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Abstract

This paper introduces new algorithms specifically de-
signed for content-based publication-subscription systems.
These algorithms can be used to determine multicast groups
with as much commonality as possible, based on the total-
ity of subscribers’ interests. The algorithms are based on
concepts borrowed from the literature on spatial databases
and clustering. These algorithms perform well in the context
of highly heterogeneous subscriptions, and they also scale
well. Based on concepts borrowed from the spatial database
literature, we develop an algorithm to match publications
to subscribers in real-time. We also investigate the bene-
fits of dynamically determining whether 1o unicast, multicast
or broadcast information about the events over the network
to the matched subscribers. We call this the distribution
method problem. Some of these same concepts can be ap-
plied to match publications to subscribers in real-time, and
also to determine dynamically whether to unicast, multicast
or broadcast information about the events over the network
1o the matched subscribers. We demonstrate the quality of
our algorithms via a number of realistic simulation experi-
ments.

1. Introduction

Publication-Subscription systems (pub-sub for short) pro-
vide information on specific real-time events from publishers
to interested subscribers. The subscribers express their inter-
est in the form of multiple subscriptions. The publishers and
subscribers may be located at arbitrary nodes in a distributed
network. There are two basic types of pub-sub systems, with
differing degrees of sophistication.

Content-based pub-sub systems are now becoming quite
popular. See, for example, the pioneering work of the
Gryphon project [3, 5, 13]. Other systems can be found in
NEONet [11] and READY [7]. Such systems differ from the
more mature subject-based pub-sub systems in their general-
ity, usability and flexibility. Borrowing extensively from the
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classic stock market example used by Gryphon, a subject-
based pub-sub system would allow subscriptions based on
subject matter. A subscriber might request all events related
to IBM, for instance. Such a system is powerful but rela-
tively inflexible. The subscriber might receive many publi-
cations involving IBM stock market events of little interest.
On the other hand, a content-based pub-sub system would
allow subscriptions which were based on the conjunction of
potentially multiple predicates related to different attributes.
The motivating Gryphon subscription example was based
on three distinct attributes: The first was an equality pred-
icate based on a character string referring to the stock name:
name=IBM. The second was an inequality predicate based on
a two decimal numerical attribute referring to the stock price.
We will modify this slightly to consider two predicates, to-
gether forming a range: 75.00 < price < 80.00. (This is
perhaps a more likely scenario.) The third was an inequality
predicate based on an integer attribute referring to the vol-
ume: volume > 1000. A subscriber with this subscription
would receive information about all IBM trades with a price
between 75 and 80, with a volume of at least 1000 shares.
The capability of allowing a subscriber to chose just a sub-
set of all the possible publications pertaining to IBM clearly
results in a more valuable service.

So content-based pub-sub is more general and much more
personalizable than subject-based pub-sub. But the extra
function comes at a price. It is technically challenging for
a content-based pub-sub system to efficiently distribute the
many publication events to the interested subscribers over
the network. And it is technically challenging to do so in
a manner which scales with the dimensionality of the under-
lying event space, the number of publishers and the number
of subscriptions.

As identified in the series of Gryphon papers, there are
two key dynamic problems that a content-based pub-sub sys-
tem needs to solve:

1. One must match a given real-time event quickly to de-
termine the set of relevant subscribers. This is the so-
called matching problem.
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2. One must unicast, multicast and/or broadcast informa-
tion about the event over the network efficiently to the
matched subscribers (or possibly to a superset of those
subscribers, if that is more algorithmically effective, to
be filtered out as necessary). We shall call this the dis-
tribution method problem.

Both of these problems must be solved in real time as new
events are published. However, it is clear that there is a re-
lated, static “preprocessing” problem that should be solved
in order to enable the real-time algorithms to function effi-
ciently. Specifically we must precompute a set of high qual-
ity multicast groups based on the totality of subscribers’ in-
terests with as much commonality as possible. We shall call
this the subscription clustering problem.

The Gryphon papers do tackle the dynamic problems
above in elegant ways. In [3] and [5], for instance, the au-
thors consider the matching problem. The interested reader
is referred to (6] for a detailed description of the matching
algorithm, a performance analysis and a comparison with ex-
isting matching algorithms. In [5] and [13] the authors con-
sider multicasting techniques. It seems fair to say, however,
that the authors base their algorithms primarily on subscrip-
tions in which each dimension is based on either equality
or wild-card predicates. (A wild-card (*) indicates that the
subscriber does not care about the value in that dimension.)
While their algorithms will certainly work in full generality,
we believe that they are optimized for their motivating pred-
icate types.

