Progressive Approximate Aggregate Queries with a
Multi-Resolution Tree Structure *

losif Lazaridis
Dept. of Information and Computer Science
University of California, Irvine, USA

iosif@ics.uci.edu

ABSTRACT
Answering aggregate queries like SUM, COUNT, MIN, MAX,

AV(@ in an approximate manner is often desirable when the
exact answer is not needed or too costly to compute. We
present an algorithm for answering such queries in multi-
dimensional databases, using selective traversal of a Multi-
Resolution Aggregate (MRA) tree structure storing point
data. Our approach provides 100% intervals of confidence
on the value of the aggregate and works iteratively, coming
up with improving quality answers, until some error require-
ment is satisfied or time constraint is reached. Using the
same technique we can also answer aggregate queries exactly
and our experiments indicate that even for exact answering
the proposed data structure and algorithm are very fast.

1. INTRODUCTION

We deal with the problem of answering aggregate queries
in a multi-dimensional space containing point data items.
The data space 1s R.pace C R? where d is the dimension-
ality. Data items are pairs (loc,values) where loc € Repace
is a d-dimensional point and values is a tuple of attributes
associated with the data point.

Databases of this type are quite common in spatial ap-
plications, e.g. temperature/waterfall readings from sen-
sors embedded in space, point-of-sale data on a geographical
map, objects that are mobile in space. They are also found
in On-line Analytical Processing (OLAP) applications; in
such applications the dimensions correspond to attributes
of the data and the value tuple holds the attributes of par-
ticular interest. An example would be values being “total
purchases” with the dimensions being “age” and “income”;
each customer is represented in the age-income space with a
single point with attribute value equal to his total purchases
from our store.

*This work was supported in part by the National Science
Foundation under Grant No. 11S-0086124 and in part by the
Army Research Laboratory under Cooperative Agreements
No. DAAL-01-96-2-0003 and No. DAAD-19-00-1-0188.

Sharad Mehrotra
Dept. of Information and Computer Science
University of California, Irvine, USA

sharad@ics.uci.edu

Aggregate Queries are a very common and interesting type
of queries over databases of this sort. An aggregate query
consists of a region RY C R.pac. and one or more aggregates
to be determined for all data items in that region. The most
common aggregates are the ones traditionally provided by
SQL, i.e., COUNT,SUM,MIN,MAX, AVG. Thus, the
user is interested to answer queries like: “Maximum total
sales in any store in Orange County”, or “Average measured
rainfall in Siberia”, “total purchases of customers of age 20-
25 and income between 25,000-45,000 USD” and so on.

Answering aggregate queries is straightforward, but can
be computationally expensive; a large part of the database
(namely all points lying in the query region) has to be ex-
amined to precisely determine the aggregate. In the next
section we review the techniques that have been proposed
to tackle the computational cost of aggregate queries. If a
precise answer 1s expected, then the relevant portion of the
database must be examined. If the query region is relatively
small, a spatial index can be used to gather up all relevant
tuples. For queries that cover a large part of the data space,
an expensive linear scan can be performed. In both cases
at least all the tuples that fall in the query region have to
be read. There is great interest in methods that provide
approzimate answers to aggregate queries at a significantly
lower computational cost, by providing a “good” estimate
without accessing large portions of the database or index.

The approach presented in this paper uses a tree structure
called Multi-Resolution Aggregate tree (MRA-tree). Our al-
gorithm selectively traverses nodes of this tree based on rea-
sonable assumptions on which nodes, if examined, will most
likely reduce the uncertainty on the value of the aggregate.
Tree nodes are augmented with aggregate information for all
data points indexed by them. Thus, if a node is completely
contained in the query region, no further traversal of its chil-
dren is needed. If it partially overlaps with the query, its
aggregate information can be used both to estimate an ap-
proximate answer and to select a “good” node to explore at
each stage of the algorithm. Note that the goal is not simply
to approximate the shape of the query using the nodes of
the MRA-tree; rather it is to explore nodes intersecting with
the query region with the objective of producing the best an-
swer to the query in the least amount of time. MRA-tree is
a generic structure that can be instantiated with any tree
index for which the data space covered by each tree node
is contained in the space covered by its parent. All con-
ventional tree indexes, both of the space-partitioning (e.g.,
quadtree [12], K-D-B tree [10]) and of the data-partitioning
(R-Tree [5]) variety satisfy the above property. Thus, we can

have an MRA-quadtree, MRA-RTree etc. No assumptions
are made either for the spatial or attribute value distribution
of the data in the estimation of the potential error.

The rest of the paper is organized as follows: In Section
2 we survey the techniques proposed in the literature for
aggregate query estimation. In Section 3 we describe the
MRA-tree and how it differs from regular tree indexes. In
Section 4 we propose a progressive algorithm for aggregate
queries that includes error estimation, uncertainty bounds
and traversal policy of the data structure. In Section 5
we detail how different aggregate types are handled by the
generic strategy. We present our experimental results over
real and synthetic data in Section 6 using both a space-
and data-partitioning (MRA-quadtree/R-Tree) data struc-
ture. Our work is summarized in Section 7.

2. RELATED WORK

Recently, much work has been done on approximate ag-
gregate queries in multi-dimensional databases and various
techniques have been explored, including sampling, wavelets
and histograms. Most of this work was motivated from On-
line Analytical Processing (OLAP) applications; in such ap-
plications aggregate queries are quite common (e.g., “What
is the average salary of all employees aged 25 to 35”) and the
database size makes their exact answering extremely costly.
In many of the proposed techniques, an estimator is built
from the whole database and is stored at a small fraction
of the database size. Queries are subsequently evaluated
efficiently against the estimator.

