Approximate Selection Queries over Imprecise Data

losif Lazaridis
Information and Computer Science
University of California, Irvine
Irvine, CA
U.S.A.
iosif @ics.uci.edu

Abstract

We examine the problem of evaluating selection queries
over imprecisely represented objects. Such objects are used
either because they are much smaller in size than the pre-
cise ones (e.g., compressed versions of time series), or as
imprecise replicas of fast-changing objects across the net-
work (e.g., interval approximations for time-varying sensor
readings). It may be impossible to determine whether an im-
precise object meets the selection predicate. Additionally,
the objects appearing in the output are also imprecise. Re-
trieving the precise objects themselves (at additional cost)
can be used to increase the quality of the reported answer.

In our paper we allow queries to specify their own an-
swer quality requirements. We show how the query evalu-
ation system may do the minimal amount of work to meet
these requirements. Our work presents two important con-
tributions: first, by considering queries with set-based an-
swers, rather than the approximate aggregate queries over
numerical data examined in the literature; second, by aim-
ing to minimize the combined cost of both data processing
and probe operations in a single framework. Thus, we es-
tablish that the answer accuracy/performance tradeoff can
be realized in a more general setting than previously seen.

1 Introduction

We examine the problem of evaluating selection queries
over imprecisely represented objects. An imprecise object
o corresponds to an actual (precise) object w® which can be
retrieved, at some cost, via a probe operation.

If T is a set of such objects, then we consider the selec-
tion query o7, where A is the selection predicate. A maps
objects to the { YES,NO, MAYBE} set. When A(0) = YES
then o satisfies \. When A(0) = NO then o does not satisfy
A. Finally, when A(0) = MAYBE, o might satisfy X. This

Sharad Mehrotra
Information and Computer Science
University of California, Irvine
Irvine, CA
U.S.A.
sharad @ics.uci.edu

can be determined via a probe operation, and A(w®) will
return either YES or NoO.
The exact set of X over T is defined as:

E} = {w°lo € T A Aw°) = YES} (1)

i.e., it consists of all precise objects which satisfy A. To
give an example, let 0y = [1,3], 0o = [3,4] and 03 =
[—2, —1] be imprecise objects (intervals) corresponding to
WO = 2.5, w° = 3.2,w = —1.2." Then, the exact set
for A(0) = (0 > 2) and T = {01,02,03} is:

&3 = {w’,w*} = {2.5,3.2} 2)

But, while A(02) = YES and A(o3) = No, for A(01) =
MAYBE we would not be able to ascertain that w® € £}
unless we performed the probe operation that would return
w®t. This is a cause of what we call set-based uncertainty
in the output, since we are uncertain as to which objects
belong in the exact set of the query.

There is, however, a value-based uncertainty as well.
Since we only have o0y, 02, 03, then our answer set will have
some of these imprecise objects, rather than the correspond-
ing w°,w?,w’. Hence, even if we knew that only 01, 02
satisfy the selection predicate, we would still have to deal
with the problem that e.g., oy = [1,3] is only an imprecise
representation of the precise w° = 2.5.

What we propose to do in this paper is to show how
results “close to” S?f can be obtained from sets of impre-
cise objects stored in a database. The queries will specify
both the predicate A, as well as answer quality requirements
which the obtained result must satisfy. Such queries are
termed Quality-Aware Queries (QaQs). There may be more
than one feasible answer to a QaQ: our goal is to provide
some answer which matches its requirements in the most
efficient manner. This way, we aim to take advantage of the

'We use intervals as an example. Our technique works for all models
of imprecision that allow us to classify imprecise objects as YES, NO, or
MAYBE.

answer quality/performance tradeoff which has traditionally
been studied for aggregate queries on numerical data.

Our work’s novelty is twofold. First, we consider queries
with set-based answers, for the selection operator, which
is the first stepping stone towards integration of the qual-
ity/performance tradeoff for general relational queries. Ap-
proximate answering with set-based results has been treated
in the past [4, 9], but not in a prescriptive setting where
the user specifies an arbitrary quality requirement and the
system tries to match this efficiently. Second, while pre-
vious work has focused in minimizing the expensive probe
operations only, our goal is to take into account both the
read/write and the probing cost.

We must emphasize here that we are proposing an on-
line algorithm for the problem at hand. The selection op-
erator over precise data is usually memoryless, examin-
ing one object at a time. Algorithms for some types of
selections, namely nearest neighbor searches [18] some-
times use more than O(1) memory to optimize I/O perfor-
mance. At present, we limit ourselves to constant memory,
and demonstrate that it is possible to achieve a significance
performance benefit without e.g., ordering the sequence of
probe operations in any way. Whether an even more signifi-
cant performance benefit can be achieved with non-constant
memory is a topic for further investigation.

1.1 Applicability

The generic problem setting and description presented
so far has numerous real-world applications which occur
whenever precise object storage and querying is made diffi-
cult because of:

e Replication Barrier— If the precise objects are
volatile, i.e., they are updated very frequently (as in
web pages), or even continuously (as in sensor read-
ings, or the location of moving objects), then it may
be desirable, from a performance perspective, to avoid
replicating them at the query processing site precisely.

e Storage Barrier.— If the precise objects are too large,
then it may be impossible to store them precisely in
a single location. For example, archives of multime-
dia objects, time series, or large documents may be
stored in a separate location, or even in tertiary stor-
age. Object summaries, such as feature-based repre-
sentations for images, compressed time series, or ab-
stracts of documents can be stored at a fraction of the
precise object’s space.

e Querying Barrier— This occurs when either the query
operates on very large databases, in which case pre-
cise evaluation may be prohibitively expensive, as in
OLAP. Alternatively, the selection predicate, A may be

itself expensive, e.g., testing the Euclidean distance be-
tween two time series, or the edit distance between two
strings of text.

The factors enumerated above involve our inability to
store and query data precisely. A trivial solution is to invest
in infrastructure, storage, and processing power and thus
deal with the problem indirectly. Since many applications,
e.g., for exploratory data analysis do not always require full
accuracy, we may accommodate their quality requirements
with existing hardware, by providing approximate results at
a fraction of the cost needed for the exact ones.

Paper Organization.— The rest of the paper is orga-
nized as follows. In Section 2 we develop quality metrics
for specifying and reporting the quality of an answer to a
Quality-Aware Query. In Section 3 we present our algo-
rithm for evaluating Quality-Aware Queries. In Section 4
we present the optimization framework that allows us to
tune the free parameters of the evaluation algorithm. In
Section 5 we present experimental results demonstrating the
performance/quality tradeoff that our algorithm achieves. In
Section 6 we present some related work. We conclude in
Section 7, presenting directions of future research.