In this paper we focus instead on more general instances
of the possible predicates. That is, we consider each predi-
cate to be range-based, composed of intervals in the underly-
ing domain of the predicate. (Because computers can handle
only inherently finite and discrete attribute values, one can
assume without loss of generality that all possible intervals
are actually open on the left and closed on the right. For
example, the previous volume predicate can be expressed
as 999 < volume < maxvolume. This assumption allows
the intervals to ‘fit together’ more cleanly. By decompos-
ing a subscription with multiple such ranges into multiple
subscriptions consisting of single ranges we can see that it is
sufficient to only consider intervals, albeit at a cost of more
subscriptions. And even attributes such as name, not typi-
cally thought of as numerical, can be indexed and therefore
linearized in some fashion.)

This perspective allows us to think of a subscription as
a half-open, half-closed aligned rectangle in space, each di-
mension corresponding to a different attribute. (The term
aligned means that the rectangle is parallel to the various
axes.) A published event becomes a point in the underlying
space. This mindset enables us to borrow from the spatial
database literature in solving the problems. (We also borrow
from the clustering literature.)

In a previous paper [15] we proposed a new approach
for subscription clustering. This approach imposes a grid

structure in each attribute dimension and decomposes the
subscriptions by intersecting them with the resulting aligned
rectangles. Cells of the grid can then be clustered using
known clustering algorithms, making use of feature vectors
and distance functions that we proposed.

In the current paper we shall take the preprocessing stage
clustering algorithms as given, and focus instead on the dy-
namic aspects of the pub/sub problem. This includes both
matching and distribution method algorithms. For the match-
ing problem we will employ algorithms borrowed from the
spatial database literature which are designed to handle so-
called point queries. Such algorithms, based on constructs
such as S-trees [2] and Hilbert-packed R-trees [8) can ef-
ficiently compute or bound the number of subscribers who
will be interested in a particular message. (In the query the
subscriptions correspond to the aligned rectangles and the
message corresponds to the point.) Then we will examine
the overall performance gains made possible via a simple but
powerful distribution method scheme. In other words, we as-
sume that the clustering algorithms have been used to form
multicast groups. When a publication event happens we use
the matching algorithm to compute the number of interested
subscribers. Then we make on-line decisions whether we do
multicast or unicast. We base our decisions on the number
(or the ratio of the number to the group size) of subscriptions
relevant to each publication event. Remember that it is not
always beneficial to do multicast for all publications. This
scheme tells us when it is a good idea.

Our results are relevant to two flavors of multicasting, net-
work supported and application level. See [4] for a descrip-
tion of the various tradeoffs. See [14] for a description of
application level multicasting.

We present a brief overview of related work. In [16]
the authors tackle the problem of finding efficient multicast
groups in a very general setting. They concentrate, as we do,
on the case where interests are highly heterogeneous. Their
goal is also similar, namely to maximize preference overlaps.
They make use of clustering techniques and provide both ini-
tial and incremental algorithms. The former is useful for de-
vising the first set of multicast groups, and the latter is used to
retain high quality in the presence of ongoing and inevitable
changes. Consideration of receiver interest is also studied in
[10] and [12]. An integer programming formulation for the
clustering problem is proposed in [1].

The remainder of this paper is organized as follows: In
Section 2 we introduce the required notation. Section 3 de-
scribes a possible matching algorithm. (We focus on an S-
tree implementation here. Comparisons of this with other
approaches will appear in a subsequent paper.) Section 4
describes the on-line distribution method scheme we are
proposing. In Section 5 we describe simulation experiments
which show the performance of the on-line scheme, and
present data study to justify the choice of parameters for our
simulations. Section 6 contains conclusions and areas for fu-

679 ]FF,F
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03) C(S)(%/[CPI%¥%R

1063-6927/03 $17.00 © 2003 IEEE



ture work. The Appendix contains a brief description for the
various clustering algorithms used in this paper.

2. Problem notation

In this section we define some key parameters we will use
in our problem descriptions.

o Let Q denote the event space. Each event being pub-
lished within the system can be uniquely described with

a single value w such that w € Q.