A limiting factor of the proposed techniques is that no
guarantee as to the estimate’s discrepancy from the true
answer is usually given. Moreover, with a fixed-size estima-
tor, providing progressively improving quality answers for
applications with different quality requirements is impossi-
ble (beyond some level of precision). For some aggregation
applications (e.g., “total vote count”) a perfect-quality an-
swer is expected. On the other hand, in a Decision Support
system with OLAP data, it is often desirable to receive a
reasonable answer in a few seconds, rather than a perfect-
quality one that takes hours to compute. A second prob-
lem with preprocessed off-line estimators is that they cannot
adapt the estimation to the particular query posed to the
system. For each query, a unique estimate is given based on
the data summary (e.g., the histogram); the summary cap-
tures the interesting features of the data but cannot adapt
to the query load. Even if there was a method for detect-
ing that the estimate is very poor for some particular query,
there is no way (by means of the estimator) of improving it.

Sampling techniques essentially take a small random sam-
ple of the database and compute the aggregate on the sam-
ple. In off-line sampling, a sample is extracted from the
database and queries are subsequently run against the sam-
ple. In on-line sampling, tuples are read randomly from the
database in response to a query and aggregation on the ex-
tracted sample is performed at the same time. In Hellerstein
et. al. [6] confidence intervals are given based on statistics
about the tables kept in the database. This technique is
similar to ours in that it also aims to produce improving
quality estimates in a progressive manner. The method pre-
sented in this paper differs in that it offers deterministic
guarantees of error and can also be used for determining the
exact answer of the aggregate query by performing a very
small number of 1/Os. Lately Gunopulos et. al. [4] pro-

posed kernel estimation as an extension to simple sampling
for selectivity estimation (i.e., COUNT aggregate) that im-
proves the quality of the given answers. While sampling
reduces the 1/O cost of answering aggregates by visiting a
random sample of the database, our approach uses a hierar-
chical data structure to only examine data that are relevant
to the user’s query.

Histogram techniques (loannidis and Poosala [8], Gunop-
ulos et. al. [4]) work by subdividing the data space into a
number of buckets; aggregate information about the buckets
is kept. The estimation is given by calculating the overlap
of the query region with the various buckets and aggregat-
ing over all overlapping buckets. Commonly, a uniformity
assumption is made about the distribution of data points
within each bucket. In the GENHIST technique proposed
in [4] it was shown how for a given number of buckets, the
data space can be approximated at a higher resolution by
allowing histogram buckets to overlap. The histogram tech-
niques suffer from the dimensionality curse as the number
of buckets required to approximate the data space increases
exponentially with the dimensionality and the uniformity
assumption does no longer hold at high dimensionalities.
Since no error bounds are usually given and no way to im-
prove the estimation for additional computational cost has
been proposed, the value of these techniques is diminished
at higher dimensionalities. Incidentally, the techniques for
error estimation presented in this paper can be straightfor-
wardly adapted to provide error bounds for histogram-based
estimation techniques. However, there is no way to use these
guarantees for progressive, improved-quality answers (since
histograms are an off-line estimator).

Wavelets (Vitter and Wang [13], Chakrabarti et. al. [3])
are used to hierarchically decompose functions. The idea
is to apply wavelet decomposition to the input data col-
lection (OLAP cube or attribute columns) which produces
as an output a number of wavelet coefficients that require
minimum storage space and can be queried on directly. Ex-
perimental results in [13] indicate that processing the input
data to produce wavelet coefficients can be done fast and
the resulting estimates are fairly accurate even for a small
number of coefficients.

Barbara et. al. [2] have addressed the problem of ap-
proximate query answering in data warehouses. In their
approach, the cells of the Data Cube are preclassified into
error bins; subsequently data is brought in from the bins
progressively to refine the answer.

A technique proposed by Aoki [1], also uses selective traver-
sal of a multi-dimensional index for the problem of selectiv-
ity estimation (corresponding to estimating the COUNT
aggregate in our case) by providing extensions for General-
ized Search Tree (GiST, Hellerstein et. al. [7]). We deal with
all SQL-type aggregates, supplying for each one methods for
tree traversal and aggregate estimation. In our experimen-
tal study we investigate the MRA-tree’s efficiency in varying
dimensionality, database size, data type and index type. We
also tackle the central problem of the tradeoff between space
used to store the aggregates and speed of answer reporting
in terms of 1/O operations.

The present technique differs from most previous ones in
that: (a) it handles all SQL-type aggregates, (b) it provides
explicit bounds on the value of the aggregate and (c) it al-
lows the incremental reporting of improved-quality answers
all the way to the exact answer.

10 12
12

1
9

2]- |s
7

6
6
1
6

w |k fw|w
5
w |k fw|w

x 3 24 12 10 — 1210 |15
1
X W7
12 6
x x 5
x
Wz Leaf Node containing (m) Child Record:
data points with values [m] m: min ¢ count
XY, Z, .. M: max s:sum
(s)

Figure 1: An MRA-quadtree: each non-leaf node
contains MIN, MAX, COUNT, SUM of its four chil-
dren

3. INDEX STRUCTURE ORGANIZATION

We consider the problem of an index structure storing
point data of the form (loc,values). For all such points:
loc € Rspace and values € DY, Ripace C R? is the data
space of dimensionality d and D" is the value domain. As an
example R.pace might be a 2D map of the United States and
D’ = [0, o) the value domain of rainfall measurement. The
user provides a query region Re C Rspace and is interested
in the value of some of the aggregates (COUNT, SUM, MIN,
MAX, AVG) over the query region.

The proposed Multi-Resolution Aggregate (MRA) tree is
a modified multi-dimenional index structure. Each node N
of an MRA-tree is associated with a region RY and in-
dexes a set of data points contained in that region. Non-
leaf nodes contain entries (ptr, region, aggregates) for each
of their children nodes: ptr is a pointer to a child node,
region C Repace 1s the space covered by that node and
aggregates is a tuple (MIN, MAX,SUM,COUNT) of ag-
gregate information over all data points indexed by that
node. The number of children per node ny (fanout) can be
either constant (as in quadtree ny = 4) or ranging up to a
maximum number dictated by the page size (in paginated
structures like R-Tree). The region field may be stored ex-
plicitly (as in R-Tree) or it can be derived from the splitting
point (quadtree) or hyperplane (K-D-B tree). A leaf node
contains up to nieqys tuples of (loc, values). An example of
an MRA-quadtree is seen in Figure 1.