2 Quality Metrics

Quality Metrics for gauging the accuracy of a set-based
result to a query include Match-and-Compare [9], and Earth
Mover’s Distance [19]. Such measures of quality are es-
sentially diagnostics in the sense that they can be used for
comparing an approximate result with the precise answer
for quantifying the performance of algorithms, or for tun-
ing their parameters before queries are run. A discussion of
these and some others can be found most recently in [6].

Our problem setting differs, in that we propose to build
a query evaluation system in which the quality metric will
be something specified by the user, and correspondingly re-
ported to the user at the time of query evaluation. Hence,
there is no way of comparing the approximate result with
the precise one, because the latter is never known. We will
have to devise a notion of quality which depends on the ap-
proximate answer alone, specifying by “how much” this can
deviate from the (unknown) exact answer.

Moreover, while complex measures of quality such as
the ones enumerated above try to summarize the overall ac-
curacy of a result in a single number, they do little to make
the notion of quality intuitively understandable to users of
the system. Remember, that users must specify their quality
requirements, and they must do so using some metric which
has a simple, and definite real-world meaning. In particular
they should be able to specify both their need for set-based
accuracy of the result, i.e., whether objects appear in the
output or not, as well as for the accuracy of the values of
the object that do appear (value-based accuracy).

2.1 Set-Based Accuracy: Precision and Recall

We have chosen to use two quality metrics for set-based
accuracy: precision and recall, which are commonly used
to gauge the quality of answer sets in Information Retrieval
[3]. Precision is the fraction of objects in the output that are
in the exact set. Recall is the fraction of objects in the exact
set that are in the output. Both should be ideally 1.

The answer given in response to a QaQ will consist of a
set of objects, noted A%‘—. This will include both imprecise
objects, as well as precise ones returned from probes. In
the sequel, we will drop the A, 7 from the notation with the
undestanding that they are implied. We note the precision p
and recall r of A as:

ACEL i | A #0
= A ! 3
P {1 if |A] = 0 ©)
ro= S IfIEL£0 4)
1 if1€] =0

The definition of intersection in the above is A N & =
{z|lz € AN (z € EVw® € £}.2 The answer ought to
satisfy:

p? (5)
rd (6)

(AVARAY]

r

pY,r? are the precision, and recall tolerances or require-
ments of the query. There are situations where a query
might request a higher level of recall, or even perfect recall
(r? = 1), e.g., for the query: “retrieve all sensors whose
temperature value is above critical threshold 7. In that
case, we care primarily that all such sensors be retrieved,
because to miss some might imply, e.g., a potential acci-
dent. We do not care so much that only such sensors be
retrieved. In a different scenario, we are trying to find some
patients from a medical database whose electro-cardiogram
time series exhibits some pattern XY Z. This information
will be used to select candidates for testing a new drug. We
do not care to retrieve all patients in the world who present
pattern XY Z, but the ones we do, must definitely do so. In
this case, high or perfect precision (p? = 1) is required.

2.2 Value-Based Accuracy: Laxity

The answer to the selection query will consist, as we
have seen, of the set .A. To quantify the value-based quality

2Under the usual definition of intersection AN E = {x|x € AAT €
£}, an imprecise object in .4 whose precise version is in £ would not be
in AN &. This is just a consequence of the fact that we have defined
£ to include only precise objects, hence the need for a slightly modified
definition.

of this set, we will use the laxity measure. This represents
the amount of uncertainty that an imprecise object contains.
The laxity of an object z is noted as [(x). By convention
I(z) € R and I(x) = 0 implies that there is no uncertainty
about the value of z. Thus, always I(w®) = 0.

For example, if precise objects are real values and im-
precise ones are intervals containing these, then laxity may
be defined for interval o = [l,h] as I(0) = h — . The
definition of laxity will depend on the type of object being
represented, and the model of imprecision employed. For
example, an alternative representation for a real value is via
a density distribution. A parameter of that distribution (e.g.,
standard deviation for normal data) may be used as laxity.

The user will specify the value-based requirement as:

maz _ | mazgeal(z) <17 if A#(
: _{o Yoitazg O

This means that the maximum laxity ["%*, over all ob-
jects in the answer set must be below a bound /3***. For
example, we might ask: “retrieve the sensor IDs and tem-
peratures (within +£1°C') of all sensors whose temperature
is above 30°C.” In this case, using the [(0) = h — [defini-
tion, we have a laxity requirement of [{*** = 1.

Summary.— Our proposed metrics encompass two dif-
ferent aspects of quality: the set-based aspect pertaining to
our uncertainty with respect to objects meeting the selec-
tion predicate or not, and the value-based aspect which in-
volves the uncertainty of objects that appear in the answer.
Our proposed metrics have a reasonably intuitive meaning,
making it easy for users to specify them and to interpret re-
sults with such quality guarantees. However, they are not
the only possible metrics that could be used. They suf-
fice however for illustrating the feasibility of exploiting the
performance-accuracy tradeoff in the given setting.

2.3 Achieving the Quality Guarantees

The QaQ operator does not know £. Objects read from
the input 7 are placed into two sets, Y, N if they are clas-
sified as YES and NO respectively. Naturally, A" does not
need to be maintained; these objects are simply discarded.
The remainder of 7 is M = T — Y — N and consists of
objects that remain as MAYBE. This consists both of a set of
objects that the operator has not yet seen, M, which are
MAYBE by virtue of not having been examined, as well as a
set of objects M that the operator has seen, were MAYBE,
and were not probed. Thus M = M U M,,;.

The answer set .A will consist of some of the objects of
YUM,; thatis A C YU M. It will be built progressively,
by (conceptually) appending objects to 4, and (practically)
piping them to the output and presenting them to the user.
Query evaluation will end when A is such that all quality

guarantees are met. Remember that for an on-line algo-
rithm, we cannot touch an object once it has been output,
nor can we defer handling it by placing it into temporary
storage.

The quality guarantees, if the answer is 4 are:

ANY
psz='|A|' ®)
ANY|
r > r%= | 9
mer = l 10
max (z) (10)
For p, we observe that it ranges in the interval | |“T91;|y L 1]

depending on how many output objects (in number ranging
from | AN Y| to | A|) actually satisfy \; hence the guarantee

given in (8). For r, we observe that it ranges in the in-

[ANY] |ANY|+|ANM,|
terval [Iy\+|Mns|+|Ms—A|’ THANAL]]. We know that

the exact set contains at least | Y| objects. In the worst case,
which gives the lower bound (9), all the | M, | un-seen ob-
jects are YES, as are all the seen MAYBE objects that were
not forwarded (ignored), M, — A| in number. Note that
we don’t repeat the special cases (for denominator equal to
0) in the expressions (8), (9), (10). These are the same as in
previously seen (3), (4), (7).

