
Dynamic Access Control in a Content-based Publish/Subscribe System with
Delivery Guarantees

Yuanyuan Zhao
IBM T. J. Watson Research Center

yuanyuan@us.ibm.com

Daniel C. Sturman
IBM Software Group
sturman@us.ibm.com

Abstract

Content-based publish/subscribe (pub/sub) is a promis-
ing paradigm for building asynchronous distributed appli-
cations. In many application scenarios, these systems are
required to provide stringent service guarantees such as re-
liable delivery, high performance, high availability and dy-
namic system security.

In this paper, we address the issue of dynamic access
control in a content-based system that provides reliable de-
livery and high availability through redundant routes. We
define a deterministic service model of dynamic access con-
trols that enables precise control over event confidential-
ity. Under this model, the semantics of reliable delivery is
clearly defined, that is, the messages delivered in response
to the same subscriptions from pub/sub clients running on
behalf of the same principal will be exactly the same, re-
gardless of their connecting locations, network latency and
failures. We present an algorithm that implements this ser-
vice model. The algorithm is efficient and highly available
in that it enables uniform enforcement of access control
and enables content-based routing to choose any path from
among several redundant routes without requiring consen-
sus among the brokers.

1. Introduction

Content-based publish/subscribe (pub/sub) messaging is
a popular paradigm for building asynchronous distributed
applications. A content-based pub/sub system consists of
publishers that generate messages and subscribers that reg-
ister interest in messages matching the predicate/Boolean
filter specified in their subscription. The system ensures
timely delivery of published messages to all interested sub-
scribers, and typically contains routing brokers for this pur-
pose. Publishers and subscribers are both clients of the sys-
tem and are decoupled from each other ([12]).

For many applications, content-based pub/sub systems
are required to provide strong service guarantees (such as

reliable, in-order, gapless delivery [7, 8]), high scalability to
support a large number of clients, high service availability
and high performance/throughput. In order to achieve these
goals, typical systems 1) propagate and consolidate sub-
scription information toward publishers; 2) using the sub-
scription information, perform content filtering to achieve
good network bandwidth utilization and scalability; 3) and
utilize redundant network paths for high service availabil-
ity. Related works in this area include [11, 20, 5, 27, 24, 26,
10, 23].

The issue of access control in pub/sub systems has not re-
ceived much attention, probably due to the fact that security
seems contrary to the pub/sub philosophy of anonymity and
decoupling of information producers and consumers [17].
A further challenge comes from the requirement to allow
access control policies to change dynamically without dis-
rupting the pub/sub service. Systems should be able to con-
tinue functioning without having to shut down to enact new
access control policies. Such a requirement is often demon-
strated by mission critical applications such as electronic
trading in financial markets. There is as yet no published
definition of exactly when access control changes are spec-
ified to take place and how the changes should affect con-
tent delivery, especially deliveries with reliability guaran-
tees and high availability using redundant routing paths.

In this paper, we address the issue of providing dynamic
access control in a pub/sub system with content-based fil-
tering and routing, reliable delivery and redundant routes.
Our contributions are:

• A deterministic service model of dynamic access con-
trol in content-based pub/sub systems. The determin-
istic guarantee enables precise control over event con-
fidentiality and is independent of issues like client lo-
cation, network latency and failures.

• A novel algorithm supporting this deterministic ser-
vice model. Using this algorithm, access control
changes are performed uniformly across all brokers to
which the affected principals connect. There is no need
for the system to obtain consensus from these brokers,

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

which could compromise the efficiency of the system
and timeliness of enacting the change.

• Performance evaluation of the algorithm in the context
of an industrial strength pub/sub system - Gryphon.

The rest of the paper is organized as follows: Sec-
tion 2 defines the deterministic service model. Section 3 de-
scribes the environment in which our guarantee will be im-
plemented, namely a redundant routing network, subscrip-
tion propagation, content-based routing and reliable deliv-
ery. Section 4 describes an algorithm that implements this
service model. Section 5 describes implementation and ex-
perimental results. Section 6 is an overview of related works
and we conclude in Section 7.

