not aligned on cell borders, it is pos-
sible that an event sent to a multicast group will reach subscribers
that are not interested in this particular event, as well as the ones
for which this event was intended. The idea behind the No-Loss al-
gorithm is to avoid this kind of wasted communication completely,
forming multicast groups corresponding to areas aligned to inter-
est rectangles borders. The algorithm (Figure 4) tries to find the
“most popular” intersections of interest rectangles. The popularity
(or weight) of an area in event space is measured by the number
ju(s)j of subscribers interested in this area multiplied by the proba-
bility of publication in the area: w(s) = pp(s)ju(s)j.

4.6 Matching Subscriptions To Events
Each time an event arrives in the system it must be matched

to multicast groups formed by a clustering algorithm in order to
find out how to deliver the message. Matching must done effi-
ciently, since the delay caused by the matching algorithm directly
affects the maximum throughput of the system. In this subsection
we briefly introduce matching algorithms to illustrate how the data
structures produced by subscription clustering algorithms are used
in real time, and refer the reader to our companion paper [16] for
more details.

Each group produced by a clustering algorithm can be described
as a set of aligned rectangles in the event space 
. Therefore the
problem of matching an event ! to multicast groups can be reduced
to the problem of searching among aligned rectangles in event space

0. Set of rectangles: S := I;
Rectangle weights w(bij) := pp(bij) for each bij 2 S;
Subscriber node lists: u(bij) := fig for each bij 2 S.

1. Sort elements of S by w, such that:
if sl; sm 2 S and l < m, then w(sl) > w(sm).

2. Retain only first T elements
in sets S, w and u, discarding the rest.

3. For each bij 2 I and s 2 S, such that t := s \ bij 6= ;,
and i 62 u(s) do:

if 9 r 2 S such that r � t,
u(r) u(r) [ u(t); w(r) pp(r)ju(r)j.

else S S [ t; u(t) u(t)[ fig; w(t) pp(t)ju(t)j.
4. Repeat from step 2 at most k times.
5. Sort S as in step 1.
6. Form K multicast groups corresponding to

first K elements of S, grouping subscribers
according to u(sl) lists, l = 1::K.

Figure 4. No-Loss Algorithm

1. Given an event !, find the corresponding cell
of the grid in the event space 
.

2. If the event is matched to a cell:
2.1. Denote the associated multicast group G.

Find the number (or proportion) of members of G,
interested in !.

2.2. If the number is above a predefined threshold:
2.2.1. Send the message to group G.

Else
2.2.2. Send it only to interested subscribers.
3. Else (if the event is not matched)

Send it to the list of interested subscribers.

Figure 5. Matching for Grid-Based Algorithms


 for the rectangles that contain a given point !. This general prob-
lem is most commonly solved using a special pre-built data struc-
ture called an R�-tree (see [5]). Alternatively, the S-tree algorithm
described in [1] can be used instead.

Matching in Grid-Based Algorithms. Multicast groups formed
by a grid-based algorithm are associated with cells of the grid in
the event space. Each cell of the grid is either associated with one
group or is not associated with any group. Therefore the matching
algorithm should find which cell the event falls into, and take differ-
ent actions according to whether the cell is associated with a group
or not. If there is no group associated with the cell, the message
must be delivered using unicast. If there is an associated multi-
cast group, the message is usually delivered via multicasting to this
group. However, if we can determine how many of subscribers in-
cluded in the matched group are actually interested in the message,
we may be able to avoid unnecessary communication by sending
the message via unicast only to those interested in it. This opti-
mization can help to noticeably reduce communication. We shall
further discuss the effects of this optimization, as well as present
experimental results, in a companion paper [16]. Figure 5 summa-
rizes the matching algorithm in pseudo-code.

Matching in No-Loss Algorithm. The No-Loss interest cluster-
ing stage forms a list A � S consisting of the first n elements of
S in the order of decreasing density w. When an event e arrives,
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the matching algorithm in Figure 6 is applied. The algorithm (using
an S-tree, for example) finds multicast groups, as well as individ-
ual subscribers that are not included in the groups, whose interest
rectangle includes the message.