Let N denote the number of dimensions (or attributes)
inQ, so that @ C RV,

Let the probability density function publications p(z)
defined for each set z C 2 (more precisely, p(z) the
integral of the p.d.f. over the set z).

Define the underlying network topology as an undi-
rected graph G = (V, E).

Define the communication costs to be ¢, > 0 for each
edgee € E.

Let the set of publisher nodes be Vp C V.
Define the set of subscriber nodes as Vs C V.

Assume that each subscriber v; € Vs,i = 1..Ng has a
set of subscription preference rectangles Z; = {b;; AR
associated with it. Each b;; C 2 is an aligned rectangle

in space (2.

Denote 7 := |J, ¢y, Zy — the set including all subscrip-
tion rectangles. Denote k := |Z]|.

The sizes of the problems is defined by values of & and
N, and we are interested in algorithms that scale well with
respect to these values.

3. Matching problem scheme

In the spatial database literature data objects (which are
arbitrary subsets of R™) are typically approximated by their
so-called bounding boxes — the smallest aligned rectangle
which contains them. A so-called region query is a request
for all data objects which intersect with a given aligned query
rectangle. (This query rectangle is itself typically the bound-
ing box for an arbitrarily shaped query data object.) A point
query, relevant in the current paper, is a request for all data
objects which intersect with a given point. Obviously this
is a special case of a region query. To solve the matching
problem we need to quickly identify all subscriptions in Z
which contain a publication event w, and then compute the
set of subscribers associated with these rectangles. Note that
in this point query the subscriptions correspond precisely to

their bounding boxes, so that the query yields an exact rather
than approximate result.

Trees are indexes which are very efficient at answering
region and point queries. In this paper we shall focus on
an efficient data structure called the S-tree [2). The struc-
re of the leaf and internal nodes in S-trees are identical
to the internal record structure of R-trees. In our applica-
tion, each record in a leaf node contains entries of the form
(I, subscription-identifier), where I, an N-dimensional rect-
angle, is the corresponding subscription. Similarly, each in-
ternal node contains entries of the form (I, pointer), where
pointer contains the address of a lower node in the S-tree,
and [ is the minimum bounding rectangle of the set all sub-
scriptions in the leaf descendants of that node. Each node
has a branch factor of at most M.

To answer a region (or point) query one simply searches
downward from the root of the tree, pruning off all nodes
(and thus their children) for which the intersection of the
query rectangle (or point) and the minimum bounding rectan-
gle is empty. Obviously the choice of tree packing influences
the number of node pages which need to be examined. We
describe this packing now.

Unlike an R-tree, an S-tree will not necessarily be height
balanced. In fact, associated with each S-tree is a parameter
p which referred to as the skew factor of the tree. This factor
p lies in the range (0,1/2], and will be a good indicator of
how well-balanced the tree is required to be. A low value of
p results in potentially greater imbalance but greater design
flexibility. A skew factor near 1/2 implies that the tree will
be quite well-balanced, but may not have good performance
characteristics. Typically p is chosen to be about 0.3.

The branch factor M of a node is defined as the number of
children of that node. In other words, this is the fanout. We
choose M based on page size: A node should fit on a page.
M is typically chosen to be about 40, but varies based on
the number of dimensions. The leaf number N4 of a node
A is defined as the total number of data objects in the leaf
descendents of that node. Denote the volume of an aligned
rectangle I by V(I).

The process of building an S-tree proceeds in two stages:

1. Binarization: In this stage we construct a binary tree
such that the entries in the leaf nodes correspond to
the spatial data objects. Thus all non-leaf nodes have
branch factors of 2. Let A be an internal node of the
binary tree with children B; and B,. We ensure that the
leaf numbers Np, and Np, of each of these children
are each at least p - N 4. Among all partitions examined
which satisfy this condition we choose the one which
minimizes the sum V(Ip, ) + V(Ip,) of the volumes of
the minimum bounding rectangles.

Compression: In this stage we convert the binary tree
into a tree for which all but the leaf and penultimate
nodes have branch factors of M. We achieve this by it-
eratively compressing pairs of non-leaf parent and child
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nodes in the tree into single nodes. The leaf nodes are
not affected by this operation.