2 Deterministic Service Model

We present in this section a deterministic service model
of dynamic access control. We describe the various enti-
ties involved in dynamic access control and their roles, a
content-based form for specifying access control rules and
the clear starting points of access control changes.

2.1 System Entities & Content-based
Rules

In our service model, there are two types of entity that
are involved in access control.

Security administrator The security administrator is the
ultimate authority of access control in the system. The se-
curity administrator decides (based on external factors such
as client service contracts) the access rights for client prin-
cipals (defined below) and/or whether there should be any
change to their existing access rights. The security admin-
istrator instructs the system of his/her decisions through an
administrative interface.

In a large system, there may be multiple security admin-
istrators. As the changes made by each administrator may
affect overlapping sets of clients, the system should accept
the changes in a transactional and serializable manner. For
the purpose of this paper and simplicity of discussion, we
consider the security administrators as an abstract single en-
tity that initiates a single sequence of policy changes.

Client principals Clients in our system have associated
principals which are decided/verified by the system through
authentication when clients connect. A client can connect
to the system, publish messages or subscribe and receive
messages. The access rights can also include the ability
to advertise publications. Due to space constraint, we do

not discuss it here. The client’s capability to connect, pub-
lish and/or subscribe/receive messages is regulated by the
access rights of its principal. The access control rules in
our system are associated with principals. Multiple pub/sub
clients running on behalf of the same principal can connect
at different places in the system.

There are two types of principal in our system, group
and individual. A group principal is a collection of indi-
viduals or recursively, other group principals. Access rights
granted to a group principal are automatically granted to all
members of the group, and recursively to the members of a
member group.

Content-based form of Access Rights The access rights
of a principal include the right to connect, the right to pub-
lish and the right to subscribe to and receive messages. We
adopt a content-based form for specifying access control
rules of these three rights. An access control rule takes the
following form of a tuple of three elements:

[Principal, Access type, Content filter]

A rule of such form specifies that a principal has the right
to connect to the system, publish or subscribe to messages
matching a content filter. While publish and subscribe rules
can take a non-trivial filter, connect rules are specified with
true or false to indicate the right to connect or not. For ex-
ample, the rules that allow a principal John Doe to connect
and subscribe to stock quotes are specified as follows:

[John Doe, Connect, True]
[John Doe, Subscribe, type=’quote’]

A pub/sub client on behalf of a principal is allowed to
publish messages that match the publish rules of its princi-
pal and is allowed to receive messages that match BOTH its
subscription filters and the subscribing rules of its principal.
This allows the system to provide 1) information authen-
ticity by allowing only authorized sources to publish mes-
sages; 2) information confidentiality by only distributing
messages to authorized subscribers; 3) protection against
denial-of-service (DoS) attacks initiated by malicious sub-
scribers who request a large number of messages that are
only going to be discarded. This large number of messages
can result in congestion in the network and impair the sys-
tem’s capability to serve other clients.

Group Access Control Group and individual principals
share the same form of connect, publish and subscribe ac-
cess rights. In addition, a new type of rule, member list,
exists for group principals. For example, a premium sub-
scribers group that includes Jane Smith and James Brown
and has subscribing rights to all stock quotes, news and re-
ports has the following access control rules:

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

[Premium group, Member list, {Jane Smith,
James Brown}]
[Premium group, Subscribe, type=’quote’ or
type=’news’ or type=’report’]

All members in a group are automatically granted the ac-
cess rights of the group. Thus, the access rights of an indi-
vidual principal are the union of the individual’s rights and
the rights of all groups it belongs to. Hence, Jane Smith and
James Brown will have access to all stock quotes, news and
reports in addition to other access rights they are granted.

