
 1

Sama: A Scalable Group Communication Mechanism for Mobile Agents

Hojjat Jafarpour and Nasser Yazdani

Department of Electrical and Computer Engineering
Faculty of Engineering

University of Tehran
North Kargar St.

Tehran, Iran
hjafarpour@ece.ut.ac.ir, yazdani@ut.ac.ir

Phone:

Fax:

Principal Author: Hojjat Jafarpour

 2

Abstract. Provision of fast and scalable group
communication for mobile agents can considerably
improve their efficiency. Unfortunately, most of the
existing approaches do not scale well when the num-
ber of agents grows. In this paper, we propose Sama,
a new group communication mechanism, to speed up
message delivery to a group of mobile agents. The
main contribution of Sama is distribution and paral-
lelization of message propagation in an efficient way
to achieve scalability and speed up message delivery
to the group members. Sama uses Message Dispatcher
Objects (MDOs), which are stationary agents on each
host, to propagate messages in a parallel manner. The
proposed mechanism is independent of agent locations
and transparently delivers messages to the group us-
ing a constant number of remote messages. Experi-
mental results show that message delivery time is sig-
nificantly reduced in Sama compared to the previously
proposed methods.

Keywords: Mobile Agents, Group Communica-
tion, Large-scale Mobile Agent Systems, Mobile
Agent Communication

1 Introduction

Mobile agent technology has introduced an attrac-
tive model for distributed systems [2]. Mobile agents
are executing programs that can migrate, at time of
their own choosing, from one machine to another in a
heterogeneous network. Their ability to migrate and
perform their tasks locally reduces the network load
and execution time considerably [1]. Mobile agents
have been used in various distributed applications
such as distributed information retrieval [3], network
management [4], ecommerce [5], etc. There are many
mobile agent platforms which provide facilities to
develop agent based applications; among them to
mention Voyager [13], Aglets [14] and Grasshopper
[15].

Communication of agents is a fundamental issue in
many multi agent systems. Different models for agent
communication have been proposed including broad-
casting, forwarding and central server [16]. Group
communication is an important and widely used com-

munication model in distributed systems. In this kind
of communication, a message is delivered to all group
members, whereas the group membership is transpar-
ent to the sender. In the mobile agent realm, mobility
of the group members introduces new challenges.
Clearly, in scenarios that fully exploit mobility, where
objects are rapidly moving or their migration is not as
tightly controlled, most of the conventional techniques
are inapplicable. Scalability of group communication
mechanisms is also a critical factor in large-scale
agent systems. Examples of large-scale mobile agent
systems include e-business applications and Internet-
wide data warehouses [17].

In this paper, we propose a scalable group commu-
nication mechanism for mobile agent systems. Our
approach, called Sama, considerably speeds up mes-
sage delivery to the group members by parallelizing
the message dissemination task using an efficient al-
gorithm. It distributes the load of message propagation
among network nodes and uses a constant number of
remote messages. Sama uses Message Dispatcher Ob-
jects (MDOs), which are objects on each host, to par-
allelize message dissemination process. It also delivers
messages in a considerably low time in comparison to
the previously proposed mechanisms for mobile
agents.

The rest of paper is structured as follows. Section 2
reviews the related work. In section 3, we propose our
group communication mechanism. In this section, the
system model and message propagation algorithm of
Sama are presented. Section 4 discusses some charac-
teristics of the mechanism. In section 5, we compare
Sama with some of the existing mechanisms and pre-
sent our experimental results. Section 6 suggests some
directions for future work and concludes the paper.

2 Related Work

Group communication has been one of the hot re-
search areas in distributed systems. Many mechanisms
have been proposed for distributed systems including
[18], [19] and [20]; however, none of them have con-
sidered mobility of the group members.

Several mechanisms for the mobile agent group
communication have also been developed. An effec-
tive group communication service for mobile agent

 3

systems can considerably improve the overall effi-
ciency of these systems. Generally, we can divide
agent group communication mechanisms into two
categories:

1. Mechanisms that depend on agent locations and
restrict migration of agents.

2. Mechanisms that are independent of agent loca-
tions and agents can migrate autonomously.

In the first category, an agent can be reached using a
stationary proxy which knows its current location.
Upon migration, agent has to inform its corresponding
proxy about its new location. In the second category,
on the other hand, there is no proxy for agents and
they can migrate freely. This approach provides high
rate of migration and autonomy for agents in the sys-
tem.