Here is a brief overview of each stage.
3.1. Binarization

The binary tree is constructed in a top-down fashion. (By
comparison, the packing method for Hilbert-packed R-trees
can be classified as bottom-up instead.) Thus we start with
the full set of data objects and partition them into two sets
which satisfy the properties described above. Then we par-
tition each of these two sets of data objects in turn using the
same method, and so on recursively until we arrive at the
individual leaf nodes.

SWEEP RANGE

Figure 1. Sweep operation for creation of bi-
nary tree.

It is therefore sufficient to describe the binarization pro-
cess for an arbitrary node A. If Ny < M we make A a
leaf node and stop. Otherwise, we consider the minimum
bounding rectangle 14, and choose a dimension n for which
this rectangle is longest. (Choosing this dimension will tend
to cause relatively square minimum bounding rectangles.)
Then we represent each of the N4 data objects by their geo-
metrical center, and order them by increasing values of their
nth coordinate. Candidate partitions (B;, B;) considered
will have the property that B, contains the first g data objects
according to this order, B; contains the remaining Ny — ¢
data objects, and p - Ny < g < (1 — p) - Na. Sweeping
over these (1 — 2p) - N4 choices in increments of M, we
choose the one for which V(Ig,) + V(Ip,) is minimized.
Ties can be adjudicated in favor of rectangle pairs whose to-
tal perimeter is minimized. Clearly the rectangles I B, and
Ip, can be computed incrementally as the sweep progresses.
Figure 1 shows a sample sweep operation. The bounding
rectangle is longest in the x-dimension, and we are assuming
thatp=1/4and M = 2.

3.2. Compression

We first discuss what it means to collapse two nodes into
one. First of all, two nodes A and B can be collapsed into one
node when they satisfy a parent-child relationship. Suppose,
for example, that node A is the parent of node B. The new
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node AB has the same ancestor as node A. The children of
node AB are the union of the children of node A (excluding
B) and the children of node B. This situation is illustrated in
Figure 2. Note that the child node B has a branch factor of
2, and therefore the branch factor of the new node AB is 1
more than the branch factor of the original node A.

o 0O
OVAWAN o e CYAWUA
A o FORM NODE AB
AVAYA
ANEERVAN

Figure 2. Collapsing two nodes into one.

First we compress bottom up one level, as follows: Iden-
tify each node A arising from the binarization stage with the
property that the number of leaf descendents of A is less than
or equal to M, but the number of leaf descendents of the par-
ent of A is greater than M. These will become the penulti-
mate nodes of the final S-tree, so collapse all non-leaf nodes
underneath each such A. (A node is said to be penultimate if
all of its children are leaf nodes.)

The remaining compression steps always collapse a par-
ent node with a child node having a branch factor of 2, so
that the branch factors of the resulting new node will always
increase by 1 at a time. In this way we can be certain that
collapsing will never result in a node with a branch factor ex-
ceeding M. The idea is to pick a node, collapse it with one
of its children to form a new node, and keep iterating the pro-
cess until either the branch factor of that node is exactly M,
or all children of that node are leaf nodes. Of course, given
the parent node we need to choose the child to collapse it
with. The rule is simple: We always choose the child with the
highest leaf number. The motivation behind this rule is that
it restricts the amount of skewness in the tree. Notice also
that this rule automatically guarantees that the chosen child
will not be a leaf node, because all children which are leaf
nodes will have leaf numbers less than or equal to M, while
all children which are not will have leaf numbers greater than
M. 1t remains to choose the order in which we choose the
parent nodes, and this is top-down. To accomplish this, we
start with an ordered list of the non-leaf nodes obtained via
breadth-first search starting at the root, removing collapsed
parent nodes but replacing them with the newer nodes unless
their branch factors are full. The process continues until this
list of potential parents is empty. At its conclusion, only the
penultimate and leaf nodes can have branch factors of less

than M.
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4. Distribution method scheme

In this section we shall first briefly outline our algorithms
for solving the subscription clustering problem. Then we
describe the new distribution method scheme itself. This
scheme uses the matching problem algorithm in order to
make on-line decisions whether to do multicast or unicast.

In our recent paper [15] we proposed a family of algo-
rithms for clustering subscription interest. The proposed
algorithms partition the event space (2 into (n + 1) non-
overlapping subsets for a fixed number n of multicast groups
n. Thus there are n subsets Sy, ..,.S, created by the algo-
rithm, plus a remaining catchall subset which includes the
restof 1: Sp = Q\U,_, S,. Foreachset S, with1 < ¢ <n
a multicast group is formed from all subscribers who have
overlapping subscriptions. In other words, we choose a mul-
ticast group M, = {i € Vs : 3j : b;; N S, #0}.