2.2 Clear Starting Points of Access Con-
trol Changes

We present in this section our deterministic service
model that provides clear starting points for access control
changes. In this model, access control rules/changes are
initiated by the security administrator at the administrative
console and stored into a persistent storage called ACL DB.
At any time, the security administrator may specify a num-
ber of changes pertaining to one or more principals. These
changes are considered as a batch that must be enforced
atomically. After the security administrator confirms each
batch of changes, the changes are propagated throughout
the broker network.

A broker can host one or more message streams. The
publishers can connect to any broker in the system and are
assigned to any stream by the broker. Each stream contains
in-order the messages published by one or more publishers.
For each of these streams, the broker picks a starting point to
enact the new access control rules. The starting point is cho-
sen in a way such that: 1) successive batches of changes get
later starting points; and 2) the starting point is late enough
so that no messages after the starting point could have been
delivered according to the old rule. This constraint can be
easily achieved by designating a newly published message
on the stream as the starting point. The starting point in-
formation is sent back to the security administrator for fu-
ture inquiries and references. The new rules are enforced
uniformly throughout the system on all messages after the
starting points, no matter where the pub/sub clients on be-
half of the affected principal(s) connect.

We illustrate the effect of an access control policy change
using an example in which a principal John Doe’s subscrib-
ing rights went through 3 phases of changes: 1. John Doe
became a member of the promotional group which had sub-
scribing access only to stock quotes; 2. John Doe became
a premium subscriber and subsequently gained subscribing
access to all three types of financial information; 3. John
Doe’s premium subscription expired and as a result he lost
subscribing rights to financial news and reports.

Shown in Figure 1, a subscriber on behalf of principal
John Doe connected to the system and requested a subscrip-

tion of issue=’ibm’. Under the service model, every time
the access rights of John Doe changes, the system provides
a clear starting point in each message stream such that 1) a
message before the starting point is delivered to the client if
and only if the message satisfies both the subscription filter
and access right filter before the change; and 2) a message
after the starting point is delivered to the client if and only if
it satisfies both the subscription filter and access right filter
after the change. In the stream in our example, if the starting
points chosen are message 100 for the first access change,
message 103 for the second access change and message 106
for the third change, the messages delivered to the client
will be 100, 103, 104, 107, 109. Notice that non-quotes are
only delivered in the range [103, 105]. In a system that has
more than one message stream, this activity happens to all
streams, each with its individual start points.

3 Environment

In this section, we describe 1) a topology model of re-
dundant routing networks that are deployed for high avail-
ability; 2) reliable delivery; and 3) the techniques such as
subscription propagation and content-based routing that are
usually employed for performance and scalability. These
techniques are also used as building blocks to simplify the
description of the algorithm.

3.1 Routing Topology

We adopt an abstract topology model of spanning trees
of nodes where each node includes multiple virtual brokers
that are redundant and can work interchangeably. Trees are
noncyclic structures that simplify the task of loop-free rout-
ing. Tree nodes with redundant brokers provide high avail-
ability.

We refer to a broker where publishers connect as a pub-
lisher hosting broker (PHB) and a broker where subscribers
connect as a subscriber hosting broker (SHB). For simplic-
ity, we discuss our work from the standpoint of one PHB.
The abstract network may be constructed such that any
physical broker hosting clients implements a virtual bro-
ker in a leaf node. As a result, the SHBs only reside in
the leaf nodes; and there is only one PHB and it resides in
the root node. The direction upstream/downstream points
toward/away from the root. As a client connects to one bro-
ker, each leaf node contains one broker.

This topology model can represent a large range of prac-
tical topologies as one can transform a graph with redundant
paths into a topology under this model by grouping brokers
into tree nodes and inter-broker links into tree edges. Fig-
ure 2 provides an example. Details on how to form a virtual
broker network from a physical broker network is out of the
scope of this work and can be found in [7].

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 1. Service Model of Dynamic Access Control:‘q’ for quotes, ‘n’ for news & ‘r’ for reports.

