
A Semantic Overlay for Self-∗ Peer-to-Peer Publish/Subscribe

E. Anceaume1, A. K. Datta2, M. Gradinariu1, G. Simon3, and A. Virgillito4∗
1IRISA, Rennes, France

2 School of Computer Science, University of Nevada Las Vegas, USA
3 France Telecom R&D, Issy les Moulineaux, France

4 Università di Roma “La Sapienza”, Italy

Abstract

Publish/Subscribe systems provide a useful platform for
delivering data (events) from publishers to subscribers in
an anonymous fashion in distributed networks. In this pa-
per, we promote a novel design principle for self-∗ dynamic
and reliable content-based publish/subscribe systems and
perform a comparative analysis of its probabilistic and de-
terministic implementations. More specifically, we present
a generic content-based publish/subscribe system, called
DPS (Dynamic Publish/Subscribe). DPS combines classi-
cal content-based filtering with self-∗ (self-organizing, self-
configuring, and self-healing) subscription-driven cluster-
ing of subscribers. DPS gracefully adapts to failures and
changes in the system while achieving scalable events deliv-
ery. DPS includes a variety of fault-tolerant deterministic
and probabilistic content-based publication/subscription
schemes. These schemes are targeted toward scalability,
and aim at reducing and distributing the number of mes-
sages exchanged. Reliability and scalability of our system
are shown through analytical and experimental evaluation.

1 Introduction

The publish/subscribe paradigm has emerged in the re-
cent years as an effective technique for building distributed
applications in which information has to be disseminated
from publishers (event producers) to subscribers (event
consumers). Users express their interests in receiving cer-
tain types of events by submitting a filter on the event con-
tents, called a subscription.

When a new event is generated and published, the pub-
lish/subscribe infrastructure is responsible for checking the
event against all current subscriptions and delivering it to
all users whose subscriptions match the event. Content-
based publish/subscribe systems allow complex filters on

∗Antonino Virgillito is partially supported by project MAIS, funded by
Italian MIUR. Work was done while author was at IRISA, Rennes.

the event content, enabling the use of constraints such as
ranges, prefixes, and suffixes. Combining expressiveness of
subscription language and scalability of the infrastructure
poses an interesting challenge that has inspired many re-
searchers to explore this topic further. However, actual de-
ployment of pub/sub architectures in real, large-scale sys-
tems is currently limited by their lack of self-∗ capabili-
ties. In this work, self-∗ capabilities [2, 3] include 1) self-
organization — the ability of the system to reduce the en-
tropy of the system, for example, by making nodes form
groups to improve or at least to maintain some global prop-
erties; 2) self-configuration — the ability of the nodes to set
up their structural relationships; and 3) self-healing — the
ability of the nodes to preserve their structural relationships
despite the dynamicity of the system (joins, departures, or
failures). Enhancing a pub/sub system with self-∗ capabili-
ties allows an easier deployment and a more flexible adap-
tation in a larger spectrum of applications. Typical imple-
mentations of publish/subscribe systems (such as Siena [9],
Gryphon [6] and, recently, Kyra [8]) rely on a network of
dedicated servers (usually called brokers) that are controlled
by administrators in charge of repairing and maintenance
interventions. However, in dynamic decentralized scenarios
such as peer-to-peer networks this architecture is not feasi-
ble, because the high dynamicity of the context requires the
topology of the network to be frequently rearranged to face
changes due to node joining, leaving and failing.

Scribe [10] and Bayeux [18] are two topic-based sys-
tems having self-∗ capabilities. They both make use of a
DHT (Distributed Hash Table). A single node is responsi-
ble for matching and delivering all notifications related to a
specific topic, which is the root of a dynamically-built diffu-
sion tree for events. Combining content-based expressive-
ness with self-organizing capabilities of DHT-based over-
lays is discussed in several papers[16, 13, 5]. Meghdoot
[13] and [5] work on top of a CAN and a Chord overlay,
respectively to store the system subscriptions. The main
difficulties in designing content-based pub/sub on top of
DHTs are: (i) mapping content-based subscriptions into a

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

single key space and (ii) ensuring the persistence of sub-
scriptions despite the dynamicity of the underlying overlay.
Methods to map content-based subscriptions to DHT ad-
dresses are described in [16, 5]. The mapping requires sub-
scriptions to be moved from the issuing node to a set of se-
lected “rendezvous” nodes. Mapping may impose some re-
striction on the constraints applicable in subscriptions with
respect to the general language supported by broker-based
systems. Typically, string constraints like prefixes and suf-
fixes cannot be easily mapped to a set of keys. Moreover,
subscriptions are usually replicated on several rendezvous
nodes, and large subscriptions (i.e., subscriptions that possi-
bly match a large number of events) may have many copies.
Replication is also used in order to maintain the persistence
of subscriptions [13]. This is required because a subscriber
can lose its subscriptions if a rendezvous node fails.