(Briefly, these algorithms were borrowed from the data
clustering literature, combining similar cells of a regular grid
in Q. Similarity of cells is defined based on membership
vectors and a publication density function p(.). Then the al-
gorithms can be applied to form locally optimal solutions.
In [15] we compared performance results for the so-called
K-means, Forgy K-means, minimum spanning tree and pair-
wise grouping algorithms in this framework.)

Given the set of multicast groups and a new publication
vector w the distribution method algorithm proceeds as fol-
lows. If w € Sy, then the publication is delivered using
unicast messages. Otherwise there exists unique value of g,
1< g<mn,suchthatw € S,.

It is clear that all subscribers interested in receiving mes-
sage w are in the group S, but not all members of this group
may be interested in receiving this message. So the S-tree
matching algorithm is used to build a list s of interested sub-
scribers for a given message w. If this list is empty, the pub-
lication will be not sent. If it is not empty, the size of this
list can be used to decide whether the publication should be
delivered using unicast messages or using a multicast mes-
sage to the group S,. The algorithm simply decides to send
unicast messages if the proportion of interested subscribers
is below a certain fixed level ¢, i.e. if |s|/|S,| < t. (We will
evaluate the influence of the threshold parameter on the av-

block. Each transit node was connected to two stubs on av-
erage, each stub having an average of twenty nodes. We
will present our empirical studies based on this network (Fig-
ure 3).

Figure 3. The Generated Network Topology

For a given network topology, we generated subscriptions
for each node. We first generated one thousand subscrip-
tions with a {40%, 30%, 30%} breakdown for the three tran-
sit blocks. Within each transit block we used a Zipf-like dis-
tribution [9] for the number of subscriptions between all the
connected stubs. Subscriptions were distributed according to
another (common) Zipf-like distribution within each stub.

The generated interval subscriptions were of the form
{bst,name, quote, volume}. The first field, bst, which
stands for buy, sell and transaction, took value B,S
and T with probabilities 0.4,0.4, and 0.2, respectively.
The center of the interval for the name field followed
a normal distribution, with mean centered around the
points specific to transit block number (3,10 and 17),
and standard deviation of 4. The length of this interval
also followed a Zipf-like distribution. The intervals for
the quote and volume fields were generated according to
the same parametric distribution with different parame-

erage message cost in the numerical experiments section.) ters. This parametric distribution took values as follows:
*  with probability go,
. [n,+00)  with probability g and n ~ N(u;,0,),
S. Experiments (—o0,n]  with probability go and n ~ N(uz,02),
[n1,nz] otherwise, the center of the interval ~ N (u3,03)

We evaluated the performance of these new matching and
distribution method schemes via simulation experiments, and
we now describe our methodology. First we describe the
network topology. We adopted the GT-ITM package [17]
from Georgia Institute of Technology to generate a network
with six hundred nodes according to a hierarchical scheme.

. . . . do q1 92 | 1,01 | M2,02] p3, 03] c,a
We borrow their terminology here. First, three transit blocks price | 0.15 | 0.1 | 01| 9.1 9,1 9.2 | 4.1
were generated, with an average of five transit nodes in each volume | 035 | 0.1 | O.1 9,1 9,1 9,2 | 4,1

and interval length following a Pareto (¢, a)
distribution.
The parameters were assigned according to the following
table:
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The generation of the subscriptions was intended to mimic
the real life scenario that people’s interests in stocks are cen-
tered around the current prices (Figure 4 (a)), the popularity
of the information for different stocks has a Zipf-like distri-
bution (Figure 4 (b)), and the popularity of the participants
also has a Zipf-like distribution.