Among the first category we can name Mobile
Process Groups [10] and Voyager Spaces [13]. Mobile
Process Groups are process groups that support mi-
grating processes [10]. Each process installs a view,
which is a mapping between all processes and their
locations. This implies that each process knows all
other group members and their locations. This also
enforces the agents to maintain consistent views of the
system and update them periodically, which is clearly
costly in large scales. In this approach, message
propagation is not transparent which means the sender
should know all group members [9]. When an agent
wants to send a message to the group members, it se-
quentially sends the message to all agents in its in-
stalled view. This approach does not scale well to
large group members.

Some mobile agent platforms provide group com-
munication mechanism for agent groups as well [12].
Voyager uses a specialized architecture with spaces
and subspaces to deliver the messages [13]. In Voy-
ager, a space is a logical container that can span mul-
tiple virtual machines across the network. Subspace
class is the basic element and building block of a
space. A message is sent into a space by publishing it
into one of its subspaces. Then, it is cloned in all
neighboring subspaces. In addition, the message is
delivered to every object in the local subspace, result-
ing in a rapid fan out of the message to every member
of the space. As the message propagates, it leaves be-
hind a marker unique to that message which prevents
the message from being repropagated into subspaces
which have already been sent. Users have to connect
subspaces to form arbitrary topologies. The mecha-
nism has negative impact of sending many unneces-
sary messages and consuming high bandwidth for a
large number of connected subspaces. Indeed, many
nodes might receive a message several times. Because
members of a subspace can migrate to different loca-
tions, the number of remote messages can also in-
crease rapidly.

Some examples of the location independent cate-
gory are the mechanism proposed in [6] and group
communication using IP multicast. A group communi-
cation mechanism using reliable communication in

fault-free environment is proposed in [6]. The mecha-
nism attempts to deliver a message to every agent us-
ing a method similar to the distributed snapshot [21].
However, only agents whose identifiers match the
message target, actually, accept the message which
makes it slow in large scale systems. In this approach,
a message may be delivered several times to an agent.
The method also assumes nodes are connected through
FIFO channels. Implementation of these channels is
another challenge for the mechanism.

In [7] a group communication mechanism for mo-
bile agents based on IP multicast has been proposed.
The method captures the inherent agility of mobile
agents in a scheme of dynamically adapted multicast
groups. When an agent migrates to a new location, the
group is changed and the new location is added to the
group. If there was no agent in the previous location
any more, it is discarded from the group. The method
uses Multicast Backbone (MBone) [8] as an infra-
structure for multicast. Unfortunately, MBone com-
prises only a small fraction of the Internet routers.
This considerably restricts the applicability of the
method.

An event propagation mechanism among mobile
agents has been proposed in [11], which is similar to
the event model of Java. The method uses ‘Event-
TransceiverServers’ to distribute messages over the
network. However, the sender should send the mes-
sage to ‘EventTransceiverServers’ sequentially, which
is time consuming.

Our mechanism, Sama, can be classified as a loca-
tion independent mechanism. We do not assume proxy
for mobile agents and a sender need not to know all
group members. The mechanism delivers messages to
group members without knowing their locations and
does not restrict their migration.

3 The Proposed Group Communication
Mechanism

3.1 System Model in Sama
Sama is an application level group communication

mechanism. We assume a heterogeneous network
model such as the Internet where there exists at least
one path between every two hosts. In order to be able
to accept mobile agents there should be an agent
server running on each host in our system. We also
assume that the underlying mobile agent framework
provides communication features among system com-
ponents. All communications are done in application
level and use techniques such as remote method invo-
cation. For instance, we can use Voyager’s messaging
service for communication between system compo-
nents [13].

For the sake of simplicity, we assume hosts do not
use multithreading. Thus, each host can send one mes-
sage at a time. By small changes in the algorithm
which are discussed in the next subsection, Sama can
exploit multithreading capability of hosts too.