An MRA-tree can be created using any data structure
that satisfies the property that for each node N with as-
sociated region RN, if N°is a child node of N, or (in the
case that N is a leaf) P is a data point contained in N,
then RM° C RY or Ploc € RY. This property is satisfied
by all conventional indexes and guarantees that each MRA-
tree node can be used to store the aggregate information for
all points indexed by it.

We will now discuss how the algorithms for management
of an MRA-tree differ from those of regular tree indexes.
The main difference is introduced by the requirement that
each node must store the aggregates for all data points it
indexes. Thus, algorithms for searching using the MRA-
tree are identical to those of the corresponding “plain” tree
because search does not affect the aggregate values stored.
However the algorithms for insert, delete and update are

modified to consistently maintain the aggregate information.

Insertion: Given an MRA-tree T' and a data point P =
(loc,val) we want to insert P into 7. The point will be
inserted in some leaf node Nicoy. Nodes affected are all
ancestors N of Ni.qy. At each N the aggregates are updated
as follows:

. N . - N
min” = min{min" val}
N N
maz = maz{maz " val}
N N
count = count” +1
N N
sum = sum 4+ wval

When Nij.qy is reached, the point is inserted if countMeat <
Nieqas and no further action is required. Otherwise the node
is split. The split algorithm is identical to that of the normal
index tree with the added consideration that the aggregate
information must be maintained. In a quadtree we need only
create a new non-leaf node Ny, and four new leaf nodes,
redistribute the data points of Ni.qy to the new leaves and
post the aggregates to Nyew. In a K-D-B tree or R-Tree the
split may propagate all the way up to the root; thus we may
have to update the aggregates for all affected nodes.

Deletion: We want to delete P = {loc,val) from MRA-
tree T. P resides on leaf node Nj.qs and is contained in all
ancestors N of Nieayp. If for each such N: minY < val <
maz™ then the aggregates are updated as follows:

count” = count™ —1
N N
sum = sum’ —val
If however val = min® then in addition to the above we

must recalculate min®™. This is done as follows: find the
MIN of all points indexed by Ni.q.; and update minNieas
stored at the parent of Nicqs; let’s call this parent Nl’;af.

Then find the min icas by calculating the MIN of Nicay

and its siblings. If the new min™Veas is changed then push
that change to the parent of N ;s and so on. The number
of MIN values that have to be updated is upper-bounded
by the number of nodes that contain P; in the worst case,
if minT = val, the MIN value of all points up to the root
has to be updated. The same logic applies if val = maz™.
If due to a deletion, nodes of the tree are merged, the new
aggregates are easy to compute: if N; and N3 join to form

a new node N, then

min® = min{min™" min"?}

maz” = maz{mazs™, maz’?}
count™ = count™ + count™?

sum”™ = sum™ + sum™?

Update: A value update consists of changing the value
of point P = (loc,val) into P’ = (loc,val’'). An update can
be seen as a deletion of P and insertion of P’ into the same
leaf node Nicoy. With regard to COUNT and SUM the
update of the aggregates for all ancestor nodes N of Nieay
is as follows:

N N
count = count
N

sum = sum” — val + val’
We need to update the MIN or MAX aggregates for an
ancestor node N only if val = min® V val = maz® or
val! < min®™ V val’ > maz™. For the case of the MIN, if

class Query

(3) RP: Region;

(4) agg: enum {MIN, MAX, COUNT, SUM, AVG};
(5) NC:=0 NP :=0: set of Node;

() 1}

27; Query::Query(queryR: Region, root: Node, aggType)
8

(9) RP := queryR;

(10) agg := aggType;

(11) if (RQ n R7°°t = RgToot)

(12) N€ := {root};

(13) else

5143 N NP := {root};

15 5

(16) Query:nextAnswer(var ans: Real, var low: Real, var high: Real)

{
(18) if (NP =0) {

19 estimate ans from N;
;
(20) low := high := ans;
(21)
(22) else {
(23) remove node N from NP;
24 forall children N; :i =1,...,nx of node N
i N
(25) if (RQ n RN =0)
(26) ignore;
(27) else if (RQ n RN = rIV)
(28) insert N; into N¢;
(29) else
(30) if N; is useful
(31) insert N; into NP;
(32) }
(33) estimate ans from NP, NC;
34 calculate low, high from NP, N¢;
(34) , hig A
(35)
(36) };

Figure 2: Progressive Aggregate Query Algorithm

val = min™ Aval’ < val then min®™ := val’ and the change
is propagated to the parent of N as we have previously de-
scribed. If val = min™ Awval' > val then min™ needs to be
re-calculated from all points indexed by N (after removing
P and inserting P’). If val > min™ Aval’ > min®™ no action
is necessary. Finally, if val > min®™ A val’ < min®” then we
need to update min® := val’ and once again propagate the
change to the parent of N.

The tree management operations presented above have a
compexity of O(h) where h is the height of the MRA-tree.
In applications were frequent updates are commonplace and
run concurrently with queries, the above cost may be pro-
hibitive. In many OLAP applications, the data is loaded
into a data warehouse periodically and queries subsequently
run over an essentially static data set. In high-update envi-
ronments, e.g., sensor databases, real-time monitoring sys-
tems, etc., the problem can be addressed in either of two
ways: (a) defer the updates for the nodes affected or (b) use
a data-driven update strategy that percolates updates from
the data sources (e.g., sensors) to the higher levels of the hi-
erarchy. In both of these approaches, the higher-level nodes
of the data structure hold an “approximate” picture of the
aggregate information of the data points indexed by them.
In our current work we investigate the 3-way tradeoff: com-
putational cost vs. data representation quality vs. estimate
quality. In the sequel we will assume that the update cost
is manageable.