Example.— Suppose that |7|=1000 and we have seen 200
objects. Hence, [M,5| = 800. Of the ones we have seen,
100 were YES, and 50 were MAYBE; the remaining 50 were
No. We forwarded 80 of the YES ones, ignoring the re-
maining 20. We probed 20 of the 50 MAYBE ones, and 10
returned YES, which we forwarded, and 10 returned NO.
Of the remaining | M| = 30 which were not probed, we
forwarded 20 and ignored | M, — A| = 10. Thus, the to-
tal number of YES objects that were seen were the 100 that
were read as YES plus the 10 that became YES after a probe.
Hence, in total |Y| = 110. Of these we forwarded all ex-
cept the 20 that we ignored; hence |.A N Y| = 90. The total
answer consists of these 90 plus the 20 MAYBE ones that
we also forwarded. Hence, in total |.A| = 110.

Thus, we have an answer set of size |4| = 110 of
which only 90 (which are YES) are objects that are guar-
anteed to be in the exact set. Hence, precision is at least
p% = % = 0.81. Potentially all the 800 unseen objects
could be YES, in addition to the 110 YES already seen and
the 20 that were ignored. Hence the recall could be as low

G _ 90 _
as T = {157s00720 — 0-097.

3 QaQ Selection Operator

We will now show how the QaQ selection operator will
be evaluated. Pseudo-code for the generic algorithm that
achieves this is seen in Figure 1. Input consists of the set

(1) procedure QaQSelection

(2) INPUT: set T # O, requirements pg,7q, Ig**"

(3) OUTPUT: set A, guarantees p&, G, imaz,

€]

(5) A<« 0; (* Answer set *)

(6) |[Muns| < |T]; (* Number of objects yet to be seen *)

(7) |Y| « 0; (* Number of YES objects seen *)

(8) [ANY| «+ 0; (* Number of YES objects output *)

(9) [Ms — A| < 0; (* Number of ignored MAYBE objects *)
(10) do

(11) o« T.nextObject(); |[Mns|--; (* Read object *)
(12) if A(0) = YEs decide (* Subject to Theorem 3.1 *)

(13)) @ + {o}; |YV|++; |[ANY|++; (* Forward a YES *)
(14) (): @« {w°}; |Y|++; AN Y|++; (* Probe a YES *)
(15) @ii): @ « {}; |Y|++ (*Ignore a YES *)

(16) elseif A(0) = MAYBE decide (* Subject to Theorem 3.1 *)
(17) (): a « {o}; (* Forward a MAYBE *)

(18) (i): if AM(w®) = YES goto (14); (* Probed MAYBE is YES *)
(19) else goto (22); (* Probed MAYBE is NO *)

(20) (i) o < {}; [Ms — A|++; (* Ignore a MAYBE *)
(21) elseif A(0) = No

22 a<«{}

(23) end-if;

(24) A+ AUa; (*Update the answer set *)

(25) update pG, rG, ™A% from Equations 8,9,10;

(25) while 7€ < rq

Figure 1. Handling of Objects by the QaQ Se-
lection Operator

T and the quality requirements, expressed via the bounds
Pg>Tg, L2 Output consists of the answer set A as well as
the bounds that the operator guarantees for it. These bounds
p%,r%,1™ma% are such that p& > py, A7 > ry AT <
I5**® must finally hold.

The algorithm assumes that the method used to access
the input set 7 is a linear scan. In the presence of an in-
dex we can effectively prune away part of 7 implicitly, i.e.,
without actually accessing those objects and evaluating A
over them. For lack of space we will not address this prob-
lem in the present, whose main concern is to investigate the
quality-performance tradeoff for set-based answers.

The operator first initializes the set counts that are
needed to calculate the quality bounds. The answer set is
initially empty (line 5), and none of the objects have yet
been seen, hence M| is equal to |7 (line 6). No YES
objects have been seen yet, hence |V| = 0 (line 7). Of
course, so is |Y N Al and | M, — AJ (lines 8,9).

The algorithm in the do loop (line 10) reads one object
o at a time and evaluates A(0), decrementing | M ;| since
one more object has now been “seen” by the operator. It
then classifies o as YES (line 12), MAYBE (line 16), or NO
(line 21), and handles it accordingly. Finally, A is updated
by adding the set « to it which contains either the object o,
its probed precise version w?, or nothing (line 24). Then,
the quality guarantees are updated (line 25) and if the recall
bound has still not been met, the loop continues. Remember

that we can stop the algorithm when p& > p, Ar¢ > 1, A
[maee < [T has been met. As we will see in the sequel
p% > PN < 1" will always have to hold. Hence the
stopping criteria is reduced to achieving the recall bound.

Let’s see how objects are actually handled, beginning
with the simplest case of a NO object. In that case, noth-
ing needs to be done; the object is rejected (aw = {}). The
laxity and precision bounds are unaffected, since these de-
pend only on the answer set. But, from (9) we see that the
denominator of ¢ is reduced by 1 since | M.,,,| has been
reduced. Hence the recall bound 7 improves.

The next case involves a YES object. This can be for-
warded as is, probed and w? forwarded, or discarded as in
each of the options (i-iii) of lines 13-15. If it is forwarded
(1), then | Y| and | AN Y| are incremented by 1 and from (8),
we see that p@ increases. r” from (9) also increases: the de-
nominator is the same as | M| is decremented, while |}
is incremented, but the nominator |A N Y| is incremented.
Finally I™®* increases iff (o) > [™®®. If the YES object
is probed (ii), then [™2* will be the same, since l(w®) = 0.
Precision and recall will be changed as in (i): probing a
YES object does not benefit set-based quality and makes
sense only if an object o has laxity (o) > 1;**”. Finally, a
YES object could be ignored (iii). Why would we ever do
such a thing? Remember that a YES object could have high
laxity. Outputting it increases precision/recall, but it may
violate laxity [3**®. Hence, it might be advantageous to ig-
nore it, waiting for some object o' which similarly increases
precision/recall but with [(o') < I7%*.