In this paper, we promote a novel design principle for
reliable content-based publish/subscribe architectures with
self-∗ capabilities. Our system, namely DPS, is not based
on a network of brokers. Subscribers coordinate among
themselves on a peer-to-peer basis to construct optimized
event diffusion paths without any human intervention. More
precisely, we propose a subscription-driven semantic over-
lay in which subscribers self-organize according to similar-
ity relationships among their subscriptions. In DPS, two
subscribers are considered similar when they share a com-
mon attribute of a subscription. Similar subscribers are log-
ically connected into the same group. Groups of subscribers
self-configure to form tree structures such that only one tree
is built per attribute. No mapping of DHT-based overlay
is needed. Virtually all types of attributes and constraints
can be directly supported. Moreover, subscriptions are not
replicated: a subscription is maintained only at the corre-
sponding subscriber. Differently from a previous solution
for semantic-driven pub/sub overlay [12], DPS does not as-
sume the complete knowledge of the network to compute
the neighbors of a node. Thus, each subscriber has to keep
track of a limited number of its neighbors regardless of the
size of the system, and the effect of node failures is confined
within a bounded number of neighboring groups.

The general design principles of the DPS overlay can be
instantiated with different algorithms to i) traverse the tree
for propagating a subscription or a publication across the
groups and ii) realize the communication inside a group
and between groups. Tree traversal and communication
approaches can be combined to design DPS implementa-
tions that cater the needs of different deployment contexts.
In particular, we propose two different techniques for tree
traversals (namely, root-based and generic) and two differ-
ent approaches for communication (leader-based and epi-
demic). The epidemic approach is based on gossiping of
events that obtains high probabilistic guarantees of deliv-
ery even in presence of frequent failures. With respect to

the gossip-based algorithms for pub/sub described in [4],
our system supports expressive content-based addressing.
Gossiping techniques for content-based pub/sub have been
exploited in [11], but without a self-organizing overlay.

DPS is evaluated through an extensive simulation and
analytical study in which it has been tested using different
types of workload that model realistic application scenarios,
and comparing the different implementation styles. Results
show that the DPS overlay allows to massively reduce the
number of visited nodes with respect to a broadcast (from
75% to 90% of the nodes in less). Moreover, simulations
show the self-healing capabilities of DPS, even when sub-
ject to severe failure conditions, and the overall scalability
of the approach, that can provide high degrees of reliability
without cluttering the network with control messages.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the system model and the problem state-
ment. In Section 3, we define the logical backbone of DPS,
introducing the concept of similarity on which the logical
structure of the DPS overlay is based. Several algorithms
for subscriptions and publications, and for communicating
within the groups are presented in Section 4. Analytical and
experimental evaluations of DPS are studied in Section 5.
We make some closing statements on the proposed and fu-
ture work in Section 6. Finally, due to lack of space, the
pseudo-code of the algorithms, proof of correctness of DPS
and proof of its self-∗ properties are presented in a longer
version of this paper [1].

2 Framework

We assume a finite, yet unbounded dynamic set of nodes.
The set is dynamic in the sense that nodes can join or leave
at an arbitrary time. In a publish/subscribe system, Nodes
cooperate to send (publish), relay, and receive (notify) spe-
cial messages, namely events (or publications). The interest
of a node in a set of events is referred to as subscription, and
is expressed as a filter defined on the content of the events.

We consider a content-based publish/subscribe data
model [13] where both subscriptions and events use as
building blocks a finite, yet unbounded universe of typed at-
tributes. A content-based subscription (filter) is a conjunc-
tion of predicates, i.e., F = AF1 ∧ . . .∧AFj , where AFi is
defined as a tuple AFi = (namei Opi ci) where namei is the
name of the attribute, Opi is an operator, and ci is a constant
value. The operator Opi can be chosen from a set of basic
operators that depends on the attribute type. For example,
possible operators for numerical attributes are {=, <, >},
while string attributes can support prefix, suffix and sub-
string wildcards. Complex filters can be expressed as the
conjunction of two or more basic operators. For example, a
range filter for an attribute a of the form c1 < a < c2 can
be obtained as the conjunction of the two predicates a > c1

2

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

s3

s2 s5 s9

s4

a=4

a>2

a<20

a<11

s6

b<7

s7

c=abc

c=ab*a b c
s0: a>2 ∧ b>0
s1: a>2 ∧ a<500
s2: a>5 ∧ b<2
s3: b>3 ∧ c=abc
s4: a<4 ∧ b>20
s5: a=4 ∧ c=abc
s6: a<3 ∧ b>3 ∧ b<7
s7: b>3 ∧ c=ab*
s8: a>2 ∧ a<20 ∧ c=a*
s9: a<11
s10: a>50 ∧ b<5
s11: a>3 ∧ b<50

s10

b<5 b>20

s1
s0

s8

a>5

s11

a>3

Figure 1. Logical Trees

and a < c2. An event is a conjunction of equalities over
the attributes’ universe. More precisely, an event is denoted
as E = AV1 ∧ . . . ∧ AVk, where AVi = (namei = vi),
where vi is the value of the attribute. An event matches a
subscription iff for all the predicates in the subscription, a
corresponding matching value appears in the event.