 4

For the proposed mechanism knowing the follow-
ing parameters is critical:

• Maximum Message Transfer Time (MMTT)
• Maximum Agent Migration Time (MAMT)
MMTT is the maximum amount of time takes a

message to be transferred between two hosts. We can
calculate MMTT using the round trip application level
delay between hosts in the system. MAMT is the
maximum time which takes an agent migrates from
one host to another. MAMT can be calculated in the
same way as MMTT. Having these parameters, Sama
can guarantee message delivery to all group members
in a fault-free environment. On the other hand, with-
out MMTT and MAMT some highly mobile group
members may not receive the message. These mem-
bers move freely and frequently from one host to an-
other. Some scenarios for this case have been dis-
cussed in [6].

Message Dispatcher Object (MDO). MDOs are
the main components in our mechanism which route
and deliver messages to the group members. There is
one MDO on each host in the system. They can be
imagined as a part of agent servers that are running on
every host. MDOs are created, set up and sent on all
hosts by the system administrator before the mecha-
nism starts its work. This can easily be done using a
MDO creator program. Each MDO has the following
components.

• MDO List
• Message Storage Queue
• List of the Local Group Members
• MMTT
• MAMT

Each MDO knows all MDOs and their locations on
the network. MDOs store this information in a list
which can be a typical data structure such as an array.
Because we store minimum required information to
reach MDOs, size of the list is scalable to the large
number of MDOs. The position of each MDO is the
same in all MDO lists in the system. Each MDO also
has a message storage queue, which is used to store
incoming messages. A timeout value is assigned for
each incoming message which is calculated using
MMTT and MAMT. MDOs use the timeout values to
discard messages from their message storage queues.
They also have a list of all local agents, which are
members of the group. Using information stored in the
list of local group members, MDOs can deliver incom-
ing messages to their local group members.

MDOs also provide facilities for mobile agents to
join, leave, register or unregister to the group. Agents
use register and unregister methods of MDOs when
they want to migrate to another host. Before migra-
tion, an agent unregisters itself from the list of local
group members of the MDO of the source host. Then,
it migrates to destination host. After migration, the
agent registers itself to the MDO of the destination
host and receives all messages which it could not re-
ceive during its migration.

Mobile agents should have methods to join, leave,
register or un-register to a group. Group members also
know their local MDO and send messages to the group
by passing them to their local MDO.

Figure 1 depicts a sample system with 16 hosts and
some mobile agents.

Fig. 1. A sample system model with 16 hosts con-
nected through the Internet.

3.2 Message Propagation Mechanism
Sama uses an efficient algorithm to speed up mes-

sage delivery. Each MDO executes the algorithm upon
receiving a message. The main idea of the algorithm
can be described as follows. Suppose there is a group
of objects and one of them wants to send a message to
the group. It first sends the message to one of the ob-
jects. Now, two objects know the message and the
second object can contribute in message delivery
process hereafter. Then, the two objects send the mes-
sage to two other objects. At this time the number of
objects that know the message is four. Accordingly in
the next step eight objects will know the message and
so on. Our proposed algorithm indicates the order of
message delivery in the described scenario. As it can
be seen, the number of objects which have received
the message is doubled in each step and this causes
exponentially propagation of the message among
group members.

Our mechanism has two phases. In the first phase,
when a message is sent to the group, it is propagated
among MDOs using the previously described idea. In
the second phase, each MDO delivers the message to
its local group members. The first phase is done in a
logarithmic order and a parallel manner. The algo-
rithm is shown in Listing 1.

Upon receiving a message from the sender by the
first MDO, it associates a sequence number to the
message using a local counter. Using this sequence
number, the group members can avoid receiving dou-
ble messages. Then, it finds the beginning and ending
indices of its customized MDO list. The customized
MDO list is a sub-list of the main MDO list, which is
customized for execution of the algorithm and is gen-

 5

erated in each iteration of execution of the algorithm.
At this time, the customized MDO list for the first
receiver is the original list of MDOs. Step 2 in the
algorithm describes the calculations required to find
the customized list in the first receiver. After finding
the customized list, the MDO finds the median com-
ponent of the customized list. The fourth step shows
how the index of the median in the customized list can
be found. The algorithm assumes the customized
MDO list as a circular list which the boundary indices
indicate the front and tail of the list. The median is the
middle component in this list.