4. PROGRESSIVE ALGORITHM

We will now discuss a progressive algorithm for approxi-
mate aggregate queries. The query region is RY C Ripace.
During the course of the algorithm, we maintain two sets of
tree nodes:

(i) A a set of nodes completely contained in the query,
ie. Ne N°= RYnRY=R" and

(ii) N?: a set of nodes that either enclose or are partially
overlapping with the query (RN NR? £ RY ARV N
R9 £0

In Figure 3 we see the possible relationships of a node
to a query. Case (a) corresponds to AN¢ and cases (b),(c)
correspond to NP,

(a) Contained. For every N € N° the aggregate informa-
tion of all points indexed by it certainly affects the an-
swer to the query since it is entirely contained therein.
Further traversal of the node’s subtree is unnecessary.

(b) Partially Overlapping. The node’s aggregate infor-
mation is derived both from RY N R? and RN — RV n
R®. Further traversal of the node’s subtree will give a
better approximation of the node’s contribution.

(c) Enclosing. The node’s aggregate information is de-
rived both from RY and RY — R% and thus only par-
tially affects the query. Again, further traversal will
give a better approximation.

(d) Disjoint. The node is irrelevant to the query.

The progressive algorithm (Figure 2) works as follows: we
initialize sets N’ and NP with the root node root (lines 11-
14): if the query covers the whole space then obviously N'¢ =
{root}, NP = () and the query can be immediately answered
by reading the specific aggregate about the root. Most
queries however will be a subset of the whole space, thus we
will have AP = {root} and N'® = 0. The algorithm works
iteratively, with successive calls to neztAnswer() (line 16).
Fach iteration first checks if there are partially overlapping
nodes left in the queue; if not then the query is answered ex-
actly based only on N°. If A'? is not empty, next Answer()
does the following:

(a) removes a node N from N? (line 23).

(b) visits the children of N and classifies them as one of
the cases of Figure 3 (lines 24, 25, 27, 29).

(c) inserts the children of N appropriately either to N7
or N¢ or discards them (lines 26,28,30,31). Note that
the statement is useful on line 30 indicates that a
partially overlapping node can also be discarded (as
we will see in the case of MIN and M AX aggregates).

(d) provides an estimate on the aggregate (line 33).

(e) provides a 100% interval of confidence on the aggregate
(line 34).

The algorithm as given in Figure 2 is generic and to in-
stantiate it into a “real” algorithm we must specify a few
things. In the following section we will show a reasonable
instantiation of the algorithm for the SQL-type aggregates.
For each aggregate type the following must be resolved:

¢ Intervals of Confidence — item (e) of above list;
these are minimum-length 100%-confidence ranges that
depend exclusively on the type of aggregate and on sets
NP N°¢ and are calculated independently of the data
distribution.

1Q I Q]
| Do AL
I I I ! o
: : : L,,J, .l
I i I i
(a) contained (b) partially overlapping
N\ ”””””” 1 |ITT T T T 1
1Q i 1Q I
i I
| | N
i I I I
i i I I
i I i I
i i I i
i i I I
i i] !
(c) encloses (d) disjoint

Figure 3: Relation of Node to Query

¢ Estimation Policy — item (d) of above list; pro-
vides the mechanism for estimating the value of the
aggregate from NP, N°. Some assumption about the
spatial /value-domain distribution of the data has to
be made in order to provide an estimate.

e Traversal Policy — item (a) of above list; the order
in which nodes of AP are visited has to be determined.

In Figure 4 we see an MRA-quadtree data structure; nodes
of the tree have been visited at different levels of the tree to
answer a rectangular query.

A few words on the notation we will use: a@ is the
estimate for query @ of aggregate type agg over attribute X
(value stored at each data point). The exact answer to the
query is agg® X . The 100% interval of confidence is denoted
as 1555 = [agg,) , aggyy,)-

g

As will become clear the above algorithm will produce
monotonically improving quality answers (i.e., ||L?g’;(|| will
be decreasing over successive iterations) regardless of the
traversal policy; at each stage of the algorithm the query re-
gion is better approximated via the MRA-tree grouping of
points — no information is ever lost. The stopping criteria
of the algorithm can be either based on error and/or time.
Answers are returned via successive calls to neztAnswer().
It is up to the user to stop this process if some application-
specific timing constraint has been reached or the given qual-
ity of the answer (as indicated by L?g’;() is sufficient. The
iterative process will terminate on its own when A? is ex-
hausted, at which stage there is an exact answer.

In coming up with a suitable traversal policy the aim
should be to reduce the uncertainty (quantified by ||L?g’;(||)
as fast as possible. In other words, for any number k of
nodes visited we want ||/2X| to be minimized. Finding
an optimum way to handle this problem is impossible since
we are always making a local decision. As an example sup-
pose there are two partially overlapping nodes Ni, Ny with
MIN values 3 and 4 respectively. No matter which node we
choose to visit first, there is always the possibility that the
other one contains the actual minimum value for our query.
The complexity introduced by the traversal policy has to
be taken into account as well; if for instance our quality re-
quirement involves visiting most of the partially overlapping
nodes, it makes little sense to pay the computational cost to
visit them in any particular order. Thus, we could just as
well do a simple depth-first or breadth-first traversal of the
data structure. On the other hand, if we want a rapid im-

\
i

T

INGZ\NIN

Al

"::I Expanded Node . Currently in Nc

C] Currently in Np D Disjoint (ignored)

********* Query Region

Partially Overlapping

@D conined

Figure 4: Query region is approximated by pro-
gressive subdivision of the MR A-tree

provement of quality in as few iterations as possible, then a
complex traversal policy like the ones we will propose makes
more sense.

An approach similar to that used in many similar prob-
lems (e.g., [11]) would be to organize A'* as a priority queue
keyed on each node’s contribution of uncertainty to the an-
swer of the aggregate query and expand nodes in the order
of decreasing uncertainty. This approach is based on the ex-
pectation that the maximum benefit (in terms of reducing
I7%2X])) will be achieved by exploring nodes that maximally

agg
contribute to ||[(?g’gX||.

5. INTERVALS OF CONFIDENCE, AGGRE-
GATE ESTIMATION AND TRAVERSAL
POLICY

In this section we will show how the generic algorithm
previously described can be instantiated for the various ag-
gregate types. For each aggregate type we will show how the

minimal 100% intervals of confidence I (?g’éx are calculated. In

addition, we will describe how the estimation a@ can be
derived from NP, N'¢ under the spatial uniformity assump-
tion. We will also quantify the potential error contribution
of each node in N'? to the query answer; this can then be
used as a priority in a priority-based traversal algorithm.