(a) (b)

Figure 2. Redundant Routing Networks

3.2 Subscription Propagation, Content-
based Routing & Reliable Delivery

A valid implementation of access control can be one in
which the PHB and intermediate brokers forward all pub-
lished messages that match client subscriptions to SHBs,
and SHBs enforce access control by delivering messages
that match not only a client’s subscription but also its access
rights. Such a solution will be a perfectly correct imple-
mentation, but it may waste considerable bandwidth send-
ing messages that will be later discarded.

Subscription propagation is an optimization which may
result in fewer wasted messages being sent to SHBs in ex-
change for requiring the PHB and intermediate brokers to
acquire knowledge about subscription predicates and per-
form filtering. By propagating clients’ access rights along
with their subscriptions, further savings in communication
cost may be achieved.

Providing the deterministic service guarantee described
in Section 2 is challenging in a content-based system de-
ployed over a network with redundant paths. Due to
content-based routing, gaps can not be detected by tradi-
tional methods such as publisher-assigned sequence num-
bers because each subscriber may request a completely
unique sequence of messages to be delivered. Reliability in
a content-based system hence requires brokers on the rout-
ing path to assist in gap detection ([7]).

In [29] and [28], we described protocols for subscription
propagation. These protocols preserve reliable delivery and
enable free routing choices on any of the redundant paths
for system availability and load sharing.

In the next section, we use the reliable delivery and sub-
scription propagation protocols as building blocks for con-
structing an efficient and highly available distributed pro-
tocol that enforces the deterministic semantics of dynamic
access control to pub/sub clients. We adopt a domain-based
trust model. All brokers within the same domains trust each
other. Brokers that do not trust each other should be put into
different domains and cross-domain communication is reg-
ulated by assigning access control rules according to their
trust levels. For simplicity, we discuss the protocols under
one trusted domain. This is of practical use as in a lot of
commercial cases, pub/sub systems are deployed in a man-
aged environment under the complete control of an admin-
istrator. The work can be extended to multiple trusted do-
mains by treating a domain as a special pub/sub client and
assigning a principal to the domain. The clients connected
to the system through an un-trusted domain can only access
messages that satisfy both the domain’s right and their own
access right.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

4 Protocol

Our protocol provides the deterministic service guaran-
tee of message delivery through 1) distributing access con-
trol information to brokers that host relevant principals; 2)
restricting publishing activities by accepting only messages
satisfying the publisher’s publishing rights; 3) restricting
client subscriptions using their subscribing rights; 4) prop-
agating restricted subscriptions and hence enforcing access
control in the routing brokers by performing content filter-
ing on both the clients’ subscriptions and access rights; 5)
final enforcement of access control at the SHB. We describe
each of these aspects.

4.1 Client Access Control Information

As previously mentioned, access control policies are
maintained in a persistent storage called ACL DB. The se-
curity administrator makes policy changes in transactional
batches to the ACL DB. Access control policies are asso-
ciated with a control version, which is an integer counter.
Each transactional batch brings the ACL DB into a new con-
trol version. The new access control rules are assigned with
the new version number. As old access control rules may
still be in effect for some messages, the ACL DB contains
a mixture of access control rules with different versions. To
avoid sending the whole state, the ACL DB distributes the
new version of access control by publishing it as an incre-
mental change.

Each PHB/SHB maintains a cache of latest access con-
trol rules for clients that are currently connected. When
a client on behalf of a new principal connects, the bro-
ker retrieves an initial version of access control rules for
the principal through a request/reply protocol with the ACL
DB. The broker also establishes a subscription for receiv-
ing future access control changes for the principal. We use
the subscription propagation and reliable delivery service in
Gryphon to ensure the broker receives every access control
change after obtaining an initial version of access rules for
a connected principal.