Finally, we deal with a MAYBE object. This corresponds
to the three cases (i-iii) of lines 17-20. If we forward (i)
a MAYBE object then the answer size |A4] is incremented
while |.ANY| remains the same; hence p® is reduced. r¢ in-
creases, since |.ANY| remains the same, while | M 5| in the
denominator is decremented. We can easily prove that the
increase in r“ produced by a MAYBE object is less or equal
to that produced by a YES one. Laxity changes as in case (i)
for YES objects. If we probe (ii) a MAYBE object then it be-
comes either YES or NO and handled as in those respective
cases. Finally, if we ignore (iii) a MAYBE object then preci-
sion and laxity remain unaffected, while recall also remains
unaffected, since | M| is decremented while the number
of ignored objects | M — A| is incremented.

We summarize these findings in Table 3. We note that
exercizing some of the options (i-iii) for YES and MAYBE
objects may not be feasible, since this may potentially cause
the algorithm to reach a situation where no matter how it
handles all the remaining objects from M, it will never
be able to produce a final answer A which meets the QaQ
requirements. Thus at a given point in the operator’s eval-
uation, an option can be exercized under certain conditions
which the following theorem enumerates. The theorem ap-
plies to all online algorithms for this problem with the same

Q
Q
3
o
8

(o) Action

No Ignore

YES Forward

Probe

Ignore

Forward

Probe, A(w®) = YES
Probe, A(w®) = No
Ignore

nl+|+{n=

MAYBE

W+ +[+| 0| +]+]+]=
I

nfnf+]"

Table 1. How p%,r%,i™m2* change depending
on the input object type and the QaQ oper-
ator’s decision. +: increase, -: decrease, =:
unaffected

set of options of handling objects.

Theorem 3.1 Given |A|, |ANY), |V, |Ms— A, ™ and
a read object o: \(o) # No: (a) if l(0) > I7**%, or (b)

A
A(0) = MAYBE and ‘lA?ﬁ’l'

added to the answer set A. If (c) % < Ty theno
cannot be ignored.

’

< pq then object o cannot be

Proof: (a) If [(0) > I7"*" and o is forwarded then [™*"
will be updated to [™?* > [[**® which violates the [j***
requirement. [™%* as defined in (10) can never decrease as
more objects are added to .A. Hence, the [7"*® requirement

will eventually be violated.

(b) If o is forwarded then the new precision guarantee
p& will be mﬂ%’l‘, from (8). But this means that p& < Dy
according to the hypothesis. p© gets updated only if new
objects are added to .4. But since all the remaining objects

may be NO, the p, requirement may be violated.

(c) If o is ignored, then r@ will remain the same, as in
(9) and also see Table 3. From Table 3 we also see that
no matter what kinds of objects are seen in the future, the
operator can always take some action that increases 7% it
can forward all YES objects and probe all MAYBE ones,
thus making sure that no objects in the remaining M, are
missed. But, suppose that all remaining objects are NO. In

that case, | M| will finally be reduced to 0 and the final
r& will be equal to %. Thus from the hypothesis,
finally ¢ < T4 and hence r, may eventually be violated.

The algorithm shown in Figure 1 performs some opera-
tions which have associated costs to them. In the following
section we will examine the costs of these various opera-
tions. Subsequently, we will see how making the decisions
of how to handle objects can affect the overall cost of eval-
uation, given a set of quality requirements.

Symbol | Description

Cr Cost of reading o and evaluating A(o)

Cp Cost of probing o and evaluating A(w®)

Cwi Cost of adding an imprecise object o to A
Cwp Cost of adding a precise object w® to A

R # of objects read

Y # of objects read that were YES

M # of objects read that were MAYBE

Yf, Yp # of YES objects that were forwarded, probed
M fs M p | #of MAYBE objects that were forwarded, probed
Mpy # of probed MAYBE objects that became YES

Table 2. Cost Model

3.1 Cost Model

The parameters of the cost model are summarized in Ta-
ble 2. We can split the QaQ’s evaluation cost into:

e Read Cost.— Since R objects are read at a cost of ¢,
each, this is simply Re,.. Note, that not all | 7| objects
need always be read. Sometimes, if 7, is low, we may
only have to examine part of the input.

e Probe Cost.— Since Y, + M, objects are probed at a
cost of ¢, each, this is (Y, + M,)c,. Probing an object
is usually more expensive than reading or writing it.

e Write Cost.— The output consists of the Y, My im-
precise objects that were forwarded at a cost of cy;
each, plus the Y, YES objects that were probed, and
M, MAYBE ones that were probed and returned YES,
for a cost of ¢,y each. In total, (Y + My)cy + (Yp +
Mpy)Cup.

The full cost W of evaluation can be written:

W = Re, + (Yo + Mp)ep + (Y5 + My)cwi + (Yo + Mpy)Cup
(11)
The goal is to minimize W, given 7 and pq, rq, [;***.

3.2 Handling Objects

Now we will talk about how to perform the crucial step
in the QaQ selection algorithm of Figure 1 of deciding how
an object should be handled, and why this decision is impor-
tant. We will first show why all possible ways of handling a
YES or MAYBE object may actually be useful, by means of
some extreme examples.

Suppose that it is required p; = 1, r, = 1, i.e., perfect
set-based quality. It is clear that we have no choice but to
probe each MAYBE object from the input. If we forward

such an object then the answer won’t be precise. If we ig-
nore it then the answer won’t be complete. Suppose that
additionally [;*** = 10, but for all YES objects in the in-
put it is [(0) > I;**®. If we forward these then []**® will
be violated. If we ignore them, r, will be violated. Hence,
again we have to probe them. Thus, we establish that both
MAYBE and YES objects sometimes have to be probed.

Now, suppose that we only require r, = 1, i.e., perfect
recall. In this case, we have to exhaust 7 and forward all
YES and MAYBE objects we encounter. If we ignore one,
then 7, is violated. If we probe one, then we are paying
the extra cost of ¢, unnecessarily, since that gives no help
in reaching the goal of ¢ = rq = 1: all objects of T
must be seen. Thus, in this case, the smartest strategy is to
just forward objects, because ignoring them is a non-option
(violating 74) and probing them gives no benefit.