A notation that we will use is the following: Ay or Agn is
the area (or volume) overed by node N, and agg® ™, agg?x
are the value of the aggregates for the data points indexed
by all nodes in N and NP respectively.

5.1 Min and Max

We want to find min®¥ or maz®*. We will only discuss
the case for MIN, but also give the formulas for the M AX

case which can be similarly derived to the MIN one.

Interval of Confidence.— Since nodes in N are com-
pletely contained in the query, the value of min®X can be
no higher than min®X. If min®* > min®% then all par-
tially overlapping nodes can never give a lower minimum
than min®X . Thus, there is no need to traverse any of them.
If min®*X < min®%X then potentially one of the nodes in A/”
includes a data point with a value less than min®* and thus
further exploration of such nodes is necessary. The interval

of confidence will be:

195 = [min{min®* min®*}, min®*X]
19X = [mch"C’X7 mcm:{mcm:p’X7 maa:c’X}]

Estimation.— The estimation given, depends on the se-
mantics required by the user. Two potential estimations are
the following:

e

e Lower bound on the value of min®X: min@X =

min?X.
e

Similarly upper bound for maz®%: maz@X = maz?
Q,X) .

X

e Best worst case error (choose middlepoint of [
ey I
min@X = min?X 4 Lmin
Lin =

—— Q,X
Similarly, maz®@X = maz?*X — ”I"g—“””

Traversal Policy.— Given a set A'? of partially overlap-
ping nodes; the task is to pick the “best” node Nj from the
set. First of all, it is easy to see that all nodes N : min™X >
min®%X can be safely disregarded. Our goal is to reduce the
length of 79X, This can be done either by (i) increasing
the minP* or by (ii) decreasing the min®*. Case (i) can
only happen if we pick the node Np : min™»X = min®
and some child of N contributing the low min?X value is
found to be outside the query region. Case (i) will occur
for any candidate node if some child node N§ of N, with
minN{, X < min®X is found to be contained within the
query region. Based on this observation, the node chosen to
be expanded will be: le\UN € NP and leWAX € NP, such
that YN € NP:

. NMIN . NMIN x CONX
min’ 't AN min’?t < mantv

MAX
Nb

X - X
< min®

NMAX N, X

X X X
max > maz® AN max > maz

Implementing this traversal policy is straightforward if we
maintain the nodes in a priority queue in ascending MIN
order. A single node Ny is dequeued and its value is checked
against min®*. If min™ % > min®%X then the exact an-
swer is found (min®* = min®%), otherwise the children of
Ny are pushed into the queue and a new node is popped.

5.2 Count

We want to find count®. We use notation count® instead
of count® X because it is independent of attribute X.

Interval of Confidence.— The lower bound on count®
is the total count of nodes in N¢ (if all points in partially
overlapping nodes fall outside the query region) and the up-
per bound is the combined count of both contained /partially
overlapping nodes (if all points happen to fall within the
query region). Thus the interval of confidence is:

1% .. = [count®, count® + count”)

Estimation.— We define the percentage of overlap of

. A

node N with query @ as Py = %. If we assume
that data points are distributed uniformly within RY then
we expect that Py X count”™ points from that node to be

within the query region. Thus, our estimate will be:

count®@ = count® + Z Px x count™
NenNP

Traversal Policy.— A simple traversal policy is based
on the potential maximum contribution of a node to the
length of]Smm. Each node N € AP contributes exactly
count® to the length of this interval. Therefore we choose
the best node to expand at each stage of the algorithm as
the one with the highest COUNT"

NEOUNT e AP LYN € NP - counthCOUNT > count™

It is again easy to implement this traversal policy using a
priority queue of nodes in descending COUNT order. Un-
like the previous case, none of these nodes can be discarded
if an exact answer is to be achieved. For a leaf node we scan
the data points it contains and add them to count® if they
happen to be inside the query region.

5.3 Sum

We want to find sum®X for the query region. This is the
sum of the values of attribute X for all points contained in

R,

Interval of Confidence.— Using the same rationale as
above, this can be as low as sum®X and as high as sum®X 4+
Yo Nenr sum™ X Thus the interval of values is

79X _ X

sum [sumc PyX]

s sumC’X —+ sum

Estimation.— The estimation given is based on the as-
sumption that for node N we expect Py x count’ data
points to be in the query region, and to have on average

the same value as the node’s average X attribute value or,

N, X sum™MX

avg = ~ - Based on the above:
count

—
X N,X
sum@X = sum®”" + E Px X sum™™’
NeNP

Traversal Policy.— The traversal policy is similar to
the policy for COUNT. Each node N again contributes
sumN, X to the length of the interval 12X The best node
to expand will be:

N, X

SUM
NZUM e NP YN € NP sum™ X > sum

54 Average
Q,x

We want to find avg®X = Zn—-. The estimation for
this case is simple, but the interval of confidence and traver-
sal of policy are complicated by the fact that the AV G is the

fraction of two uncertain, mutually dependent quantities.