When a PHB receives a new version of access control
rules, it updates its cache. The PHB picks a starting point
for the new version as the next message that will be pub-
lished. A newly published message will only be accepted if
it matches the publishing rights in effect. In addition, newly
published messages are transmitted in the system carrying
the access control version that is in effect.

We treat access control information as another type of
information that can affect message routing in addition to
client subscriptions. Thus, instead of propagating the origi-
nal client subscription filters to the rest of the network, our
SHBs propagate a restricted form of filters that are the inter-
section of the client subscription filter and the latest version

of content-based access rules in the SHB’s cache. When the
access control rules change, the SHB re-computes the re-
stricted subscriptions for all affected clients/principals with
the new version of rules. The resulting subscriptions are
propagated upstream atomically together with the control
version. The upstream routing brokers handle the subscrip-
tions without having to know whether the subscriptions are
restricted. The upstream routing broker only needs to main-
tain a vector of control versions for each SHB in its down-
stream.

4.2 Routing Data Messages

As we propagate restricted filters, content-based routing
is based on the intersection of client subscription filters and
access control rules. This allows the routing brokers to par-
ticipate in access control as well as the SHBs.

As mentioned in Section 4.1, a message in the system
carries the control version that is in effect for the message.
When routing the message for a downstream, a routing bro-
ker compares this version of the message with the sub-
portion of its control version vector for SHBs located in the
downstream route. The message is only filtered out if it does
not match the restricted subscriptions from the downstream
route and every element of the sub-portion of the broker’s
control version vector is no less than that of the message.
In the case that the broker does not have a sufficiently large
control version vector, it may conservatively send the mes-
sage on that downstream route.

4.3 Enforcing Access Control at SHBs

The ultimate enforcers of access control are the SHBs as
intermediate routing brokers may conservatively send mes-
sages that do not match a subscriber’s access rights.

The SHB first examines whether it has received the ac-
cess control rules of the version required by the message.
If not, the SHB delays the processing of the message until
the version of the access control rules arrives. If the SHB
has received the control version of the rules, the SHB exam-
ines each restricted subscription that matches the message.
If the restricted subscription has the same control version as
the message, it is delivered to the subscriber. Otherwise, the
message is not delivered to the subscriber.

4.4 Discussion of Efficiency

The use of control versions not only allows our algorithm
to implement the clear starting point feature of our model,
but also allows the system to be more asynchronous and
fault tolerant. The distribution of access control changes
with a control version number allows each broker in the sys-
tem to proceed asynchronously instead of waiting for a slow

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

or crashed broker if a transactional session of broadcasting
to all brokers is utilized. Even in the case that a majority of
brokers fail in a routing tree node, new access control rules
can be enacted and the remaining broker can participate in
enforcing access control without having to obtain an agree-
ment from its redundant peers. When a broker recovers,
even when its control version may lag behind, the broker
can still participate in message routing, utilizing its part of
the network capacity that would otherwise stay idle.

The use of a control rule cache of only connected princi-
pals allows the system to scale even in the large scale envi-
ronment where the number of principals is large. The SHBs
only needs to know access control rules for the principals
whose clients are locally connected.

5 Experimental Results

We have implemented our algorithm in the Gryphon sys-
tem. We present some of the experimental results such as
the cpu overheads and various latency metrics. We focus on
the metrics related to subscribing access control.

5.1 Test Environment

Our testbed is a set of RS6000 F80 machines with six
500MHz processors and 3G RAM connected through a gi-
gabit switch. The broker is implemented in Java with native
I/O library and running in IBM JRE 1.4.

We used two versions of Gryphon for our experiments:
one implements the protocol in this paper and another with-
out any dynamic access control mechanism.