Finally, it is important to note that the number of at-
tributes for events and subscriptions is not fixed. That
is, each single subscription or event can include an arbi-
trary number of predicates and no prior coordination among
nodes is necessary to agree on the event space. This differs
from the approach adopted in Meghdoot [13] in which all
the attributes have to be fully characterized by all the sub-
scribers and CAN nodes a priori.

3 The DPS Overlay

In this section, we describe the construction and main
features of the overlay scheme dedicated to the DPS
pub/sub system. The overlay is subscription driven: sub-
scribers self-organize according to their interests and the
resulting logical structure is a virtual forest of logical trees,
where each tree is associated with an attribute and only one
tree is maintained per attribute. Each vertex of a tree is la-
beled with a predicate (filter on the tree attribute). In the fol-
lowing, we present the relationships that enable subscribers
to self-organize according to their subscription similarity.

Two nodes are similar when they share at least one com-
mon predicate in at least one of their subscriptions. We note
p ��AF s two nodes p and s being similar with respect to
a predicate AF . A semantic group (or simply group) is
identified through a group predicate which is the common
predicate on which the members of the groups are simi-
lar. Formally, a group G related to a predicate AF verifies
∀p, s ∈ GAF : p ��AF s.

The group predecessor relation imposes a hierarchical
ordering among the groups that is based on the predicate
inclusion relation. A predicate AF2 is included in a predi-
cate AF1 if all the events matching AF2 also match AF1.
Two groups are related through the group predecessor re-
lation when their respective group predicates are related by

the predicate inclusion relation. A group GAF1 is the pre-
decessor of GAF2 if AF2 is included in AF1. By extension,
GAF2 is the successor of GAF1 .

Each attribute is “owned” by a unique subscriber. For
instance, in Figure 1, the owners of the trees labeled “a”,
“b”, and “c” are subscribers s0, s6, and s7, respectively.
Trees are connected among each other, for example, by let-
ting all owners know each other or by keeping at each node
a cache of nodes belonging to other trees (Connections be-
tween trees are not shown in figures for clarity).

A subscriber joins the tree corresponding to only one of
the attributes of its subscription. This attribute can be arbi-
trarily chosen without affecting the correctness of the solu-
tion since each event is published in each logical tree that
matches every attribute of the event. We decided to decom-
pose a subscription into its attributes, rather than maintain-
ing a single tree (as done in [12]), because the generality of
the content-based language may prevent to determine any
inclusion between two subscriptions. The drawback of this
choice is that subscribers also receive events that match only
a part of their subscription (false positives). Moreover, the
number of false positives is likely to grow when more at-
tributes are present. Thus we deem our approach more ef-
fective especially when few attributes are considered.

Finally, following only the above definitions, some types
of predicates like equality or substrings may be placed at
different places in the tree. For example, the group for pred-
icate a = 4 in the tree for attribute “a” may be placed be-
low the group for predicates a > 2, a > 3, a < 11, or
a < 20. These ambiguities may create problems while try-
ing to locate a group upon subscription. To remove them,
we impose an additional constraint: All groups related to an
ambiguous predicate must be placed in the tree following a
unique consistent convention. For example, for numerical
attributes, equality predicates are placed in the greater-than
branch if the number is odd or in the less-than branch if
even. Moreover, the group should be placed as successor of
its immediate predecessor.

As previously said, our logical overlay is constructed by
the self-organization of subscribers according to their sub-
scription similarity. Other approaches [15, 8] group similar
subscribers by applying a partitioning criteria over the event
space. All nodes having subscriptions that fall into a com-
mon partition are grouped. We chose the similarity over the
partitioning method because it does not require prior agree-
ment among the nodes, does not depend on the number of
nodes, and reduces the number of non-matching messages
received by nodes in a group.

4 DPS Algorithms

In this Section, we present algorithms for the construc-
tion of the DPS overlay and the publication and subscrip-

3

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 2. Tree Traversal Example

tion diffusion. These algorithms are organized into two
classes: tree traversal algorithms, that concern how to lo-
cate a group, and communication algorithms, that regard
how to exchange publications and subscriptions between
groups and among nodes of a same group. The following
data structures are used in the DPS algorithms:
- groupview: list of pointers to nodes inside the group.
- predview, succview: two ordered lists of K pointers to
nodes in successor/predecessor groups. That is, they point
not only to nodes in the direct successor group but also to
successors/predecessors at upper/lower levels, in order to
handle multiple concurrent failures involving a whole group
at once. In groups with multiple branches, a node must have
one succview list for each of its successor groups.

4.1 Tree Traversal

Prior to subscribing or publishing an event, the event
should traverse the tree to locate the position of the group it
has to belong to, in case of subscription, and all the groups
hosting subscribers for the event, in case of publication.

Traversal starts by a contact point in the trees related to
the subscription or the publication. While subscribers only
need to contact one tree, a publisher has to contact all the
trees corresponding to each attribute within the event. If
there is no tree for an attribute, a new tree is created and
the first subscriber becomes its owner. It is possible that
multiple trees for a same attribute are created, when two
nodes subscribe concurrently. In order to further reduce the
probability of this event, the node that created a tree peri-
odically starts a new traversal. So it detects duplicate trees
and merges them into one.