The publications, points in the subscription space, were
generated according to a mixture of multivariate normal dis-
tributions. The different peaks in the multivariate normal
distributions represent multiple hot spots where events are
published more frequently. We studied three scenarios, mix-
tures of one, four and nine multivariate normal distribu-
tions, respectively. Writing N (a, b) for a distribution with
mean a and standard deviation b, the single mode multi-
variate normal distribution were N(1,1), N(10,6), N(9,2)
and N (9, 6) for each of the four dimensions. The four (two
by two) mode distribution was constructed by sampling in-
dependent mixtures of multivariate normal distributions in
each dimension. In the first and fourth dimensions we used
N(1,1) and N(9,6), respectively. The second dimension
was a normal random variable N (12, 3) with probability 0.5
and N(6,2) with probability 0.5. The third dimension was
a normal random variable N (4, 2) with probability 0.5 and
N(16, 2) with probability 0.5. For the nine (three by three)
mode distribution, the parameters for the first and fourth
dimensions remained ' the same. The third dimension was
N (4,3) with probability 0.3, N(11, 3) with probability 0.4
and N(18,3) with probability 0.3. The fourth dimension
was N (4,3) with probability 0.3, N(9,3) with probability
0.4 and N (16, 3) withprobability 0.3.

It should be noted that this experimental framework is
flexible enough to accommodate other probability distribu-
tions for the subscriptions and publications.

In the following study, we constructed 1000 subscriptions
for the network with 600 nodes generated from the GT-ITM
package.

5.1. Data analysis

In order to obtain a better understanding of the publica-
tion and subscription environments in real applications, we
analyzed the stock trading data from the New York Stock Ex-
change. This data was generated on September 24, 1999. We
studied the price distributions of all the trades by normaliz-
ing the price of a stock by its opening price. The overall price
distributions is shown in Figure 4(a). This distribution can be
approximated reasonably closely by a normal distribution.
We further collected information on the number of trades for
each stock and sorted them in decreasing order. Figure 4(b)
plots this frequency information against the popularity in-
dex, and is approximately a Zipf-like distribution. Figure 4
(c) shows the distribution for the amount of money for the
trades, which can also be approximated by a Zipf-like distri-
bution. Figure 5 presents the plots of the normalized price
and trade amount distributions for the three most frequently

Purceniage of Trades

Porventage of Trades

Porvcntage of Trades

traded stocks. We observe that the price distributions do ex-
hibit bell shapes centering around the averages, which are
approximately normal distributions. The amount of money
for each trade appears to follow a Pareto distribution, except
for several irregular spikes. This stock trading information
provides the guidelines and support for our choice of distri-
butions in the experimental studies.
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Figure 5. Most frequently traded stocks.

5.2. Experimental results

We performed experiments on the generated testbed to
evaluate the performance of the different schemes for form-
ing multicast groups under two multicast frameworks. One
approach for implementing the multicast mechanism is net-
work supported multicast. This requires the network routers
to have multicast capabilities, to be able to recognize multi-
cast groups and forward the information to the proper mem-
bers of the group. There are two types of network supported
multicast algorithms currently used in routers: dense mode
and sparse mode multicast. The implementations differ in
the amount of state information and in the structure of the
routing tree. We assume the dense mode multicast where the
routing tree is a shortest path tree rooted at the publisher.
The amount of state information is proportional to both the
number of publishers and the number of groups.
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Figure 4. The normalized price, frequency and amount distribution of stock trades

In order to measure algorithm performance, the cost of
communication was computed by summing up edge costs
(generated by the GT-ITM package) on the links on which
communication took place. We normalized the costs to
make comparisons easier. Thus the vertical axis in most
plots shows “improvement percentage” over unicast. In other
words, 0% communication cost improvement is achieved by
using unicast to deliver each message. 100% cost improve-
ment corresponds to the cost of delivering each message to a
multicast group specially formed only of clients interested in
this particular message, which is the best possible, and in the
worst case requires as many as O(k” ) multicast groups. The
goal of clustering algorithms is to get as close to this perfor-
mance bound as possible, using more no more than a fixed
(and small) number of groups.

Figure 6 illustrates the advantage of dynamically deciding
whether to use multicast or unicasts. For 11 and 61 multicast
groups the figures show how the average cost of delivering
a message changes with the threshold value. The algorithm
chooses to send a message via unicasts if the ratio of inter-
ested subscribers to the total number of subscribers in the
corresponding group is below the threshold value. Note that
setting the threshold at 0% gives the same results as not us-
ing a dynamic distribution method at all. We have evalu-
ated Forgy k-means, pairwise grouping and minimum span-
ning tree clustering algorithms in our grid-based subscrip-
tion clustering framework. The Forgy k-means algorithm
performs the best in most of the experiments. Although the
performance of the different clustering algorithms varies, set-
ting the distribution method threshold at approximately 15%
of the interested subscribers seems to give the consistently
best improvements. Significant improvement for the Forgy
algorithm with the 15% threshold is observed for realistic
environments with 9 modes and 11 multicast groups.