5.2 Experiment Results

System Load in Steady State This test compares the sys-
tem performance of enforcing access control for subscribers
when their subscribing rights do not change. We use a setup
in which a publisher hosting broker pb is connected to an in-
termediate broker ib, which in turn connects to a subscriber
hosting broker sb. The steady access control policy in this
test permits the subscribers to receive all messages they sub-
scribe to. Therefore, the broker network routes and deliv-
ers the same amount of messages as in the system when
there is no support for dynamic access control. We exam-
ine the CPU overhead at each broker and compare it with
our baseline results, i.e., results obtained in the Gryphon
system with no dynamic access control support. This com-
parison represents the overhead incurred at brokers playing
different roles in the protocol - access control version setter
(pb), in-network access control enforcer(pb&ib) and end-
point ultimate access control enforcer (sb).

Messages are injected into the system through pb at a
rate of 2000 messages per second. We evaluate both the

Figure 3. System Load in Steady State

cases when the Gryphon special reliable delivery protocol
is turned on or bypassed. To eliminate the impact of differ-
ent file systems used for PHB persistent message streams,
we perform Gryphon message logging but do not sync to
the disk. The output message rate at the SHB is 20000 mes-
sages per second to 10000 subscribers. Figure 3 shows the
CPU utilization at each of the brokers. This test shows that
the CPU overhead increase at pb and ib are very small as the
overhead is mostly for assigning and/or comparing control
versions. The CPU increase at sb is higher due to the final
access control enforcement that is performed against every
matching subscriber for every message.

Latency Measurements We examine four latency met-
rics: 1) The latency of message delivery during steady state
when there are no access control changes. 2) The latency
of starting delivering messages to a newly connected sub-
scriber when there are already connected subscribers at the
SHB on behalf of the same principal p1 and the new sub-
scriber uses the same subscription as an existing subscriber.
We call this the local delivery start latency. 3) The latency
of starting delivering messages to a newly connected sub-
scriber on behalf of a new principal p2, however the new
subscriber uses the same subscription as some of the exist-
ing subscribers at its SHB. As a result, the SHB does not
have access control rules for the new subscriber cached and
must retrieve initial access control rules. However, the SHB
can process the new subscription locally without having to
propagate the subscription outside to other brokers. We re-
fer to this metric as the new principal local delivery start
latency. 4) The latency of starting delivering messages for
a newly connected subscriber on behalf of a new principal
p3 AND the new subscriber uses a new subscription that is
not used by any other subscribers at the SHB. We call this
the new principal remote delivery start latency as the SHB
needs to propagate the subscription remotely to the PHB in
addition to retrieving the initial access control rules.

We use a linear topology consisting of a PHB pb and a

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 4. Latency Metrics

SHB sb that are connected through one or more hops of
intermediate brokers ib1..n. We colocate the ACL DB with
pb. Thus, in order to receive initial access control rules for a
new principal, sb has to communicate a round trip to where
pb resides.

We measure message delivery latency using a latency
sampler that publishes messages through pb and subscribes
to its own messages at sb. Delivery start latencies are mea-
sured as the time between a subscriber submits its subscrip-
tion and when it receives the first message.

Figure 4 shows the latency results with their standard de-
viations shown in error bars when there are 1, 4 and 7 hops
from pb to sb. In this test, the message delivery latency and
the remote delivery start latency for new principals increase
linearly as the hop count increases. The local delivery start
latency does not increase with the hop counts. The new
principal local delivery start latency does not increase until
7 hops, because the initial acl retrieval is done at subscriber
connection time and thus runs in parallel with the subscriber
submitting its subscription. In the case of 1 and 4 hops, the
initial acl retrieval is able to complete before the subscriber
submits its subscription.

6 Related Work

A great volume of work on security issues in distributed
messaging systems is in secure group communication sys-
tems ([14, 15]). In these systems, access control is usu-
ally provided by using a shared key among group members.
To deal with a group member joining and leaving and pro-
tect information from the leaving members, keys must be
changed. The focus of the works in this area is on group
key management ([19, 9, 22]).