In the root-based approach, visit of the tree starts from
the root and proceeds only downwards, while in the generic
approach any node can be chosen as a contact point and the
visit goes in both directions. Root-based allows to obtain
lower latency but imposes high stress on the root node and
requires it to be always known. In the generic approach a
visit requires more messages but the load is more evenly
balanced and the contact point can be any node in a tree.
Subscription Scheme. The subscription process ex-

ploits three primitives FIND GROUP, SUBSCRIBE TO and
CREATE GROUP, respectively used for locating the group of
similar subscribers, joining to it and creating a new group.
A new subscription has to traverse a tree in order to find its
position. Figure 2 shows an example of a new group cre-
ation. The black line shows the path followed by the sub-
scription a = 3 issued by subscriber s using the root-based
approach. The subscription is received by group a > 2.
Since this group is the smallest possible predecessor of
group a = 3, it is considered the designated predecessor for
the subscription. As this group does not exist, it is created
below a > 2 and s is added to it. The paths followed by the
generic approach are represented by gray lines — solid and
broken lines for the contact points s9 and s5, respectively.

When an appropriate group is located, the node joins
the group by the SUBSCRIBE TO primitive. If no group
matches the predicate, then the CREATE GROUP primitive
is applied. Each time a new group is created, event prop-
agation is blocked in the predecessor until data structures
related to the new successor are updated. Allowing pub-
lications and subscriptions during group construction may
result in events not delivered to the new successor group, or
more seriously, creating incorrect groups in the trees in case
of concurrent group creations.
Publication Scheme. All the trees corresponding to the at-
tributes in the published event should be visited. An event
received by a group is matched against the group predicate.
If the event matches the group predicate, it is propagated
inside the group through the PUBLISH GROUP primitive.

In the root-based approach downstream propagation
along the tree continues as long as the event matches the
group predicate; it stops otherwise (the successor relation
between groups ensures that no matching subscribers are
present in any successor groups). So, the entire branch
of the tree can be safely excluded from the event propa-
gation. Consider the right side of Figure 2. In the root-
based approach (the black line), publication a = 4 is for-
warded downstream from the contact point to all the groups
with predicates matching the publication. Differently, in the
generic approach, if the event does not match the group
predicate, it still has to be forwarded upstream to the pre-
decessor. Otherwise, if the event has been received by j
from its predecessor, it is forwarded to j’s successor only if
it does match j group predicate. When publication a = 4
starts from the group a < 11, it is propagated up (dashed
gray lines) through all the matching groups. Group a > 2
also needs to forward the publication to its successor in or-
der to reach group a = 4.

4.2 Communication within DPS

4.2.1 Leader-Based Communication

Each group in each logical tree contains a special node
which behaves as the leader of the group. Communica-

4

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

tion between different groups is realized via their respec-
tive leaders. The co-leaders are some nodes that can deal
with the leader failure. A node becomes the leader of a
group as soon as it creates its own group or remains the
only member of a group. Only leaders and co-leaders main-
tain the predview and succview lists. They also maintain
the whole group in their groupview. A regular member
(i.e., neither a leader nor a co-leader) only has leaders and
co-leaders in its groupview.
Leader-based Subscription. The subscription process
is realized by implementing the CREATE GROUP and
SUBSCRIBE TO primitives. Both are invoked on the new
subscriber by the leader of the predecessor group. If the
new subscriber becomes the leader or co-leader of a new
group, it updates succview and predview.
Leader-based Publishing. The publication process is real-
ized by implementing the PUBLISH GROUP primitive. An
event received by a group through this primitive is always
redirected to the group leader. The leader propagates all the
events it receives to all the group subscribers. Each sub-
scriber upon receipt of an event notifies its application only
if the event matches one of its subscriptions.

4.2.2 Epidemic Communication

In epidemic communication [7, 14, 4], each member of a
group communicates with a subset of members of other
groups. In particular, each nodes stores its predview,
succview and groupview, that contain only a subset of the
group’s nodes. In contrast with the leader-based approach,
several copies of a message may traverse the group. This
guarantees a higher fault-tolerance at the price of message
duplication. Data structures are updated for every change in
the membership and maintained by periodic gossiping.
Epidemic Subscriptions. Similar to the leader-based ap-
proach, epidemic propagation of subscriptions is realized
through the CREATE GROUP and SUBSCRIBE TO primi-
tives. An additional primitive, GOSSIP SUB, is required
to update the views and propagate the update within the
group. Upon receipt of such primitives, the new subscriber
updates its variables groupview and succview. View up-
date messages are gossiped by each node to Fs other nodes
in the group. Fs is called the subscription fanout. When
a gossip message is received by a node, it is forwarded
with probability p, a parameter of the algorithm. To stop
the propagation, probability p is reduced proportionally to
the number of times the message is forwarded. Note that a
node issuing a new subscription can receive more than one
CREATE GROUP or SUBSCRIBE TO messages if the diffu-
sion started from more than one contact points. This does
not require any specific check in the algorithms.