It was shown in [15] that Forgy k-means in most cases
produces better solutions than all other clustering algorithms
considered for the static multicast distribution method. In
addition, it was shown that in practice the Forgy algorithm
has the shortest running time on a fixed set of input data. Our
experiments described in this section show that determining
the distribution method dynamically can further improve the
solutions produced by the Forgy algorithm.

70 T T T T T 70 E kT T
z 60 + 4 z 60 B8 By R
g 50 4 g sof DG
= E-3 e
- 3 P
& 40 & 40 X\‘\\
5 30 E s 30} .Y
# 20 B! ® 20} E
10 ~ 10 - A 1 L 1 I L 1 1
0 5 10 15 20 25 30 35 40 45 50 G 5 10 15 20 25 30 35 40 45 50
2x2-Mode Gaussian InterestMsgs, 11 groups 2x2-Mode Gaussian InterestMsgs, 61 groups
70 L e M B e 70 L e S S e S S
2 60F . 2 60 proogproe Yy :
g0t 4 FEdS T3
= = & s > S
o F 4
8 N 8 40
k] a % e I 5 0F 1
* 20 E"" LT * ol 4
10 PRI S W S R s v 10 — N

70 T T T 70 T T T T T L T T
260 1 Ok e ]
Es0 1 Ew i 1
3o | SuS et
¥ . D
# 10 BBy T # 10 TR T R WO T S Y Tt

One-Mode Gaussian InterestMsgs, 11 groups One-Mode Gaussian InterestMsgs, 61 groups

Lt
0 § 10 15 20 25 30 35 40 45 50 0 5 1015 20 25 30 35 40

3x3-Mode Gaussian InterestMsgs, 11 groups 3x3-Mode Gaussian InterestMsgs, 61 groups

0 5 10 15 20 25 30 35 40 45 50
Percentage of interest Threshold for Unicast
Pairwise Grouping ——
Forgy K-Means ---x---
Minimum Spanning Tree &

0 5 10 15 20 25 30 35 40 45 50
Percentage of Interest Threshoid for Unicast
Pairwise Grouping ——

Forgy K-Means ---x---
Minimum Spanning Tree --&--

Figure 6. Effects of switching to unicast mes-
sages based on the proportion of interested
clients (11 and 61 groups).

6. Conclusions and future work

In this paper we have introduced a new algorithm for effi-
ciently handling the distribution of publication events to sub-
scribers in content-based pub-sub systems. In particular, we
have devised the so-called distribution method problem and
analyzed the associated performance improvements.

It would be nice to have some theoretical and practical
measures which could help determine how efficient a multi-
cast group has to be in order to actually employ it. A highly
inefficient publication multicast event for which most sub-
scribers would have to filter out the results should clearly be
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handled by multiple unicasts. The question is where to draw
the line on this. We leave this for future work.
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A. Clustering algorithms

In this appendix we shall briefly describe the clustering
algorithms that we used for our experiments. We illustrate
our general framework with the detailed description of the
K-means algorithm. More details and performance results
for these clustering algorithms can be found in our previous
work [15].

A.l. General presentations of the clustering algo-
rithms

In Figure 6 we demonstrate the effect of switching to uni-
cast on the groups formed by subscription clustering algo-
rithms, which we call Forgy k-means, pairwise grouping and
minimum spanning tree. Here we continue to use these brief
names for subscription clustering algorithms initially intro-
duced in [15].

All three algorithms partition the event space € into
(n + 1) non-overlapping subsets for an allowed number of
multicast groups n. In other words, n subsets Sy, .., S, are
formed by the algorithm, and the remaining subset includes
therestof Q: So = Q\U,_, ,, S;. Foreachset Sy, ¢ = 1..n,
a multicast group is formed consisting of all subscribers who
have subscriptions overlapping this subset. In other words,
the multicast group M, is:

M, = {v; €Vs:3j:b;NS, #0}, ¢g=1.n.

Given this set of multicast groups and a new publication
vector w the matching algorithm proceeds as follows. If w €
So, then the publication is delivered using unicast messages.
Otherwise there exists unique value of ¢, 1 < g < n, such
thatw € S,.