Finally, suppose that we require p, = 1 and r, = 0.02
and [7"*" <1, i.e., we want to get only a few of the objects
that satisfy the query, but we want these to be fairly precise.
Now, suppose that at some stage in the evaluation of the
algorithm it is |Y| = |[AN Y| = 1, [Mps| = 99, and
M, — A| = 0. From (9) we have that 7% = 1= = 0.01.
From Theorem 3.1 we see that if we ignore an object then
r% can be improved up to % Hence, ignoring an object is a
feasible option. Now, suppose that either a YES object with
1(0) > 1 or a MAYBE object is read. If we probe the YES
one, then r“ will increase to 0.02 and hence the QaQ may
end. We can’t forward it because of the laxity constraint.
Why would we choose to ignore it instead of probing it?
Suppose that there is another YES object with I(0) < 1
further down the input. If we wait until we encounter that,
then r, can be met without doing any probes.

If a MAYBE object is read, then again we cannot forward
it because of the precision constraint. We can ignore it, us-
ing Theorem 3.1 again. If we probe it, it may return YES
in which case r, is again met. But, for the same reason as
before, we may decide to ignore it, since there is a chance
that we will meet a YES object in the remaining input that
will make the probe unnecessary.

In summary, there are cases for all possible decisions for
handling objects listed in the algorithm of Figure 1 in which
they are either mandatory or preferred. Therefore, we must
deal with all of them.

4 Optimization Framework

In this section we will first present, in Section 4.1 a way
of visualizing objects that allows us to distinguish between
objects that are to be handled in different ways. This will
result in a set of parameters based on which the decision
will be made at run-time. Subsequently, in Section 4.2 we
will discuss how to set these parameters to optimal values
in order to minimize the cost of evaluation W.

Figure 2. Objects on the s(0), (o) plane

4.1 The s(0),l(0) Plane

To develop our optimization framework we will assume
that we know the probability that a given MAYBE object o
will return a YES after a probe. This probability of success
is noted s(0). It might be possible to estimate such a prob-
ability using some model of imprecision for w°. For exam-
ple, suppose that o = [l, h] represents some w® € [I,A].
If the query asks for all objects with value > z, then as-
suming that w? is a random variable uniformly distributed
in o = [I, h], then the probability that o will return YES is
s(o) = ’}l:”l” If s(0) cannot be estimated, we can set it to
some value based on our prior belief, e.g., that s(0) = 0.5,
meaning that a probe will return YES with the same proba-
bility that it will return NoO.

We possess the laxity [(o) for each object 0. We can thus
plot o as a point in the s(0),!(0) plane. For YES objects,
we can define s(o) = 1. In Figure 2 you see five objects:
A, B,C are MAYBE and D, FE are YES. D has a greater
laxity than E. B has a higher probability of success than
C. The entire set of YES and MAYBE objects that the QaQ
operator has to deal with will be such a set of points in the
plane. Therefore, the decision of how to handle them can
be reduced to identifying regions in this plane that ought to
be handled in some manner, e.g., probed. Then, when the
algorithm reads an object, it will determine which region it
belongs to and handle it accordingly. Remember that this
decision must conform to Theorem 3.1 which takes prece-
dence in order to assure correctness.

NO objects.— As we have already seen, NO objects,
corresponding to region 1 of Figure 3 are ignored.

YES objects.— First, if a YES object o has [(0) > [;***
then it can never be forwarded. This corresponds to region 6
of Figure 3. Thus, it will either be probed or ignored. When
such an object is encountered, it is probed with probability
Ppy and ignored with probability 1 — p,,. Second, if a YES
object 0 has [(0) < [**” then it should never be probed.

NO MAYBE YES

Probe/Ignore
Ignore py
max

q

Ignore Forward

Forward/Ignore

p
fm

5(0)=0 0<s(0)<1 s(0)=1

- Fixed Decision

Random Decision

Ignore

Figure 3. Handling of Objects

That corresponds to regions 7. Probing such an object is re-
dundant, since it meets the laxity requirement, and its status
as an answer to the query is YES. So, such an object must
be forwarded; ignoring it has no benefit, unlike MAYBE ob-
jects, where ignoring them maintains the precision of the
answer set.

MAYBE objects.— First, as with YES objects, we may
never forward them if /(o) > I7*®. This occurs in regions
2, 3. We may either probe or ignore them. Since prob-
ing objects with higher s(o) is preferred, as these have a
higher probability of returning YES, which increases the re-
call bound most, it will be the case that objects with highest
s(0) will be probed. Hence, the algorithm will probe ob-
jects with s(0) > s3, where s3 is a probing threshold, and
it will ignore the rest. Second, if I(0) < I*** we can either
forward, probe or ignore them. For the same reason, we
probe objects with highest s(0), and thus decide to probe if
s(0) > s5. The rest, we can either ignore or forward. We
forward them with probability ps,, and ignore them with
probability 1 — pyr,.

4.2 Optimal Parameter Setting

In the previous section, we identified the “topology”, so
to speak, of the decision regions that control how different
objects are handled. These regions are determined by the
status of an object as NO,YES, or MAYBE, the laxity toler-
ance [;**?, and the parameters s3, S5, Ppy, Pfm-

Now, we will see how optimal values for these parame-
ters can be set. We notice that these will depend on (a) the

quality tolerances of the QaQ: for example, if ry, = 1, we
expectregion 2 to be empty, and p,, the probability of for-
warding a MAYBE object of region 4 to be 1, since ignoring
a MAYBE object is not allowed, and (b) the distribution of
objects on the s(0), (o) plane, since if we fix these parame-
ters and change the distribution of objects, then the number
of objects falling in each region of the plane will change.

There are numerous ways in which we may obtain an es-
timate of the density distribution of objects on the s(0),1(0)
plane, which we will note g(s(0),1(0)). For example, we
may take a random sample of 7 prior to query evaluation
and plot the objects of the sample on the plane. It is also
conceivable that there might be a histogram of laxity values
for the set 7 which can be used to estimate the marginal
distribution g(I(0)). We will develop the parameter set-
ting under the simple hypothesis that g(s(0),1(0)) = 1,
where L = max,¢c7 [(0) is the maximum laxity of objects
in the input set. This uniformity assumption could be re-
placed with a more precise one that could be generated by
the methods outlined above.

First, we note that the QaQ operator will encounter Y, M
objects that are respectively YES and MAYBE. In region

[—[maz

6, there will be =

Y objects.

Y objects and in region 7, there

will be ‘2=

P = ppy#Y objects. From region 7, we will for-

ward F; = qu Y objects. In region 3, we will probe
Lires

P3; = ——(1—s3) M objects. In region 5, we will probe

From region 6, we will probe

b= l;nLa - (1 — s5) M objects. In region 4, we will forward

Fy=pim qu s5M objects.