Epidemic approach is prone to undesired behavior when
two similar subscriptions are issued concurrently. In par-
ticular, if two different nodes in a particular group receive

the subscription requests concurrently, two groups corre-
sponding to the same predicate are created. According to
our simulation study, this behavior is very infrequent and
does not harm the correctness of the system. The system
continues behaving according to its specification, only suf-
fering from a non-optimal use of resources. In order to limit
these situations, a merge process is considered: nodes peri-
odically send a view update message to their successors in
the succview, containing the whole succview. Node re-
ceiving the update have the opportunity of adding to their
groupview some nodes in the group that they do not know,
leading to a merge of disjoint groups.
Epidemic Publishing. Publications are diffused within a
group with a simple gossiping, i.e., each node forwards the
event to k of its neighbors. As for subscriptions, the proba-
bility of forwarding an event in the group decreases propor-
tionally to the number of times the event is forwarded.

4.3 Self-healing of DPS Overlay

The DPS overlay is able to self-heal when nodes in the
overlay leave by voluntary departures (unsubscriptions) or
failures (crashes), that can provoke partitioning between
two groups in the tree or inside a same group. Nodes in the
predview and succview structure are periodically moni-
tored for failures. If one node fails, it is immediately re-
placed by pulling a view update from the other alive nodes.
Self-healing in Leader-based approach When a group
leader abruptly crashes, one co-leader becomes the new
leader. It first promotes a regular member as co-leader.
Then, it transmits to the whole group the new leader iden-
tity and the new co-leader. The new leader will be contacted
by leaders in the adjacent groups that also detect the leader
failures, that will be made aware of the new leader identity.
Self-healing in Epidemic Approach In epidemic-approach
it is not easy to determine when a group has completely
failed as nodes have in general divergent views about the
group, predecessors and successors. We tolerate temporary
situations in which the overlay is not consistent: for exam-
ple two distinct groups for the same predicate exist in the
tree and one of them does not point to any successor. How-
ever, this does not harm the connectivity of the tree, that is
preserved at any time by the self-healing process, as shown
by the simulation results in Section 5.2. The merge process
described above eventually restores the overlay consistency.

5 Evaluation of DPS

5.1 Complexity Analysis

We discuss the scalability and the efficiency of the four
approaches of DPS (root-leader, root-epidemic, generic-
leader, and generic-epidemic) through the analysis of, re-
spectively, the message complexity and the probability that
a subscriber receives events that match its subscription.

5

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Efficiency We determine the probability that a new sub-
scriber interested in a filter receives a given concurrently
published event. Let us consider a publication e and a con-
current subscription s such that e matches s filter. Let Ts be
the number of steps needed by s to find its similarity group,
called the subscription turnaround time. Let Te be the num-
ber of steps e needs to reach the s group, called the publica-
tion turnaround time. Without compromising the generality,
we focus on a single attribute (one tree in the DPS logical
structure). Note that subscription s may not “see” event e if
the time needed for subscriber s to find its group is greater
than that by the publication s, i.e., Ts > Te.

In root-based DPS, Ts and Te are very close since both
s and e start at the root of the tree and subscriptions have a
higher priority over publications for being processed. Thus
subscriptions issued concurrently to events are aware of
these events if these events match the subscription filter.

In generic DPS, both Ts and Te depend on the chosen
contact point. Let i be the level of s contact point, j the
level of e contact point and k the level of s similarity group.
The probability p that s does not see e is the probability that
|k − i| is greater than |k − j|. Clearly, the root-based DPS
causes fewer lost events than the generic DPS scheme, and
thus, is more reliable.
Message complexity We study the number of messages
sent by the proposed algorithms. We focus only on one tree
in the logical structure. Let h be the depth of the tree, Si the
maximal size of a group at level i of the tree, k the number
of infected neighbors at each round of the epidemic algo-
rithm, and k′ the number of nodes contacted on the next
level during the epidemic propagation along the tree.

Let us first consider the leader-based communication. In
root-based scheme, the maximal number of messages cor-
responds to the traversal of a branch in the tree. Formally,
this number is equal to

∑
i=0,(h−1) Si + (h − 2). If S is

the maximal size of a group, then the maximal number of
messages is h(S + 1) − 2. In generic-based scheme as the
contact point may be any node in the tree, an event may
traverse, in the worst case, the current branch up to the root
and the other subtree from the root down to the bottom. The
maximal number of messages is then 2h(S + 1) − 4.

Let us now consider the epidemic-based communication.
The root-based scheme produces in the worst case kS0 +
kk′ ∑

i=1,(h−1) Si+k′(h−2) messages. If S is the maximal
size of a group, the maximal number of messages is then
kS(1 + k′(h − 1)) + k′(h − 2). Similarly, the Generic
based scheme produces 2(kS(1 + k′(h− 1)) + k′(h− 2)).