Listing. 1. The Message Propagating Algorithm

Then, using the index of the median MDO, the

MDO divides its customized list into two sections and
finds the boundary indices of them. All calculations
are done in modulo n where n is the number of MDOs
in the system. Then, it sends the message and the
boundary indices of the second half of the divided list
to the median. The sender MDO is considered as the
parent of the receiver MDO. Now the median is re-
sponsible for delivering the message to the MDOs
listed in the second half of the list and starts sending
the message to them using the same algorithm. The

main MDO is responsible for the first half of the list
which forms its new customized list for the next itera-
tion of the algorithm execution. The MDO continues
this task until the size of its customized list becomes
one or two. At this time, it just sends the message to
the MDO(s) in its customized list and does not repeat
previous steps. Then, the MDO executes the second
phase of the algorithm and delivers the message to its
corresponding local agents sequentially. MDOs which
are not parent of any MDO after delivering the mes-
sage to their local group members acknowledge the
message delivery to their parents. Parent MDOs also
acknowledge to their own parents after delivering the
message to their local group members and receiving
acknowledge from their child MDOs.

By making some changes in the algorithm, Sama
can exploit multithreading capability of hosts as well.
Suppose each host can send three messages simulta-
neously. Now, instead of dividing customized list into
two sections, the algorithm divides the customized list
into four sections and sends the message to three
MDOs simultaneously.

3.3 Example
We assume a system with 16 hosts, and conse-

quently, with 16 MDOs. We also assume there is only
one group member on each host. Each MDO has the
list of all MDOs in the system including itself. Sup-
pose that the MDOs can be identified by the index of
their position in the MDO list. Figure 2 illustrates the
list. For the sake of simplicity, we assume the MDO in
position 0 receives the message first. We call it
MDO0. Accordingly, n is 16 in the first iteration. Be-
cause there is no boundary, MDO0 calculates the
boundaries of its customized MDO list as:

a = (0 + 1) mod 16 = 1

b = (0 –1) mod 16 = -1 mod 16 = 15
(1)

Then, MDO0 finds the median MDO in its custom-

ized list, which contains the MDOs that are in indices
a to b. Here, the median MDO is in the index m,
which is calculated by:

m = (a + ((b-a) mod x)/2) mod x =
 (1+((15-1)mod 16/2)mod 16 = 8 (2)

Formula 2, which is proposed in step 4 of the algo-

rithm, supposes the MDO list as a circular list and
finds the median of the list using calculations in
modulo n. Now, MDO0 calculates the new boundaries
for its customized MDO list using the formulas in step
5. It then sends the message and the boundaries of the
second half of the customized MDO list to the median
and makes it responsible to deliver the message to
them. MDO0 then repeats the algorithm with the new
customized MDO list. After receiving the message,
each MDO executes the algorithm. When the size of
the customized list is one or two, the MDO

Each MDO does the following phases after receiving a
message.
Suppose the number of MDOs is n and the boundaries
of the Customized MDO list are (a , b)
Phase 1:

1. Get the message and the boundaries for the MDO
list and calculate the customized MDO list.

2. If there is no boundaries

a. If you are the first receiver MDO and your po-
sition in the MDO list is p set the boundaries as
a = (p+1) mod n and b = (p-1) mod n.

b. Else go to Phase 2.

3. If b-a mod n < 2 send the message to the MDOs

which are at indices a and b and go to Phase 2.

4. Find the median component of the customized list.

Assume its position in the customized list is m then
m = (a + ((b-a) mod n)/2) mod n

5. Calculate the boundaries of the new customized

list, which is the first half of the current list as fol-
low:

a = a , b = (m-1) mod n

6. Send the message and the following boundaries to

the MDO, which is at index m in the old MDO list.
a = (m+1) mod n , b = b

7. Go to step 1.

Phase 2:
1. Pick up agents from the corresponding agents list

and send the message to them.

 6

Fig. 2. The list of MDOs which is stored in all MDO.

just sends the message to the MDO(s) and goes to the
second phase implying delivering the message to the
corresponding agents sequentially.

Fig. 3. Message propagation process among

MDOs

Figures 3 and 4 illustrate the message propagation

process among the MDOs in our example system. In
figure 3, the overall process of the message propaga-
tion is depicted. Figure 4, arranges the hosts according
to the message reception order. Each level of the fig-
ure corresponds to an iteration and shows the MDOs
that receive the message in that iteration. As it can be
seen there, the total operation is done in four iterations
and all of the MDOs have an instance of the message
by the fourth iteration. The thick arrow shows the first
iteration in which MDO0 sends the message to MDO8.
As it can be seen, after this iteration, MDO8 is respon-
sible for message delivery to half of the MDOs. Then,
MDO0 and MDO8 repeat the first phase of the algo-
rithm with the new customized MDO list boundaries,
(1, 7) and (9, 15) respectively. The thin arrows show
the second iteration and the dashed arrows are for the
third iteration. By the forth iteration which is depicted
by the dotted arrows, the message has been delivered
to all MDOs in the system. In this iteration, each
MDO has only one MDO in its list to send the mes-
sage and there is no need to calculate the boundaries.