As pointed out by Opyrchal et al. [17], the dynamic na-
ture of a content-based system makes the secure group com-
munication approach infeasible for enforcing access control
in a content-based system. The number of potential groups

for n subscribers is 2n and managing keys for these groups
is expensive. What’s more, the matching groups can change
for each event, constantly changing encryption keys signif-
icantly slows down the throughput of common encryption
algorithms such as DES [18]. Opyrchal et al. tackle the
problem using group clustering and key caching.

Wang et al. [25] analyze security issues and requirements
in Internet-scale pub/sub systems and presents directions to
possible solutions to the various problems. They presented
novel security problems of information and subscription
confidentiality in an un-trusted pub/sub system and pointed
out that methods on computing with encrypted data [2] and
secure circuit evaluation [1] can be adapted to solve these
problems. In their work, there is no discussion on how ac-
cess to particular events can be controlled and enforced.

Belokosztolszki [6] presented a role-based model for ac-
cess control [13] in content-based pub/sub systems. They
integrate the OASIS [4] role-based access control system
into the Hermes pub/sub middleware framework and point
out that access control can be enforced as restrictions on
the subscription filters. By leveraging the existing pub/sub
platform, access control rules can dynamically change and
be distributed to brokers that host clients. Bacon [3] extends
the work to multiple trusted domains.

Miklos [16] devotes significant attention to specify-
ing maximum and minimum security restrictions by ways
of covering relations between filters, advertisement and
events. The intuition is to use maximum security to restrict
clients from accessing events they are not authorized and
use minimum security to limit the overhead of doing too
much content matching against too specific subscriptions.

Srivatsa and Liu [21] propose using keys, signatures and
security guards to provide information confidentiality, in-
tegrity and authenticity and to fend off DoS attacks.

Existing work on access control in distributed messag-
ing systems has focused on secure distribution of events.
There has not been work on the semantics of dynamic ac-
cess control with regard to reliable delivery. Our work in
this area addresses this issue. Existing work on the secure
distribution of events according to their access control rules
is complementary to our work.

7 Conclusions

In this paper, we defined a deterministic service model
for dynamic access control in content-based pub/sub sys-
tems. We presented a novel algorithm that implements this
service guarantee while preserving the correctness of reli-
able delivery. The algorithm is efficient and highly available
in that it pushes the enforcement of access control close to
the event sources and enables content-based routing to uti-
lize any path in a redundant routing network without requir-
ing consensus among the brokers.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Acknowledgements The authors thank Dr. Sumeer K.
Bhola for the insightful discussions on some part of the
work and Dr. Rob E. Strom for reviewing parts of the initial
draft. We also thank Prof. Jean Bacon and Lauri Pesonen
for their insightful comments and generous help in shep-
herding the camera-ready version. The anonymous review-
ers have provided some of the most useful comments.

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation.
Journal of Cryptology, 2(1):1–12, 1990.

[2] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding infor-
mation from an oracle. Journal of Computer & System Sci-
ences, 39(1):21–50, 1989.

[3] J. Bacon, D. M. Eyers, K. Moody, and L. I. W. Pesonen.
Securing publish/subscribe for multi-domain systems. In
G. Alonso, editor, Middleware, volume 3790 of Lecture
Notes in Computer Science, pages 1–20, Grenoble, France,
Nov. 2005. Springer.

[4] J. Bacon, K. Moody, and W. Yao. A model of Oasis role-
based access control and its support for active security. ACM
Transactions on Information and System Security, 5(4):492–
540, 2002.

[5] S. Baehni, C. Chabra, and R. Guerraoui. Frugal event dis-
semination in a mobile environment. In Proceedings of the
ACM/IFIP/USENIX 6th International Middleware Confer-
ence, 2005.

[6] A. Belokosztolszki, D. M. Eyers, P. Pietzuch, J. Bacon, and
K. Moody. Role-based access control for publish/subscribe
middleware architectures. In Proceedings of the Interna-
tional Workshop on Distributed Event-Based Systems, 2003.

[7] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach.
Exactly-once delivery in a content-based publish-subscribe
system. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’2002), 2002.