5.2 Simulation of DPS

We also evaluate DPS through an event-based simula-
tor we developed. The aim of the simulation is threefold:
i) supporting the basic motivation behind the DPS overlay,
i.e., efficient content-based filtering; ii) showing the practi-

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

ra
tio

 o
f d

el
iv

er
ed

 e
ve

nt
s

probability of failure

leader root
leader generic
epidemic root

epidemic generic
epidemic root k = 2

epidemic generic k = 2

(a) Dependability

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1000 2000 3000

ra
tio

 o
f d

el
iv

er
ed

 e
ve

nt
s

steps

epidemic generic k=2
epidemic generic

leader generic

(b) Recovering from failures (generic)

 0

 2.5

 5

 7.5

 10

 0 1000 2000 3000 4000 5000

nb
 o

f o
ut

go
in

g
m

es
sa

ge
s

pe
r

ev
en

t (
m

ed
ia

n
no

de
)

steps

epidemic root
epidemic root k = 2

(c) Scalability: outgoing messages per event (me-
dian)

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

nb
 o

f o
ut

go
in

g
m

es
sa

ge
s

pe
r

ev
en

t (
m

ax
)

steps

leader root
epidemic root

epidemic root k = 2

(d) Scalability: outgoing messages per event (max)

6

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

 0

 300

 600

 900

 0 2 4 6 8

av
er

ag
e

nb
 o

f i
nc

om
in

g
m

es
sa

ge
s

pe
r

ev
en

t d
ur

in
g

10
0

st
ep

s

nb of subscriptions by node during a run

max leader
max epidemic
median leader

median epidemic

(e) Leader vs. Epidemic Approaches:Received
Messages

 0

 300

 600

 900

 0 2 4 6 8

av
er

ag
e

nb
 o

f o
ut

go
in

g
m

es
sa

ge
s

du
rin

g
10

0
st

ep
s

nb of subscriptions by node during a run

max leader
max epidemic
median leader

median epidemic

(f) Leader vs. Epidemic Approaches:Sent Mes-
sages

 0

 300

 600

 900

 0 2 4 6 8

av
er

ag
e

nb
 o

f m
es

sa
ge

s
du

rin
g

10
0

st
ep

s

nb of subscriptions by node during a run

max root in
max generic in
median root in

median generic in
max root out

max generic out

(g) Root-based vs. Generic Approach

Figure 3. Experimental Results

cal feasibility of our approach and iii) showing that self-*
properties can be achieved in a scalable manner without in-
troducing serious (e.g., exponentially growing) overheads.
Simulation Context. The simulation is cycle based.
The workload is characterized by the number and ar-
rival/departure pattern of publishers and subscribers and by
the distribution of publications and subscription they is-
sue. Each experiment uses a different workload. Heartbeat-
based failure detection between neighbors and recovery
mechanism are implemented, with failure detection interval
varying randomly from 10 to 25 steps.
False Positives. First we concentrate on supporting our
claim about the beneficial effect of the DPS organization on
event dissemination. For each simulation run, we first is-
sued 10,000 subscriptions (one per node) to build the over-
lay and then we issued 10,000 events1. The approach is
generic, leader-based (not influencing results). We compute
the number of visited nodes per event diffusion, evaluating
the number of false positives. The overall number of mes-
sages is not considered in this experiment, nor failures and
message losses. As the number of false-positives strongly
varies according to the workload used, we considered a va-
riety of synthetic workloads in order to cover a represen-
tative spectrum of different realistic situations. Synthetic
workloads are mostly used in pub/sub simulation studies
[9, 13], while a trace of real-world data is used at the best
of our knowledge only in [17]. Values for each attribute in
subscriptions and events are generated by varying the fol-
lowing parameters: type (integer or string), distribution of
values (uniform or zipf), average range size (for numeri-
cal subscriptions), percentage of equality predicates. Val-
ues for string attributes are chosen in a dictionary of 500
values. Details of the workloads are depicted in Table 1.
Workload 1 uses distributions that have been discovered in
[17] to model real-world pub/sub data of a stock exchange
application. Workload 2 models a multi-player game where

1The number of events and subscription does not influence the results
and is chosen as a sufficiently large sample

players subscribe to events occurring in zones of a bidimen-
sional game plane, whose size can be also very large thus
generating a large number of matches. Finally, Workload
3 models an alert monitoring application, where subscrip-
tions are concentrated on a restricted set of critical values
and the overall number of matches is very low. Table 1
shows for each workload the percentage of contacted nodes
and of matching nodes with respect to the total number of
nodes, on average over the number of events. The number
of false positives is shown as well. In overall, we observed
that DPS allows to cut the number of the visited nodes with
respect to a broadcast by at least of the 45%, by a 70% on
average, up to the 87% in more realistic situations. The
number of false positives falls below an acceptable value of
30%, almost reaching 10% for the realistic workload. In
the following sets of simulations, only workload 2 is used,
in order to test only conditions which are less favorable for
our system (i.e., more false positives). Again, we point out
that with workloads based on a larger number of attributes,
false positives are more likely to occur.
Dependability. In these experiments, we test the ability
of the system in delivering messages despite node failures.
We built two different scenarios, where the system initially
contains 1,000 nodes and the execution is 3,000 steps long.
All nodes subscribe to three distinct subscriptions (differ-
ent for each node)2. In the first scenario, node failures are
uniformly distributed in time, with a frequency of 1/p, with
p varying between 0.01 and 0.25 resulting, at the end of
the simulation, in a number of nodes in the system which
is, on an average, 97% to 25% of the initial nodes. This
scenario tests a realistic situation where nodes disappear in-
dependently and in an unpredictable manner. A new event
is published every 10 steps. In the second scenario, execu-
tion is divided into three phases. Nodes do not fail until step
1,000. Then one node fails every two steps between steps
1,000 and 2,000, before to resume in an execution without