Estimation.— The estimation under the spatial/value
uniformity assumption is easy to come up with and it can
be expressed as a function of the estimates for COUNT and
SUM previously given:

e
= sum@X
avg@x = UM

count®

Interval of Confidence.— The problem can be stated
as follows: given sets N7, N° find legal possible distributions
Diow, Drign of data points to the nodes of these sets, such
that avg® ™ is maximum/minimum. The interval will then
be:

X X X
I‘?”g = [avggzow’ avgghzgh]

(1) AVG-Upper-Bound(NP:set of Node, N'C:set of Node):Real {

(2) UpperBoundSet := NC;

3 forall N in NP calculate hY, , RN . 8;/* See Lemma 1 *
Max>PmInN

(4) sort (bl 5, maz™V), (RN, min®Y), (1, 8) on maz™, minlV, 5;
(5) examine each (number, value) of sorted list in descending order {
(6) if value > avgUPPerBoundSet
(7) insert number points with value value into UpperBoundSet;
(8) else
(9) return avgUPperBoundSet,
(10)

UpperBoundSet,

(11) return avg

(12) }

(13) AVG-Lower-Bound(NP :set of Node, N ®:set of Node):Real {
(14) LowerBoundSet := N€;

(15) forall N in NP calculate 13 , 5, 10,/ -, 8; /* See Lemma2 */

(17) sart (10 4 x, maz™), (N, min®), (1, 8) on maz™N, minN,5;
18 examine each (number, value) of sorted list in ascending order
8
(19) if value < avglLowerBoundSet
(20) insert number points with value value into LowerBoundSet;
(21) else
(22) return avglowerBoundSet,
(23)
(24) return avgLowerBoundSet
;
(25) }

Figure 5: Calculating the AVG bounds

The distributions that provide these bounds are computed
algorithmically as in the algorithms of Figure 5. The algo-
rithm makes use of the results of Lemmas 1, 2:

LEMMA 1. A node N with aggregatesmin®™ , maz™
N

sum™ —count™N min J
mazN —minN

sum®™ can have as many as hi.x = |

data points with maz™ values. In that case there can be as
many as hY;ny = count™ — nll.x — €€ € {0,1} points
with min®™ values and ¢ points with value § = sum®™ —

R axmaz®™ — (count™ — hi;4x — 1)min®™.

Proof:
If there are k values equal to maz? then there would be
count’ — k data points left over, with a sum of sum®™ —
N. The average of these data points would be

k x max”.
N N N N
sum —kXmaz . 3 . sum —kXmaz
. If kislegal, it must be that **7——13mar— >

mmN o k< sumN—%Junt]‘\fTK}inN
= maz™N —min

Thus, we have proven

. N _ sum® —count™ min®™
that at most there will be hyax = | —F—1"—]
N N N
. . sum” —h mazx
data points with maz®™ values. [f 25 _—MaxTe?

N _pN
count hMAX

min® then the average of count”™ — hi; 4x is min®™ there-
fore all the count™ — hY; ,x points have value min®. If
W_};,N% > min®” there can be at most count™ —
count™ —hyr 4 5

hY 4 x —1 such points (clearly if all count™ —hY; 4% had the
value min™ then the average would also have to be mmN)
To have count” in total, there must be an additional point
with value § = sum® — hlj s xmaz®™ — (countN —hliax —
1)min®™. O

LEMMA 2. A node N as in Lemma 1 can have as many as

count™ maz™ —sum™

mazN —minN

Wiy = L

| data points with min® values.

In that case there can be as many as I\, 4x = count™ —
1Y in —€,¢ € {0,1} points with maz™ values and ¢ points
with value § = sum™ — 13}, ymin®™ — (countN B

l)ma:l:N‘

Proof:
Similar to above by positing that k' values min™

N / SN
sum —k'min N
countN —k/ S mazx-.

are in

node N and stating that

s countN,

We calculate Al ax, hirrn, 8 for each partially overlap-
ping node (line 3) and sort the pairs (number, value) in de-
scending order (line 4). For instance if a node has min® =
10, maz™ = 50, count’ = 3, sum® = 100 then Al x =
1,hY;;xy = 1,6 = 100 — 50 — 10 = 40 and this node con-
tributes pairs (1,100), (1, 40), (1, 10) We visit these pairs for
all the nodes in decreasing order of value (line 5) and at-
tempt to add them to our UpperBoundSet (lines 6-7); this
corresponds to picking only the high values to go into the
query region because we want the upper bound on the av-
erage. The algorithm stops when the average would not
increase any further by adding the data points of a (num-
ber, value) pair (lines 8-9). A symmetric approach is used
to compute the lower bound of the average. The correctness
of this algorithm is explained in [9].

Traversal Policy.— A simple traversal policy would be
based on a node’s COUNT. As count® (sum of COUNT of
contained nodes) increases, any given partially overlapping
node can minimally perturb the established average. An
alternative policy would keep nodes in A/? sorted in two
queues: minqueue in ascending order based on min™X and
mazqueue in descending order based on maz™*X . Nodes are
popped out of either queue. The choice of queue is based on
the greatest distance from the current average by performing
the test of avg®X —min™X against maz™ X —avg®X. Nodes
with exceptionally high M AX or low MIN are more likely
to increase or decrease the average. We can maintain the
two queues by having them point at a single element per
node which is invalidated once it is dequeued; thus, if it is
dequeued again from the other queue it will be ignored.

6. EXPERIMENTS

6.1 MRA-quadtree

We tested our algorithm using an MRA-quadtree. This
type of data structure is often used in spatial applications
involving point data. The first test was done with synthetic
data. We generate a dataset with 5 x 10° data points in the
following manner: we create 1000 clusters each containing
a number (taken from a normal distribution (¢ = 5000,0 =
1000)) of points. Each cluster spans 10% of the [0, 1]* space
on each dimension. Its centroid is uniformly distributed
around the space. FEach point’s value is randomly taken
from distribution (¢ = 100,00 = 50) and only in the range
[0,200] (to avoid negative values).

The quadtree we use has njeqay = 64. Each leaf node
splits when it exceeds njeqy, creating 4 new leaf nodes as its
children. We observed that the minimum/maximum depth
of the tree (distance from root node to any leaf node) was
6/11. This indicates that the spatial distribution is clearly
non-uniform.