It is clear that all subscribers interested in receiving mes-
sage w are in the group S, but not all members of this group
may be interested in receiving this message. The S-tree al-
gorithm is used to build a list s of interested subscribers for
a given message w. If this list is empty, the publication will
be not sent. If it is not empty, the size of this list can be used
to decide whether the publication should be delivered using
unicast messages or using a multicast message to the group
S, The algorithm can decide to send unicast messages if the
proportion of interested subscribers is below a certain fixed

2002. level ¢, i.e. if [s]/|S,| < t.
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A.2. Forgy k-means cell clustering algorithm

This algorithm applies a standard k-means clustering al-
gorithm to cells of a regular grid. A special distance func-
tion is used to minimize the expected number of wasted mes-
sages during multicasts. The k-means clustering algorithm is
proven to converge to a local optimum, although we cannot
give a polynomial bound on the number of iterations it will
require. We therefore artificially limit the maximum number
of improvement iterations the algorithm can make, as well as
the number of cells that it works with. (This constant T was
set to 200 in our experiments.)

The use of k-means algorithm has been considered in lit-
erature for point preferences [13, 16]. In our previous paper
[15] we extended this approach for more general rectangular
interest sets. We also have shown that in many cases k-means
produces the best solution among the algorithms, while also
having the smallest running time.

Given that the algorithm is allowed to form at most n
groups, preprocessing is done according to the following
steps: '

Step 0. Form a grid G = {g} in the event space 0.
For each cell g, € G form set of subscribers [ (9z).
Let h be the list of T cells g, (for fixed T > n)
having the largest values of p,(g.)n(g.)
among the cells in G.
Step 1. Initialize n groups in the set of groups S
by creating n groups, each containing one element
for the first n elements of A.
Assign the rest of the elements of A to
closest clusters already in S.
Step 2. For each element of h:
if it is not the only element in its cluster
remove it from its cluster and place into
the closest cluster from S.
Compute I(-) for each of n clusters as union of I(-)

sets of participating cells, and update EW (see below).

Step 3. Repeat Step 2 until cluster membership stabilizes
or the maximum number of iterations is reached.
Step 4. S contains the required set of subsets of ).

The grid G is formed by choosing at most C' adjacent
non-overlapping intervals of equal length in each dimension,
so that the resulting grid covers all interest rectangles bij.
Clearly the grid has at most C¥ cells.

The list of subscribers [(g, ) interested in the set g, C Q is
defined as the set of subscribers who have non-empty interest
intersections with the set g,

lgz) :={i:35 :b;; N g, #0}.

In steps 1 and 2 of the clustering algorithm we need to
compute distances between a cell and a group of cells. This

distance is defined as the amount of increase in the expected
number of wasted messages after the cell is added to the
group.

The value EW of the expected waste can be defined re-
cursively. EW of a single cell is 0. When a cell g, is added
to a group of cells G, the expected waste can be calculated as
EWipew =

EWotapp(9)[1 + |i(g2) \ UG + po(g)IL(G) \ U(ga)|
Pp(9z) + pp(G) .

A similar distance function was proposed in [13] for point
preferences.

A.3. Pairwise grouping and minimum spanning tree

Our k-means algorithm applies a standard partitioning
clustering algorithm to the set of grid cells using a cus-
tomized distance function. The other two clustering algo-
rithms we consider employ the following different but stan-
dard techniques to the same problem.

The pairwise grouping algorithm was studied in [13] for
the point preferences case, and we analyze its performance in
a more general rectangular preferences setting in [15]. Our
experiments suggest that although this algorithm can achieve
better performance than k-means, its running time character-
istics are significantly worse.

Pairwise grouping starts with the set of the T highest-
weight cells, similar to k-means, and replaces a pair of clos-
est cells with their combination. This step is repeated until
only the required number n of combinations remain.

The minimum spanning tree algorithm did not perform as
well as the others in our experiments, but its running time
characteristics are much better than those of pairwise group-
ing. In fact, the minimum spanning tree algorithm is a sim-
plified version of pairwise grouping. Instead of recalculating
distances each time a pair is grouped, the algorithm computes
all distances once.

Using a graph representation of the problem, where nodes
correspond to the T cells, and distances between nodes are
computed according to the expected weight function, the al-
gorithm introduces edges connecting the nodes one by one in
order of increasing distance, starting with the shortest, until
exactly n connected components are formed.
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