2Increasing the number of subscriptions per node does not change the
nature of the results in this experiment

7

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Attr. Ev. Distr. Sub. Distr. Range Size Eq. Perc. Matching Contacted False Positives
Workload 1 num unif zipf 10% 50% 2.37% 13.56% 11.19%

string unif zipf 50%
Workload 2 2 × num unif unif 50% 0% 25.13% 54.74% 29.61%
Workload 3 3 × num zipf zipf 20% 20% 0.42% 17.15% 16.73%

Table 1. False Positives Experiment: Workload details and Results

failures. This scenario tests the recovery capabilities of the
system after a large number of concurrent node failures. In
both cases, we measure the ratio of published events that
reaches a node with a matching subscription.

Figure 3(a) shows the results of the first scenario. For
all approaches, the percentage of delivered events is at least
80%, also when most of the nodes have failed. The leader-
based is, as expected, the least ’robust’ approach. Increas-
ing the number of co-leaders may offer a way to further
increase this figure. The epidemic scheme confirms the ex-
pected higher number of delivered events than the leader-
based approach. In particular, with epidemic, k=2, the ra-
tio is greater than 0.97 even with a significant probability
of failures. Results of the second scenario are exhibited in
Figures 3(b), where the ratio of delivered messages is still
high as events are delivered in more than 95% of cases. This
curve also show that the system is able to self-recover as the
ratio quickly grows back to 1 after step 2,000 in all cases.
Scalability. We tested the ability of the system to scale by
measuring the load managed by nodes when propagating
events and subscriptions as the size of the system grows.
In this scenario, the system initially contains 1,000 nodes.
A new node enters the system every two steps and immedi-
ately emits a new subscription. Publications are produced at
a regular rate along system execution (10 new events every
100 steps). Figures 3(c) and 3(d) provide the results for this
scenario in leader-based and epidemic configurations using
root-based traversal3. The two plots report the time vs. the
number of messages sent by a node per each event.

Figures 3(c) refers to the median node, defined as the
node that sends less messages than half of the nodes and
more messages than the other half. Figures 3(d) refers to the
most overloaded node. The two plots show that in general
the number of messages per event does not increase with
the number of nodes, confirming the overall scalability of
our approach. The only exception is the most overloaded
node in the leader-based approach which has to handle more
messages as system grows, because the size of the groups
increases accordingly.

5.2.1 Leader vs. Epidemic

In the following experiments, we compare the behavior of
the different approaches for implementing DPS while in-
creasing the load at each node. Experiments are conducted

3Experiments performed using generic approach returned almost over-
lapping curves, that are not reported for the sake of readability

in the following scenario: the number of nodes is 1,000,
and each node emits regularly a new subscription and a new
publication. Publications are produced at a rate of 10 new
events every 100 steps, while a new subscription is pro-
duced regularly every 300 steps. Hence, the number of sub-
scriptions per node ranges from 0 to 10 (maximum 10,000
in total). We measure the number of incoming and outcom-
ing messages on the most loaded and median nodes, respec-
tively, sampled during a period of 100 steps. Messages in-
clude the ones due to publication (10 events), subscription,
and management of the overlay. Results were produced
with a root-based approach for tree traversal and are pre-
sented in Figures 3(e) and 3(f).
Incoming Traffic. As expected, in epidemic communica-
tion the overall number of processed messages is in gen-
eral higher than in leader-based because while in leader-
based approach, all events are received by the correspond-
ing recipients only once, in the epidemic approach, some
redundant messages are received. The difference remains
constant when the number of subscriptions increases as it
is only due to event delivery. The overall increase is due
to the fact that groups become more populated. The me-
dian node in the leader-based scheme is only a receiver of
the events. So, the received messages practically remain
constant, growing only slightly because each node receives
more matching events. On the contrary, in the epidemic ap-
proach, each node in the group is involved in overlay man-
agement. Besides processing the events, it also receives re-
quests from the predecessor groups that grow as subscrip-
tions grow. However, the increase in the number messages
is much slower wrt the increase in the subscriptions. Again,
the message redundancy motivates the higher number of re-
ceived messages in the epidemic-based approach.
Outgoing Traffic. The drawback of the leader-based ap-
proach is evident when considering the outcoming traffic
per node. The number of messages sent by the leader highly
increases with subscriptions, following the increasing size
of the groups and the higher number of recipients per event.
Moreover, the load is highly unbalanced, with the median
node showing no sending activity. As expected, the load is
more balanced in the epidemic approach, because neighbors
are distributed among the nodes in a group. However, we
still experience a difference between the most overloaded
node and the median, because the first nodes to join a group
are more likely to be the contact nodes of numerous prede-
cessors and successors. However, the most overloaded node

8

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

in the epidemic approach handles less than half of the mes-
sages in the leader-based, although the overall number of
processed messages is higher in the epidemic, confirming
better load-balancing.