1. If e 2 s where s is a rectangle, s 2 A
let s be such that 8t 2 A : e 2 t; w(t) � w(s)
(i.e. it is the rectangle with greatest density).
Send message to multicast group formed of u(s).
Send message via unicast to subscribers in
(VS n u(s)) that are interested in e.

2. Otherwise send message via unicast
to subscribers interested in e.

Figure 6. Matching for No-Loss Algorithm

5 Experiments
5.1 Experiment Model

Results have been obtained on 3 different models of subscription
interest and message distribution, but on the same network consist-
ing of 600 nodes and the same distribution of subscribers. In all
three models 1000 subscription rectangles were generated.

We adopted the GT-ITM package from Georgia Institute of
Technology [20] to generate a network with six hundred nodes. This
tool generates a hierarchical topology with transit blocks on top,
stubs in the middle and nodes at the bottom. In our experiments,
we first generate three transit blocks, with an average of five transit
nodes in each block. Each transit node is connected on average to
two stubs, and each stub has an average of twenty nodes.

For a given network topology, we generate subscriptions for
each node. We first generate one thousand subscriptions with a
f40%; 30%; 30%g breakdown for the three transit blocks. Within
each transit block, there is a Zipf-like distribution for the number of
subscriptions between all the stubs connected to this transit block.
Subscriptions are distributed according to another (common) Zipf-
like distribution within each stub.

The generated interval subscriptions are of the form
fbst; name; quote; volumeg. The first field bst, which could
stand for buy, sell, and transaction, takes value B; S and T with
probabilities 0:4; 0:4, and 0:2, respectively. The center of the
interval for the name field follows a normal distribution, with
mean centered around the points specific to transit block number
(3; 10 and 17), and standard deviation of 4. The length of this
interval also follows a Zipf distribution. The intervals for the quote
and volume fields are generated according to the same parametric
distribution with different parameters. This parametric distribution
takes values as follows:
(�1;+1), with probability q0,

[n;+1), with probability q1, and n � N(�1; �1),
(�1; n], with probability q2, and n � N(�2; �2),
[n1; n2], otherwise, center of interval � N(�3; �3),

interval length follows a Pareto distribution.
The parameters are given in the following table:

q0 q1 q2 �1; �1 �2; �2 �3; �3 c; �

price 0.15 0.1 0.1 9, 1 9, 1 9, 2 4, 1
vol 0.35 0.1 0.1 9, 1 9, 1 9, 2 4, 1
The generation of the subscriptions are intended to mimic the

real-life scenario [16] that people’s interests in stocks are centered

around the current prices, the popularity of the information for dif-
ferent stocks has a Zipf-like distribution, and the popularity of the
participants also has a Zipf-like distribution.

The publications are points in the subscription space, which are
generated according to a mixture of multivariate normal distribu-
tions. The different peaks in the distributions represent the mul-
tiple hot spots where events are published more frequently. We
study three scenarios, which are mixtures of one, four and nine
multivariate normal distributions. The means and standard de-
viations for the single mode multivariate normal distribution are
(1; 1); (10; 6); (9; 2); (9; 6) for each of the four dimensions. The
four mode distribution is constructed by sampling independent mix-
tures of multivariate normal distributions in each dimension. The
mean and standard deviations for the first and fourth dimensions
are (1; 1) and (9; 6), respectively. The second dimension is a nor-
mal random variable with parameters (12; 3) with probability 0:5,
and with parameters (6; 2) with probability 0:5. The third dimen-
sion is a normal random variable with parameters (4; 2) with prob-
ability 0:5, and with parameters (16; 2) with probability 0:5. Simi-
larly, for the nine mode distribution, the parameters for the first and
fourth dimensions remain the same. The third dimension is N(4,3)
with probability 0.3, N(11,3) with probability 0.4 and N(18,3) with
probability 0.3. The fourth dimension is N(4,3) with probability
0.3, N(9,3) with probability 0.4 and N(16,3) with probability 0.3.