Thus, Y, = P and Y; = F7 for YES objects, and M, =
P; + P5 and My = F, for MAYBE ones. Finally, let’s see
what is the expected result of the probes of regions 3, 5.
In region 3, the average probe has a probability of success
thatis 2L, thus M3 = 22 P; objects will return YES.
In region 5, using the same calculation, it will be Mpys =

%P& In total:

Mpy = Mpys + Mpys (12)

4.2.1 Selectivity Estimation

Before we can finally formalize the optimization problem
that we will be solving, we need one extra step, namely to
estimate the proportion of YES and MAYBE objects that we
are likely to encounter. This can be discovered via random
sampling prior to query execution. By taking a random sam-
ple of 7 we measure the fraction of objects f, that are YES
and the fraction f,,, that are MAYBE. Subsequently, we can
estimate, that if we read R objects, it will be:

M = f.R (13)
Y = f,R (14)

4.2.2 The Full Optimization Problem

The goal is now to minimize W from Equation (11) under
a set of constraints.

1. Trivial constraints of positivity of all parameters.
2. s3 <1landss <1.ppy, <1landps, <1
3. We can read at most | 7| objects. Hence, R < |T]|.

4. The number of YES and MAYBE objects (Y, M) are
given in Equations (13), (14).

5. We can probe/forward at most M MAYBE objects.
Hence, M, + M; < M.

6. We can probe/forward at most Y YES objects. Hence,
Y, +Y; <Y.

7. The number of probes on MAYBE objects that return
YES is My, see (12).

8. The result meets the precision constraint:

Y, +Y:+ M
P f pry qu (15)
Yy + Yy + My, + My

9. The result meets the recall constraint:

Yp+Yf+Mpy
Y+ My, +|T|—-R+ M — M, — My

>rq (16)

There are four free parameters to this optimization prob-
lem: s3,85,Ppy, Pfm- By solving this problem, their val-
ues that minimize W are identified. This instantiates the
generic decision step in the QaQ algorithm. The non-linear
optimization problem can be solved efficiently due to the
small number of free parameters. In our modest SO0MHz
Pentium PC, the solution was found instantaneously, with
< 100 iterations and evaluations of the objective function.

S Performance Study

Our experiments consist of two parts. First, we imple-
mented the optimization problem in AMPL [17], using the
LOQO non-linear solver package [1], finding the optimal
solution for various characterizations of the input and qual-
ity requirements. This helped build our intuition on the way
parameters change under different settings. Subsequently,
we implemented the QaQ selection operator and applied it
on synthetic data that corresponded to the input characteri-
zations previously seen. We tried to see how closely actual
performance matched the theoretical optimum.

Since we introduced this framework, there are no pub-
lished algorithms for the problem at hand. We compared
the performance of our algorithm against two heuristics:

e Stingy.— The Stingy heuristic avoids paying any
costs. Thus, it avoids probing any objects that exceed
the laxity requirement [3**" and ignores all MAYBE
objects. In essence, it tries to answer the query using
only the objects of region 7. However, due to Theo-
rem 3.1, if these do not suffice, it will have to perform
some probes. Using our set of parameters, Stingy al-
ways uses s3 = s5 = 1 and ppy = 0,psr,, = 0.

e Greedy.— The Greedy heuristic attempts to complete
evaluation of the query as soon as possible. It thus
tries to reach the recall goal by probing all YES ob-
jects of region 6, as well as all the objects of region 3.
It ignores no objects, hence region 2 is non-existent.
It forwards all MAYBE objects that meet the laxity
bound. Greedy always uses s3 = 0,s5 = 1 and

Ppy = 17pfm =1

In all our experiments the probe cost ¢, is 100x the
read/write COStS ¢, = Cyi = Cyp = 1. 3 Results with
different cost parameters did not produce any surprising re-
sults: as long as probing (measured by c,) is more expen-
sive, optimal parameter settings are unaffected, although the
resulting cost, which is linear in ¢, is. Thus, including re-
sults with varying ¢, is redundant and for lack of space we
omit them. Also, note that the cost is also linear in |7|.
The framework determines the fraction of objects that are
handled in different ways, but the actual number of these
objects is proportional to |7 | as is the cost from (11). We
thus present the optimal solution costs normalized by di-
viding with |T|, or % Finally, in all our experiments the
maximum laxity of objects in 7 is taken to be L = 100.

5.1 Optimal Problem Solutions

We now report the optimal parameters for
83,85,Ppy,Pfm for various characterizations of the
input (fy, fm) and quality (pg,r,,17**") requirements, and
try to build an intuitive understanding of how these vary.

Varying Laxity

In this and the next two experiments, we set f, = f,, =
0.2, that is, the number of YES and MAYBE objects at the
input are the same. We set p, = 0.9 and r, = 0.5, that is,
we want at least half the objects that satisfy the query and
we can tolerate at most 10% false positives. We investigate
how parameters change as the laxity bound changes 17" €
{1, 20, 40, 60, 80, 99}

3Two orders of magnitude is a good approximation for the difference
in latency between DRAM and disk [16], as well as between disk and
network transfer. The difference may be even higher for low-bandwidth
sensors distributed in wide geographical areas.

L [s |55 [2oy [Pom | 77 |
1 1 [1 1 1]209
20 [T |1 [093]053]162
40 |1 |1 [091]026]122
60 |1 |1 [087]0.18][82
80 |1 [1 [074]0.13]42
99 [T |1 o TJoIar[1z2

The key observation is the following: as the laxity bound
increases, there is a greater availability of objects that can be
forwarded without a probe to meet the recall requirement.
Hence, the fraction of MAYBE objects that needs to be for-
warded py, and the fraction of YES ones that needs to be
probed pp, is reduced. s3 = s5 = 1 means that no probes
of MAYBE objects are needed for this setup. The cost is (as
expected) diminishing as the laxity bound becomes looser.

Varying Precision

We set r, = 0.5 and [;**® = 50 and vary the precision
bound in p, € {0.5,0.6,0.7,0.8,0.9,0.99}.

(P[5 |5 | Pow [Prm | 777 |
05 1 [1]05 1 |63
06 |1 [1]05 [1 |63
07 [T [T [065][071][77
08 |1 [1 [0.78]044]90
09 [T |1 [089]021]102
099 [T [T [099]0.02]1Ll

The first two parameters s3 = s; = 1 signify that at this
recall level, it is unnecessary to probe any MAYBE objects.
The cost is increasing (as expected) as the precision bound
becomes stricter. The most interesting feature is that we
probe more YES objects (ppy increases) and forward less
MAYBE ones (pyn, decreases) as more precision is required.