After the fourth iteration, the first phase of the algo-
rithm terminates and all MDOs execute the second

phase of the algorithm. In this phase, each MDO de-
livers the message to its local agents sequentially.

Fig. 4. Reception levels

4 The Main Characteristics of Sama

In this section, we review the main characteristics
of Sama group communication mechanism.

Guaranteed Message Delivery. Sama guarantees
message delivery to the all group members in a fault-
free environment. Some scenarios are presented in [6]
that show in some situations in a fault-free environ-
ment, some highly mobile agents might not receive the
message. Sama stores messages in MDOs for a limited
period of time to ensure that all agents receive the
message from at least one MDO. MDOs store mes-
sages in their Message Storage Queues. If the number
of MDOs in the system presented by NMDOs, the
amount of time each message should be stored in each
MDO is calculated by:

MessageStorageTime = MMTT * log2(NMDOs) +

MAMT (3)

To understand formula 3, let assume that, in the

previous example, the message transfer time for each
of the following channels is MMTT and other links in
the system have a very low message transfer time that
can be ignored.

(0, 8), (8, 12), (12, 14) and (14, 15)
Consequently, MDO0 is the first receiver of the

message and MDO15 is the last receiver among
MDOs and the message reaches from 0 to 15 after
4*MMTT. If an agent migrates from host 15 to host 0

 7

just before receiving the message by MDO15 it should
receive the message from the MDO in host 0. MDO0
should hold a copy of the message to ensure that it can
deliver it to the incoming agents, which have not re-
ceived the message yet. Obviously, if MDO0 stores
the message for at least (4*MMTT+MAMT), it can
deliver the message to the new arriving agent. After
this amount of time, there is no need to store the mes-
sage and MDO can discard the message from its
queue. Figure 5 shows the scenario and agent migra-
tion path.

Fig. 5. An agent migrates from host 15 to 0 before

receiving message from MDO15.

Constant Number of Remote Messages. Sending

remote messages takes considerably more time than
local messages, especially on the Internet. As it can be
inferred from the algorithm, each MDO receives the
message once and, then, delivers it locally to its corre-
sponding agents. Consequently, the number of remote
messages is equal to the number of MDOs in the sys-
tem. For instance, the number of remote messages for
the previous example is 16. This number can grow
rapidly for previously proposed mechanisms.

Message Delivery Independent of Agent Loca-
tions. An important characteristic of Sama is that it
delivers messages to the group members independent
of their locations. This approach does not restrict
agents’ migration and their independence [6].

Message Delivery Time. Our approach reduces
message delivery time in large scale mobile agent sys-
tems. As mentioned before, the message delivery op-
eration among MDOs is done in a logarithmic order,
which considerably improves message propagation
speed. To calculate the maximum amount of time
taken to disseminate a message among all MDOs, we
can use formula (4).

Maximum Time for MDOs = MMTT * log2 (NMDOs) (4)

After this amount of time all MDOs have an in-

stance of the message. If we assume that the Local
Message Delivery Time (LMDT) shows the amount of
time to deliver a local message and NAgents shows the
number of all agents in the system, we can calculate

maximum message delivery time in the worst case
scenario, when all agents are located on the host with
the slowest path from the source of the message, using
formula (5).

MaximumDeliveryTime = MMTT * log2 (NMDOs) +

LMDT * NAgents + MAMT
(5)

After this amount of time all MDOs have delivered

the message to their local agents.
Transparent Message Delivery. Transparent mes-

sage delivery to a group is another property of our
mechanism. By transparent message delivery we mean
the sender need not to know the group members and it
just sends a message to the group and the mechanism
will deliver the message to all group agents [9]. This is
a very important characteristic that makes implemen-
tation of the sender and the agents easy.