It should be noted that this experimental framework is flexible
enough to accommodate other probability distributions for the sub-
scriptions and publications. In the following study, we constructed
1000 subscriptions for the network with 600 nodes generated by the
GT-ITM package.

We performed experiments on the generated testbed to evalu-
ate the performance of the different schemes for forming multicast
groups under two multicast frameworks: network supported and
application-level multicast schemes. Network supported multicast
requires the network routers to have the multicast capabilities, to be
able to recognize multicast groups, and to forward the information
to the proper members of the group. There are two types of mul-
ticast algorithms currently used in routers: dense mode and sparse
mode multicast. The implementations differ in the amount of state
information and in the structure of the routing tree. We assume the
dense mode multicast where the routing tree is a shortest path tree
rooted at publisher. The amount of state information is proportional
to both the number of publishers and the number of groups. In re-
cent years, the study of multicast mechanisms has focused on the
application level multicast, which does not require full support at
the network routers. The members of a multicast group commu-
nicate through unicasts. They form a minimum spanning tree and
forward the messages from one member to another through the tree.
We also evaluated the impact of the application level multicasts for
the different algorithms.

5.2 Experiment Results
The following plots summarize simulation results in which the

cost of communication was computed by summing up the edge
costs (generated by GT-ITM package) on the links on which com-
munication takes place. Since absolute values of costs differ for
different networks, we normalize the costs to make comparison
easier. Thus the vertical axis in most plots shows “improvement
percentage” over unicast. In other words, 0% communication cost
improvement is achieved by using unicast to deliver each message.
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Figure 7. Algorithmic Comparison
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Figure 8. Effect of number of rectangles and iterations on no-loss algorithm

100% cost improvement corresponds to the cost of delivering each
message to a multicast group specially formed only of clients inter-
ested in this particular message, which is the best possible, and in
the worst case requires as many as O(2NS ) multicast groups. The
goal of clustering algorithms is to get as close to this performance
bound as possible while using no more than K groups.

The absolute communication costs depend on different param-
eters. For the case of one-mode gaussian subscription distribution,
the unicast is 7139, the broadcast is 8536, and the ideal solution of
network supported multicast is 1763.

Figure 7 shows how the communication cost changes as more
groups become available for different algorithms. We are inter-
ested in algorithms that demonstrate monotone improvement, since
intuitively we expect the algorithms to do a better job with more
groups. Each plot is shown for network-level multicast and appli-
cation level multicast. While application-level multicast results in
slightly higher costs, the trend remains the same, and the algorithms
that perform better under network multicast maintain their leader-
ship under application-level multicast.

Performance of k-means is almost the same as that of Forgy k-
means. The approximate pairs curve closely follows the curve of
the pairs algorithm, as one can see in figure 10, so the latter is not
shown in order to make plots readable.

The algorithms were run with the following parameters. K-
means and Forgy used 6000 rectangles and maximum of 100 itera-
tions (usually the number of actual iterations was less than 20). The
approximate pairs algorithm used only 2000 rectangles. The time
complexity graph in figure 10 shows that in this case time complex-
ity is almost the same as that of K-means. No-Loss algorithm was
run with 5000 rectangles kept after intersection and 8 iterations.
Figure 8 shows how the algorithm depends on these parameters.
MST was run with 6000 rectangles.

Figure 9 shows that the trend of the algorithm performance does
not depend greatly on the network topology. The left plot is taken
from figure 7. The right plot is obtained from simulation on a dif-
ferent network with subscription assignment generated according
to the same parameters, but with different random seeds. While the
grid-based clustering algorithms achieve local optimal solutions at
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Figure 9. Algorithmic Comparisons

best, in practice the solutions usually are good enough, reaching
60% in this case.