Varying Recall

In our final experiment of varying the user quality require-
ments, we maintain p; = 0.9 and l;”‘” = 50 and vary
rq € {0.01,0.1,0.2,0.4,0.6,0.8,0.99}. We record one ex-

tra feature here, the fraction of read objects %.

(7 [5s |5 [ow [Prm |17 [77 |
001 [1 1 [0 [0 TJoI [0.09
01 |1 1 [0 [0 1069063
02 |1 1 [0 [o08]1 |09
04 |1 I [053]017[65 |1
06 [0.87 0871 [029]138
08 |05 [05 [1 [06I 214
099 [0.03]033 1 1 [278

—| — —_

Note how for small 7, it is not necessary to read the en-
tire input, e.g., we get away with reading just 9% of the
input for 7, = 0.01. Naturally, the cost of evaluation in-
creases as 74 increases. Both probing (p,,) and forwarding
(psm) become more important at the expense of ignoring
objects: objects can be ignored less frequently. An inter-
esting feature is that at the highest 7, = 0.99 we note that
83, s are different. This is because ignoring objects (region
2) is almost impossible, hence s3 = 0.03, while forwarding
them is still possible, hence s; = 0.33, since the precision
requirement p; = 0.9 can be maintained.

Varying Selectivity

In the next two experiments, we keep p, = 0.9,7, =
0.5,1;*** = 50. We vary the query selectivity (fy, fm) €
{(0.01,0.01), (0.1,0.1), (0.2,0.2), (0.4,0.4) }.*

(G fm) [55 |55 [P | Pom | 177 |
0.01,001) |1 |1 089021 |15
(0.1,0.1) 1 |1 [0.89]021]5.6
(0.2,0.2) 1 |1 |0.89]021] 102
0.4,0.4) 1 |1 {089 0211193

The cost increases, as the answer set of the query in-
creases, but the parameter choices remain unaffected.

Varying Input Uncertainty

Finally, we keep f, 0.2 and vary f, €
{0.01,0.1,0.2,0.4,0.6}, i.e., we make the input progres-
sively more “uncertain” with respect to the predicate .

[Sm [[[ow |Pem |17 |
001 [1 1 [002]1 14
01 |1 1 [042]032]54
02 |1 1 [089 021102
04 [078]078 1 [02 [203
06 [067]067[1 |02 |400

The result is that we are forced to probe more and ignore
less as the input becomes more uncertain. Before we con-
clude, we must interpret the meaning of the optimum costs
presented so far. These do not indicate a lower bound on
the cost that an algorithm can achieve. An algorithm can in
practice get “lucky” and achieve even better performance,
e.g., if its probes are successful, or if the input is ordered
in a way that YES objects are encountered in advance of
MAYBE and NO ones.

4fy + fm has to be less than 1

10

5.2 QaQ Trial Runs

In the second section, we report actual experimental runs
of the QaQ operator for the sets of input/quality require-
ment characterizations examined previously. We generate
|T'| = 10000 objects, which are labeled YES, MAYBE and
No with probability fy, fm,1 — fy — fm. For the MAYBE
ones, we assign a uniformly drawn random s(o) ~ U(0,1);
then, we assign a “probe result” for each MAYBE object:
with probability s(o) this is YES and 1 — s(o) itis NO. We
assign a uniformly drawn random [(o) ~ U(0,100) to all
objects. Finally, we note that we can’t use the (unknown)
data generating fy, fm parameters to estimate the parame-
ters s3, 85, Ppy, Pym for the QaQ algorithm. These are esti-
mated from a random sample of size 1%.

Varying Laxity

The results are shown below. They differ surprisingly lit-
tle from the theoretical optimal cost estimates produced by
our optimizer. QaQ performs the best for all laxity values,
followed by Stingy, which benefits from the fact that in this
case it is actually optimum to avoid probing MAYBE ob-
jects, which is Stingy’s default policy. Greedy, on the other
hand overprobes, and fares much worse.

e 1 20 40 60 80 | 99
QaQ 207 | 163 | 123 |85 |43 |13
Stingy || 23.3 | 183 | 139|197 | 46 | 13
Greedy || 31.1 | 25.7 | 199 | 140 | 7.6 | 1.5

Varying Precision

We observe the significant tradeoff that QaQ achieves in
contrast to both Stingy and Greedy whose evaluation cost
tends to be more constant. This occurs because Stingy
reaches the recall bound by using YES objects only; this
results in the answer set being overly pure. QaQ on the
other hand, allows more MAYBE objects to be forwarded
and adapts the precision guarantee close to the required
bound. Greedy again fares the worse, for the same reason.
Its policy cannot adapt to the changing p, requirement.

Dq 05 {06 |07 |08 |09 |0.99

QaQ 63 |63 |80 |92 |102] 113

Stingy 10.0 | 10.0 | 10.0 | 10.3 | 11.8 | 13.0

Greedy || 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7
Varying Recall

This experiment shows how Greedy wastes effort when the
recall requirement is low. In that case, probing MAYBE ob-
jects is beneficial, since the YES ones suffice. In contrast,
it comes into its own when the recall requirement is high;

in that case, its policy of trying to increase r, the fastest
actually performs better than the alternative strategies. But,
across the spectrum, QaQ performs more consistently well.

Tq 001|101]02 (04 |06 |08 |0.99

QaQ 0.1 071 6.7 | 154|217 |275

Stingy || 0.1 | 0.7 | 1 7.6 | 155 | 221|275

Greedy || 09 | 6.6 | 10.5 | 153 | 18.0 | 19.9 | 24.3
Varying Selectivity

Again QaQ performs the best, followed by Stingy and then
Greedy. As noted previously, changing selectivity does not
alter optimum parameter values; the main effect is in pre-
senting to the operator a larger set of object candidates.

(Fy, fm) || 0.01,001) | (0.1,0.1) | (0.2,0.2) | (0.4,0.4)
QaQ 15 6.1 10.6 195
Stingy 1.6 6.9 12.1 227
Greedy || 1.9 10.5 17.9 274

Varying Input Uncertainty

The most interesting feature again is the performance of
Greedy which starts off poorly for very precise inputs, since
it tends to probe unnecessarily in such inputs where the YES
objects suffice, but Greedy becomes better as the input be-
comes more uncertain, in which its aggressive policy tends
to build the recall bound quickly.