We generate query sets of 200 queries, with centroids uni-
formly distributed in space at spatial selectivities 1%, 2%,
5%, 10%, 25% and with query shapes such that one of the
sides of the query rectangle is drawn from the normal dis-
tribution (p = Vsel,o = 0.5@). This is done so as to
produce queries of various aspect ratios. For each query
shape we ask 5 queries, one for each of the five aggregates.
We keep track of the number of nodes of the quadtree vis-
ited to get the exact answer and the number of nodes that
intersect with the query; a simple quadtree scan would have
to visit all nodes that overlap with the query. The results

Nodes Visited Vs Nodes Intersecting with Query (COUNT/SUMIAVG)

Nodes Visited Vs Nodes Intersecting with Query (MIN)

Nodes Visited Vs Nodes Intersecting with Query (MAX)

100000 T T T

T 100000
MRA-Tre

1000 |

1000 | 4
100 |

100 L L 10 L

Nodes Visited
Nodes Visited

T T T T
firee —*— Quadtree —%— Quadtree —%—
10000 E| 10000 E|
10000 E|

100000 T T T

1000 | E|

Nodes Visited

E| 100 | E|

———e]

L L 10 L L

. .
0 5 10 15 20 25 0 5
Query Selectivity (% space)

Query Selectivity (% space)

. .
15 20 25 0 5 10 15 20 25
Query Selectivity (% space)

Figure 6: Nodes Visited (Exact Answer) Vs. Nodes Intersecting with Query (Synthetic Data)

Relative Error (COUNT, 10%)

Relative Error (SUM, 10%)

Relative Error (MIN, 10%)

0.2 T T T T T T T T T 02 T T T
0.18 | 4 0.18 |

0.16 | — 0.16 |
014 014
012 012
01 01

0.08 0.08

Average Relative Error
.
Average Relative Error

0.06 0.06

0.04 4 0.04

0.02
0 L L L L L L L 0 L L L

q 0.02

. . : : 0.0016 r r T T T T T T
0.0014
0.0012

0001
0.0008

0.0006

.
Average Relative Error

0.0004

0.0002

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600
MRA-tree Nodes Visited

L L L
800 1000 1200 1400 1600 1800 2000 0 20 40 60 80 100 120 140 160 180
MRA-tree Nodes Visited

MRA-tree Nodes Visited

Figure 7: Relative error of estimate for successive node expansions (10% sel. Synthetic Data)

are shown in Figure 6. As the query selectivity increases the
MRA-tree visits a decreasing portion of the nodes overlap-
ping with the query. This is caused by the fact that only the
border of the query is explored towards the leaf level. The
same effect is observed as the database size increases because
the quadtree becomes deeper and more work is saved in the
interior of the query (corresponding to A¢). For MIN and
M AX the actual number of nodes visited decreases as selec-
tivity increases. This is due to the fact that as the size of the
interior becomes greater comparatively to the perimeter of
the query, the probability that the minimum will be found
there (i.e. in N'°) increases.

Significantly fewer nodes have to be visited for an approx-
imate answer. In Figure 7 we plot how the relative error,

defined as %% decreases over successive node
expansions.

We also evaluated the MRA-tree strategy on real data
taken from the US Geological Survey. Our dataset con-
tained longitude/latitude measurements which we used as
spatial dimensions and a variety of attributes; we chose
the “elevation” attribute because most other attributes had
many NULL values. The dataset had a total of 137,093 data
points. We set the leaf-node capacity to 16 in order to get
a tree deep enough for a proper evaluation. The quadtree
had a minimum/maximum depth of 3/15 in this case. The
results are shown in Figures 8,9 and are similar to the ones
reported for synthetic data. The error in this case is more
significant in initial iterations but decreases much faster due
to the highly non-uniform nature of the data.

The time taken to visit a certain number of nodes is lin-
ear/close to linear to the number of nodes visited both in
the Approximate Aggregate Query approach (AAQ) and in
a plain quadtree-based approach (with no aggregate infor-
mation stored at the tree nodes). However, because of the
added complexity of maintaining the priority queue, more
CPU time will be spent per quadtree node than in the plain
quadtree case (in which we just perform an overlap test for
each node). However, this is offset by the significant re-

duction in number of nodes that we end up visiting. Our
experiments indicate that in terms of wall-clock time AAQ
outperforms plain quadtree based approach even for exact
answering; results are included in [9].

An important thing to note is that for SUM, COUNT and
AVG queries, for which every node that intersects with the
query affects the outcome, if we decide to get the exact an-
swer then the cost of maintaining the priority queue can be
eliminated (since all partially overlapping nodes have to be
visited eventually). This will serve to improve CPU perfor-
mance even more for exact aggregate queries. In MIN, MAX
queries the algorithm typically finds the exact answer much
faster than the other methods.

6.2 MRA-RTree

In our next set of experiments we used an R-Tree data
partitioning structure. Since R-Trees are secondary memory
data structures with each node corresponding to a disk page,
we were able to measure the 1/O performance of the MRA-
RTree which is the main measure of performance for large
databases in which approximate aggregation makes sense.
A number of parameters, and their impact on performance
were investigated: database size, dimensionality, dataset
characteristics. We conducted our experiments for COUNT
queries. These (along with SUM and AV G queries) re-
quire for the aggregate information of all partially overlap-
ping nodes to be examined — if a precise answer is needed.
MIN and M AX queries, as we showed in the previous sec-
tion, are evaluated at a fraction of the number of nodes of
the COUNT case, i.e., significantly faster.

We used both synthetic data sets and real-life datasets to
conduct our experiments. The results did not vary signif-
icantly over all datasets examined. A primary observation
is that the quality of the estimation increases as the spatial
uniformity of the dataset increases. This is understandable
since the estimation itself is based on this assumption. If the
data is non-uniform then the error in the initial iterations of
the algorithm is significant but drops much faster than the

Nodes Visited Vs Nodes Intersecting with Query (COUNT/SUMIAVG)

Nodes Visited Vs Nodes Intersecting with Query (MIN)

Nodes Visited Vs Nodes Intersecting with Query (MAX)