Figure 11 combines the left and right plots of figure 10. Notice
that the Forgy and K-Means performance plots go down when given
more time. The quality of solution can degrade because the num-
ber of wasted messages becomes large. Data clustering algorithms
usually make use of outlier removal techniques to avoid these prob-
lems. We leave the study of outlier removal effects for future work,
simply noting here that the parameter that regulates the number of
cells given to the clustering algorithm regulates its performance as
well as the time it takes to produce a solution. This is shown in
figure 10.

The results in figures 10 and 11 indicate that the Forgy cluster-
ing should be preferred over k-means, since it gives comparable or
better results faster. Cell-based clustering works well when the di-
mensionality of the event space is not too high and the granularity
of subscription interest is not too high. In this case these clustering
methods should be preferred over the No-Loss algorithm. We leave
the high-dimensional case for future study.

6 Conclusions and Discussions

We have considered the issue of efficient communication
schemes based on multicast techniques for content-based pub-sub
systems. We have proposed and adapted clustering algorithms to
form multicast groups for these content-based pub-sub systems.
These algorithms perform well in the context of highly heteroge-
neous subscriptions, and they also scale well. An efficiency of 60%
to 80% with respect to the ideal solution can typically be achieved
with less than 100 multicast groups.

Our experiments indicate that under several assumptions, which
include a high degree of regionalism of interest and a similar dis-
tribution of messages, the Forgy algorithm should be preferred for
most purposes. Iterative clustering algorithms (K-means and Forgy)
seem to be better suited for subscription dynamics, although other
algorithms can be adapted as well. Hierarchical clustering algo-
rithms (MST and Pairs) have poorer performance than iterative clus-
tering, but have the advantage of monotone improvement: when
more multicast groups become available, the new groups are formed
by subdividing the existing ones. Analysis in this paper of the ef-
fects of algorithmic parameters on performance should help guide
practical implementations.

There are still many open issues to be addressed.

1). Proposed algorithms can be adapted to make use of non-
rectangular subscription interest sets by rounding the sets to appro-
priate shapes. While the no-loss algorithm relies on the rectangular
interest set assumption, it is not very important to the other (grid-
based) algorithms. The same grid data structures can be created
without requiring the sets to be rectangles.

2). In many real-world scenarios each client is connected to an
ISP via a single last-mile link. One simple variant to extend the
transit-stub network topology [20] involves assigning higher costs
to the last-mile links, since these are usually the slowest and the
most congested ones.

3). Evaluation of the algorithms with real-world data would be
helpful. For example, stock trading data can be used to simulate
a stream of events coming into the system. However, information
about the real structure of subscriptions is harder to obtain.

4). In our experiments we did not simulate real network packets,
implicitly assuming that there are no delays caused by congestion
of network links. This is a reasonable assumption to make when the
message size is small (1K or less). If the messages have large sizes,
a different type of communication cost evaluation must be used.

5). In reality clustering groups need to be constantly updated,
since subscribers change their preferences, join and leave the net-
work. Katz et al show that iterative clustering algorithms are well
suited for dynamic changes in subscription structure [19]. Although
a different type of distance measurement is considered in that paper,
the same iterative improvement strategy could be used to update the
data structures of the k-means and Forgy cell clustering algorithms.

6). In our model we have assumed that the matching of messages
to groups or individual subscribers is done once: the first “intelli-
gent” node that receives the message decides how to route it. In an
alternative approach, described in several Gryphon project papers
[2, 14], each intermediate node knows about the preferences of its
neighbors, and matches each event against its specific data struc-
tures to find those neighbors to which the event must be forwarded
next. This approach may save communication and matching time.
However in practice the dynamics of subscriptions require subscrip-
tion changes to propagate quickly in the network, which makes this
approach difficult to implement. Another related extension of the
pub-sub model requires the system to store messages at intermedi-
ate nodes, allowing off-line clients to retrieve information of interest
when they connect to the system [6].
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