Open and Close Groups. Groups can be open or
close. In an open group, agents, which are not group
members, can send message to the group members. In
contrast, in a close group just group members can send
messages to the group [9]. To support an open group,
we can choose a MDO as group proxy and make it
accessible from the outside. Then, messages can be
sent to the proxy to be delivered to the group mem-
bers.

5 Comparison with the Other Ap-
proaches

In this section, we briefly compare Sama with Voy-
agerTM [13] and Mobile Process Groups [10].

Among the related works, Voyager’s spaces ap-
proach is more similar to ours. In comparison with
Voyager’s spaces, our mechanism is simpler and
faster and utilizes the resources more efficiently in
systems with a large number of mobile agents. Unlike
Voyager, Sama does not restrict agent migration. In
Voyager, users should define communication channels
between subspaces [13]. Each subspace also sends the
message to all neighbors except to the subspace the
message is received from. Consequently, in fully con-
nected subspaces, each subspace receives a message
several times which wastes the bandwidth and in-
creases the load of the system. On the other hand, if
the subspaces are connected via a few channels the
message delivery time will increase. Finding the
proper connections among the subspaces is another
challenge. In our approach, the proposed algorithm
finds the proper communication channels among
MDOs itself. Since each MDO receives a message just
once, the number of extra messages is low and the
network load does not increase compared to the Voy-
ager’s approach. Furthermore, the number of remote
messages is constant in our approach, which can be
high in Voyager’s approach.

In Mobile Process Groups each agent should install
views of the system, which is difficult to maintain.
The message propagation time, compared to our algo-

 8

rithm, is considerably high since the sender sends the
message to all group members directly. This results in
a high load on the sender in their method, while it is
distributed among all hosts in our approach. The num-

ber of remote messages can also rise dramatically in
large scale systems. In contrast, Sama is more scalable
and faster when the number of group members grows.

0

200

400

600

800

1000

1200

1400

1600

1800

4 6 8 10 12 14 16

Number of Agents

M
ili

se
co

nd
s Sama

Mobile Process
Groups

Fig. 6. The Message delivery time in Sama and Mobile Process Groups based on the number of agents in a sys-

tem with 16 hosts.

We have implemented our mechanism using Voy-
ager’s messaging features which provide communica-
tion using techniques similar to Remote Method Invo-
cation. We have compared Sama to the Mobile Proc-
ess Groups approach with respect to the different
number of agents. The test configuration was made of
16 hosts connected via a 100 Mbps Ethernet network
and with a 20 KB string message. Each mechanism
was executed 10 times and the average message deliv-
ery times were measured. The calculated time is the
time between sending the message and receiving ac-
knowledges from all group members. As it can be
seen in figure 6, our proposed mechanism is very scal-
able in comparison with Mobile Process Groups since
it shows considerably less delay when the number of
group members grows. Sama tries to parallelize mes-
sage propagation process and use a constant number
of remote messages. Consequently, the difference
between Sama and Mobile Process Groups mechanism
is more considerable in low speed networks and hosts.

Both of the discussed approaches, Voyager’s
spaces and Mobile Process Groups, restrict agent mi-
gration and autonomous behavior by forcing them to
inform their proxies in migration time. However, this
may not be acceptable in autonomous agent systems.
There is no such restriction in our proposed solution.

6 Conclusions and Future Work

We have proposed Sama, a distributed and scalable
application level group communication mechanism,
for large scale mobile agent applications which deliv-
ers messages in a considerably low time. Sama uses
Message Dispatcher Objects (MDOs), which are spe-
cial objects on every host, to parallelize and speed up
message delivery to the group members. It first propa-
gates messages among MDOs using an efficient algo-
rithm and, then, each MDO delivers the messages to

its local agents. Our approach uses a constant number
of remote messages and transparently delivers mes-
sages to group members. Sama does not restrict agent
migrations and they can autonomously move among
hosts. It does not assume any special network model
and can be applied on all networks specially the Inter-
net. Experimental results show that Sama scales well
when the number of group members grows.

There are unsolved issues regarding to a host fail-
ure. We intend to add fault tolerance features to the
mechanism. We also try on applying our method to
other distributed object systems such as CORBA in
near future.