[8] S. Bhola, Y. Zhao, and J. Auerbach. Scalably support-
ing durable subscriptions in a publish/subscribe system. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN’2003), 2003.

[9] J.-C. Birget, X. Zou, G. Noubir, and B. Ramamurthy.
Hierarchy-based access control in distributed environments.
In Proceedings of the IEEE International Conference on
Communication, 2001.

[10] A. P. Buchmann, C. Bornhövd, M. Cilia, L. Fiege, F. C.
Gärtner, C. Liebig, M. Meixner, and G. Mühl. Dream: Dis-
tributed reliable event-based application management. In
Web Dynamics. 2004.

[11] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Trans-
actions on Computer Systems, 19(3):332–383, August 2001.

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. ACM Computing
Surveys, 35(2):114–131, 2003.

[13] D. Ferraiolo and R. Kuhn. Role-based access controls. In
15th NIST-NCSC National Computer Security Conference,
1992.

[14] P. Judge and M. Ammar. Security issues and solutions in
multicast content distribution: A survey. IEEE Network
Magazine, Januaray/February 2003.

[15] P. S. Kruus. A survey of multicast security issues and ar-
chitectures. In Proceedings of the 21st National Information
Systems Security Conference, 1998.

[16] Z. Miklos. Towards an access control mechanism for wide-
area publish/subscribe systems. In Proceedings of Interna-
tional Workshop on Distributed Event-Based Systems, 2002.

[17] L. Opyrchal and A. Prakash. Secure distribution of events in
content-based publish subscribe systems. In Proceedings of
the 10th USENIX Security Symposium, 2001.

[18] F. I. P. S. Publication. Data encryption standard, 1977.
[19] S. Rafaeli and D. Hutchison. A survey of key management

for secure group communication. ACM Computing Surveys,
35(3):309–329, 2003.

[20] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification infras-
tructure. In Proceedings of 3rd International Workshop on
Networked Group Communication (NGC 2001), UCL, Lon-
don, UK, November 2001.

[21] M. Srivatsa and L. Liu. Securing publish-subscribe over-
lay services with eventguard. In Proceedings of the 12th
ACM Conference on Computer and Communication Secu-
rity, 2005.

[22] Y. Sun and K. J. R. Liu. Scalable hierarchical access control
in secure group communications. In Proceedings of the 23rd
Conference of the IEEE Communications Society, 2004.

[23] D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-
based publish/subscribe systems with distributed hash ta-
bles. In Proceedings of 1st International Workshop on
Databases, Information Systems and Peer-to-Peer Comput-
ing, 2003.

[24] A. Virgillito. Publish/Subscribe Communication Systems:
from Models to Applications. PhD thesis, Universita degli
Studi di Roma ”La Sapienza”, November 2003.

[25] C. Wang, A. Carzaniga, D. Evans, and A. Wolf. Security
issues and requirements for internet-scale publish-subscribe
systems. In Proceedings of the 35th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’02)-Volume
9, 2002.

[26] Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das,
and P. Larson. Summary-based routing for content-based
event distribution networks. SIGCOMM Computer Commu-
nications Review, 34(5):59–74, 2004.

[27] E. Yoneki and J. Bacon. An adaptive approach to content-
based subscription in mobile ad hoc networks. In Proceed-
ings of 2nd IEEE Annual Conference on Pervasive Comput-
ing and Communications, Workshop on Mobile Peer-to-Peer
Computing, 2004.

[28] Y. Zhao, S. Bhola, and D. Sturman. A general algorithmic
model for subscription propagation and content-based rout-
ing with delivery guarantees. Technical report, RC23669,
IBM Research, 2005.

[29] Y. Zhao, D. Sturman, and S. Bhola. Subscription propa-
gation in highly-available publish/subscribe middleware. In
ACM/IFIP/USENIX 5th International Middleware Confer-
ence (Middleware 2004), 2004.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