T 00101 [02 |04 |06

QaQ 15 |57 | 108|221 | 356
Stingy || 1.6 | 5.7 | 122 | 238 | 374
Greedy || 9.8 | 135 | 175 | 239 | 32.8

6 Related Work

Previous work in approximate query processing has been
extensive in the database community [20, 8, 11, 9, 4, 2].
Much of this involves “best effort” approximation which
operates over summaries of data [20, 9, 4, 2]. Thus, answers
cannot be improved and no guarantees as to their quality
are given. These approaches can be shown to work well for
some datasets, but one should exercize caution when apply-
ing them to new types of data. [7] proposes probabilistic
wavelet-based synopses which do provide answer accuracy
guarantees for individual queries, although not to any de-
gree of (user-specified) accuracy. In contrast, [8, 11] can
improve answer results interactively, all the way to the exact
answer. [8] uses random sampling and provides statistical
guarantees of accuracy. Our work in this paper is interme-
diate in scope, since it provides any level of desired quality
but does not support progressive answer refinement.

11

Our main motivation was in continuing our research [12]
on exploiting the accuracy/performance tradeoff in the sen-
sor database domain. In the architecture proposed in [12]
approximate versions of time series are captured in the
database system. In the present, we show how approxi-
mate values can be queried in a database, although our set-
ting is more general than the real-valued examples treated
there. The approximate replication framework was earlier
seen in a simpler setting by [15, 10]. These papers con-
sidered mainly aggregation queries over numerical values,
taking into account only the cost of probing, i.e., retrieving
precise versions of imprecise values. [10] also considered
the problem of selection for an object of a given rank.

Imprecise object representation in databases has been
studied in the database literature. [14] proposed a model of
imprecise and uncertain information, and recognized how
this affects the ability to evaluate queries. In [14], measures
of gauging the degree of uncertainty of the set of objects
that may satisfy the query were presented, with the goal of
defining an order in which these are presented to the user.

[13] proposed an extension of the relational model to
represent indefinite and “maybe” information in the rela-
tional model. The concept of an I-table which is able to
represent such information is introduced and a relational al-
gebra over such tables is presented. That work is not ap-
plicable in our case, since it does not deal with the per-
formance/accuracy tradeoff which can be effected when
“maybe” information can be resolved via probe operations.

More recently, the problem of providing approximate re-
sults has been examined in the context of joins over data
streams [6]. Unlike streams in which the performance issue
arises from the inability to handle incoming (precise) tuples
in real time, thus motivating load shedding, in our case we
deal with traditional stored relations, with approximate re-
sults being provided due to the imprecise representation of
objects of these relations at the query processing site.

A metric recently proposed in [5] for gauging the quality
of non-aggregate queries uses the observation that a good
result is one for which we are near certain either that it
satisfies the query predicate or not. Similarly, a bad re-
sult is a most ambiguous one. The metric proposed in [5],
which corresponds to W in our notation, attains its
maximum for objects that are either almost certainly YES
(s(o) = 1) or NO (s(0) — 0). This metric could poten-
tially be incorporated in our optimization framework.

7 Conclusions and Future Work

In this paper we motivated the problem of answering
selection queries approximately over imprecise data. We
gave examples of situations were imprecise representation
of data objects is meaningful, and showed that if queries
are willing to tolerate some loss of accuracy in the results

they obtain from the system, then it is possible to drastically
reduce the cost of query evaluation. Our work used the pre-
cision/recall and laxity metrics as the measure of answer ac-
curacy, although conceivably other metrics could have been
used as well. Our main purpose was to show that (i) the
accuracy/performance tradeoff could be achieved for set-
based queries, and (ii) that the combined cost of data pro-
cessing, and probing operations should be considered when
selecting a way to evaluate the selection operator.

There are still many open directions of research. Ex-
tending this work to account for other relational operators,
in particular joins, is part of our current work. We are also
thinking about integrating the optimization framework with
different ways of accessing the object collection (e.g., in-
dexes); this will make it immediately applicable to many
situations where such access methods are available.

Acknowledgements

Our work was supported by the NSF (Awards IIS-
9996140, 11S-0086124, CCR-0220069, 11S-0083489) and
by the USAF (Award F33615-01-C-1902).

References
[1] R.J. Vanderbrei, Princeton University, LOQO.
http://www.orfe.princeton.edu/~loqo/.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. Join synopses for approximate query an-
swering. In SIGMOD Conference, 1999.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley.

[4] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using
wavelets. In VLDB Conference, 2000.

[5] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Eval-
uating probabilistic queries over imprecise data. In
SIGMOD Conference, 2003.

[6] A. Das, J. Gehrke, and M. Riedewald. Approximate
join processing over data streams. In SIGMOD Con-
ference, 2003.

[7] M. Garofalakis and P. B. Gibbons. Wavelet synopses
with error guarantees. In SIGMOD Conference, 2002.

[8] J. M. Hellerstein, P. J. Haas, and H. Wang. Online
aggregation. In SIGMOD Conference, 1997.

[9] Y. E. Ioannidis and V. Poosala. Histogram-based ap-
proximation of set-valued query-answers. In VLDB
Conference, 1999.

12

[10] S. Khanna and W. C. Tan. On computing functions
with uncertainty. In PODS, 2001.

[11] I. Lazaridis and S. Mehrotra. Progressive approximate
aggregate queries with a multi-resolution tree struc-
ture. In SIGMOD Conference, 2001.

[12] I. Lazaridis and S. Mehrotra.
generated time series with quality guarantees.
ICDE Conference, 2003.

Capturing sensor-
In

[13] K.-C. Liu and R. Suderraman. Indefinite and maybe
information in relational databases. TODS, 15(1),
1990.

[14] J. Morrissey. Imprecise information and uncertainty
in information systems. Transactions on Information

Systems, 8(2), 1990.

C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In VLDB Conference, pages 144—155.
Morgan Kaufmann, 2000.

[16] R. Rangaswami, Z. Dimitrijevic, E. Chang, and K. E.
Schauser. Mems-based disk buffer for streaming me-

dia servers. In ICDE Conference, 2003.

D. M. G. Robert Fourer and B. W. Kernighan. AMPL:
A Modeling Language for Mathematical Program-
ming, 2nd ed. Duxbury Press / Brooks/Cole Publish-
ing Company, 2002.

[18] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest

neighbor queries. In SIGMOD Conference, 1995.

[19] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
mover’s distance as a metric for image retrieval. Inter-
national Journal of Computer Vision, 40(2), 2000.

[20] J. S. Vitter and M. Wang. Approximate computation
of multidimensional aggregates of sparse data using
wavelets. In SIGMOD Conference, 1999.