References

[1] A.Fuggetta, G.P.Picco and G.Vigna. “Understand-
ing Code Mbility”, IEEE Transactions on Soft-
ware Engineering. Vol.24, No.5. May, 1998

[2] S. Parsa and H. Jafarpour. “Developing and Im-
plementing Applications for the Internet”, In Pro-
ceedings of the International Electronic and Inter-
net Cities Conference. Kish Island, Iran. May
2001

[3] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G.
Cybenko and D. Rus. “Mobile Agents in
Distributed Information Retrieval”, In
Intelligent Information Agents, pages 355-395,
1999. [4] Bieszczad, A., White, T. and Pagurek, B., “Mobile
Agents for Network Management”, In IEEE
Communications Surveys, September, 1998.

[5] P. Dasgupta, N.Narasimhan, L.E. Moser and P.M.
Melliar-Smith, “MAgNET: Mobile Agents for
Networked Electronic Trading”, IEEE Transac-
tions on Knowledge and Data Engineer-ing, Spe-
cial Issue on Web Technologies, vol. 24, no. 6,
July/August 1999, pp 509-525

 9

[6] A.L. Murphy and G.P. Picco, “Reliable Communi-
cation for Highly Mobile Agents”, Journal of
Autonomous Agents and Multi-Agent Systems,
Special issue on Mobile Agents, pp 81-100, 2002.

[7] Hartroth and M. Hofmann, “Using IP Multicast to
Improve Communication in Large-Scale Mobile
Agent Systems”, In Proceedings of 31st Annual
Hawaii International Conference on System Sci-
ences (HICSS), Volume VII, Page 64-73, Hawaii,
January 6-9, 1998.

[8] Bruce S. Davie and Larry L. Peterson, Computer
Networks: A Systems Approach 2nd edition Mor-
gan Kaufmann •1999

[9] G.Coulouris, J. Dollimore and T. Kindberg, Dis-
tributed Systems - Concepts and Design, 3rd edi-
tion Addison-Wesley, 2001.

[10] Flávio M. Assis Silva, Raimundo J. A. Macêdo.
Reliable Communication for Mobile Agents with
Mobile Groups. In the Proceedings of the Work-
shop on Software Egineering and Mobility (co-
located with IEEE/ACM ICSE 2001). Toronto,
Ontario, Canada. May 13-14, 2001.

[11] J. McCormick, D. Chacón, S. McGrath, and C.
Stoneking, “A Distributed Event Messaging Sys-
tem for Mobile Agent Communication”, Techni-
cal Report TR-01-02(Lockheed Martin Advanced
Technology Laboratories) March 2000.

[12] R. Broos, B. Dillenseger, P. Dini, T. Hong, A.
Leichsenring, M. Leith, E. Malville, M. Nietfeld,
K. Sadi and M. Zell. “Mobile Agent Platform As-
sessment Report”,
http://www.fokus.gmd.de/research/cc/ecco/climat
e/ap-documents/miami-agplatf.pdf

[13] Recursion Software, Inc. Voyager ORB Devel-
oper's Guide, 2003. www.recursionsw.com.

[14] IBM Japan Research Group Aglets Workbench,
web site: http:// aglets.trl.ibm.co.jp

[15] Grasshopper, Release 2.2, Basics and Concepts
(Revision 1.0), March 2001.
http://www.Grasshopper.de

[16] Pawel T.Wojiehowski. “Algorithms for Location-
Independent Communication between Mobile
Agents”. Technical Report DSC-2001/13, Dépar-
tement Systèmes de Communication, EPFL,
March 2001.

[17] Wijngaards, N.J.E. , Overeinder, B.J. , Steen and
M. van , Brazier, “F.M.T. Supporting Internet-
Scale Multi-Agent Systems”, In Data and Knowl-
edge Engineering, Vol. 41, Number 2-3, pp. 229-
245, June 2002

[18] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
R. K. Budhia, and C. A. Lingley-Papadopoulos.
“Totem: A fault-tolerant multicast group commu-
nication system”, Communications of the ACM,
Vol. 39, No 4, April 1996.

 [19] van Renesse,R., Birman, K. and Maffeis,S.
“Hourus: a Flexible Group Communication Sys-
tem”, Communications of the ACM, Vol. 39, No
4, April 1996.

[20] Dolev,D. and Malki,D. “The Transis approach to
high availability cluster communication”, Com-
munications of the ACM, Vol. 39, No. 4, April
1996.

[21] K.M. Chandy and L. Lamport. “Distributed Snap-
shots: Determining Global States of Distributed
Systems”, ACM Trans. on Computer Systems,
3(1):63-75,February 1985.