5.2.2 Root vs. Generic

The results of the comparison between root-based and
generic approach, presented in Figure 3(g), were obtained
in the same scenario as the preceding experiment4.
Incoming Traffic. The most overloaded node in the root-
based approach is obviously the owner of the attribute. As
the number of subscriptions increases, the number of mes-
sages it should deal with also increases. The generic ap-
proach effectively manages to distribute the incoming load
among nodes, maintaining an almost constant number of
messages at higher load. Note that the subscriptions influ-
ence the incoming traffic more than the outcoming traffic.
This indicates the positive effect of the generic approach on
the subscription process.
Outgoing Traffic. These experiments reveal few differ-
ences between the two approaches. This can be explained
by considering that the outgoing messages in the leader-
based approach are mainly due to the events. The most
overloaded node in both cases corresponds to the leader of
the bigger group. As the number of subscriptions increases,
the size of the group and, subsequently, the leader outgoing
traffic increase as well. Using the leader-based approach, in
both cases, the median node does not send any messages.

6 Conclusion and Discussion

We have presented DPS, a distributed reliable and scal-
able content-based publish/subscribe system that exhibits
self-∗ characteristics. We have proposed different methods
of diffusion of subscriptions and publications that can be
combined to obtain four different implementations of the
system. Based on the simulation results, we can conclude
that the leader-based approach is more suitable for a rel-
atively small set of nodes that are less prone to failures.
On the other hand, the epidemic-approach provides higher
dependability, better scalability, and load balancing at the
cost of higher message complexity. As for the tree traver-
sal strategies, the generic approach is more suitable for the
subscription process as it better distributes the load. On
the contrary, the publication process benefits from the root-
based approach that obviously provides lower latency. The
possibility of choosing different implementations makes the
proposed system very versatile, so it can be deployed in
many applications (e.g., virtual worlds, virtual games, e-
market, etc.). As a future research direction, we intend to
explore the evaluation of DPS in other specific contexts,
such as sensor networks.

4Due to space limitations, only results for leader-based approach were
presented, as epidemic follows the same trend

References

[1] E. Anceaume, A. K. Datta, M. Gradinariu, G. Simon, and
A. Virgillito. DPS: Self* dynamic reliable content-based pub-
lish/subscribe system. Technical Report 1665, IRISA, 2004.

[2] E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. To-
wards a theory of self-organization. In Proc. of OPODIS, 2005.

[3] O. Babaoglu, H. Meling, and M. A. Anthill: A framework
for the developments of agent-based peer-to-peer systems. In
Proc. of ICDCS 2002, 2002.

[4] S. Baehni, P. Eugster, and R. Guerraoui. Data-Aware Multi-
cast. In Proc. of the IEEE DSN’04, 2004.

[5] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg.
Content-based publish-subscribe over structured overlay net-
works. In Proc. of ICDCS 2005, 2005.

[6] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach.
Exactly-once delivery in a content-based publish-subscribe
system. In Proc. of the IEEE DSN’02, 2002.

[7] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM Transactions on Com-
puter Systems (TOCS), 17(2):41–88, 1999.

[8] F. Cao and J. P. Singh. Efficient Event Routing in Content-
based Publish-Subscribe Service Networks. In Proc. of the
IEEE INFOCOM’04, 2004.

[9] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evalu-
ation of a Wide-Area Notification Service. ACM Transactions
on Computer Systems, 3(19):332–383, Aug 2001.

[10] M. Castro, P. Druschel, A. M. Kermarrec, and A. Rowston.
Scribe: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in Com-
munications, 20(8), October 2002.

[11] P. Costa, M. Migliavacca, G. Picco, and G. Cugola. Epi-
demic algorithms for reliable content-based publish/subscribe:
An evaluation. In Proc. of ICDCS 2004, 2004.

[12] P. Felber and R. Chand. Semantic peer-to-peer overlays for
publish/subscribe networks. In Proc. of EUROPAR, 2005.

[13] A. Gupta, O. Sahin, D. Agrawal, and A. E. Abbadi. Megh-
doot: Content-based publish:subscribe over p2p networks. In
Proc. of IFIP/ACM Middleware’04, 2004.

[14] A.-M. Kermarrec, L. Massouli, and A. Ganesh. Probabilistic
Reliable Dissemination in Large-Scale Systems. IEEE Trans-
actions on Parallel and Distributed Systems, 14(3), 2003.

[15] A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang. New algo-
rithms for content-based publication-subscription systems. In
Proc. of ICDCS’03, pages 678–686, 2003.

[16] P. Triantafillou and I. Aekaterinidis. Content-based Pub-
lish/Subscribe over Structured P2P Networks. In Proc. of
DEBS 2004, 2004.

[17] Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J.
Wang. Subscription Partitioning and Routing in Content-based
Publish/Subscribe Networks. In Proc. of DISC ’02, 2002.

[18] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Ku-
biatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In Proc. of the Int.
Workshop on Network and OS Support for Digital Audio and
Video, 2001.

9

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