10000 T T T T 10000 T T T T 10000 T T T T
— — —
Quadtree —*— Quadtree —*— Quadtree —*—
o 1000 | E o 1000 | E o 1000 | E
2 2 2
> > >
8 8 8
B B B
Z 100} /Z Z 100} 4 Z 100} 4
" ‘ ‘ ‘ ‘ " : ‘ ‘ ‘ " ‘ ‘ ‘ ‘
5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Query Selectivity (% space) Query Selectivity (% space) Query Selectivity (% space)
Figure 8: Nodes Visited (Exact Answer) Vs. Nodes Intersecting with Query (Real Data)
Relative Error (COUNT, 25%) Relative Error (SUM, 25%) Relative Error (MIN, 25%)
14 T T T T T 140 T T T T T 0.25 T T T T T T T
5 1 5 1 5
o o o
k4 k4 s
g g g
g g g
: 1 : 1 < |
g g g
g g g
2 1 2 1 2
0 100 200 300 400 500 600 100 200 300 400 500 600 0 5 10 15 20 25 30 35 40
MRA-tree Nodes Visited # MRA-tree Nodes Visited # MRA-tree Nodes Visited
Figure 9: Relative error of estimate for successive node expansions (25% sel. Real Data)
MRA-RTree Vs. R-Tree 1/Os (2D Synthetic) MRA-RTree Vs. R-Tree 1/Os (3D Synthetic) MRA-RTree Vs. R-Tree I/0s (4D Synthetic)
25 T T T T oo 12 T T T T T RTrE‘e 6 T T T T RT‘rEe
MRA-RTree (exact) —8— MRA-RTree (exact) MRA-RTree (& —a
= 2 MRA-RTRee (10% max. rel. error) —*— _ 10} MRA-RTRee (10% max. rel. error) 4 5 MRA-RTree (10% max. rek€rror) —+— |
g2l 5 5
g ger 1 g 1
g 1 s s
8 8 st g 83 g
g g g
FECl 1 3 3
8 8 4l 1 8. 1
o o o
s s s
g sp 1 g .0 | g, |
0 ‘ ‘ ‘ ; ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 05 1 15 2 25 3 35 0.2 0.4 0.6 08 1 12
Spatial Query Selectivity (% space) Spatial Query Selectivity (% space) Spatial Query Selectivity (% space)
Figure 10: I/0 Performance Vs. Query Selectivity (Synthetic Data)
MRA-RTree Vs. R-Tree I/Os (2D Real (Geographic)) MRA-RTree Vs. R-Tree I/Os (4D Real (Forest Cover))
25 T T T T T 5 T T T T
RTree —=— reex —x—
MRA-RTree (exact) —&— 45 - MRA-RTree (exaCt) —&—
MRA-RTRee (10% max. rel. errof) —x— MRA-RTree (10% max. ref. error) —«—
T 20 | E T 4t E
N N
2] 2]
) @ 351 T
3 3
.{3 15 1 .{3 3r 1
8 8 25f R
S S
> 10 - R > 2} R
o (o)
= = 15 m
9] 1]
g g
c S T o ir T
05 - R
0 2 4 6 8 10 12 0 02 0.4 06 038 1 12

Spatial Query Selectivity (% space)

Spatial Query Selectivity (% space)

Figure 11: I/0O Performance Vs. Query Selectivity (Real Data)

Relative Error Vs. Page 1/Os (2D Geographic Survey, spatial sel. 16% per axis)
10000 T T T T

T T
Actual Error

1000 3‘ Maximum Possible Error -------]

100 E|

<] 10 E
]

2 1 E
©

& 0.1 4

0.01 E

0.001 E|

0.0001
0 20 40 60 80 100 120 140
Page I/0s

Relative Error Vs. Page 1/Os (4D Forest Cover, spatial sel. 16% per axis)
1000 T T T

T
Actual Error
Maximum Possible Error -------

8

i 1 i
[
2

K 0.1 T
[}
4

0.01 E

0.001 E

0.0001 L L L L L
200 400 600 800 1000 1200
Page I/0s

Figure 12: Absolute Relative Error Vs. Page I/Os (Real Data)

previous case. This is because the probability that a high-
COUNT node falling either inside or outside the query (the
only two cases which shrink ICOUNT) increases.

Our synthetic data was generated in the fashion already
mentioned. In the reported experiments, we used a 1.2 x10°-
point database with 2400 regions each ranging 10% along
each dimension. We also report results obtained for two
real data sets. The first one is the US Geological Survey
used in the MRA-quadtree experiments. The second one
is a multi-dimensional Forest Cover dataset taken from the
KDD archive at UCI; this was also used in [4]. We chose 4
of its real-valued attributes for our experiments. There are
581,012 data points in this data set.

We set the page size to 128 numbers and calculated the
number of children records for each non-leaf node and the
number of data points for each leaf node. If the dimension-
ality is d then each child record must contain 2d+ 5 numbers
(a d-dimensional hyper-rectangle, 4 aggregate values and 1
pointer to the child node). In a plain R-Tree 2d + 1 num-
bers are needed per child record. Leaf-level nodes need d+1
numbers for each data point (d for loc and 1 for the attribute
value). In reality, fewer than 2d + 5 numbers might be nec-
essary for the MRA-RTree if queries are not asked for all
5 SQL-Type aggregates. In our experiments we have seen
that keeping all the aggregates does not significantly affect
performance especially at high dimensionalities, because the
fraction of space they use 3 d‘:_ = decreases. Conversely, when
the dimensionality is low, the space overhead is more pro-
nounced but the likelihood that a tree node is contained
in the query increases (more nodes partially overlap with
queries in high dimensionality). Since we avoid (in MRA-
RTree) to visit such nodes that partially overlap with the
query, this benefit is more apparent in low dimensionalities.

The cardinality of the non-leaf nodes and leaf-nodes for
the dimensionalities we investigated are given below:

2D | 3D | 4D
R-Tree fanout: nr—_7ree 25 18 | 14
MRA-RTree fanout: nyyra—RTree | 14 | 11 | 9
leaf node (# of points): nieay 42 |32 | 25

We assume that all 4 aggregate values are stored in the
non-leaf nodes. The MRA-RTree created in our experi-
ments, had a height of 7 for all 3D and 4D datasets, a height
of 6 for the synthetic 2D dataset and a height of 5 for the
small Geological Survey dataset. The plain R-Tree, due to
its increased fanout, had a height 1 less than the above val-

ues for all our datasets.

The first set of experiments investigates the performance
of the data structure over 2D, 3D, 4D synthetic data and
our two real data sets for various query selectivities. The
results are reported in Figures 10,11. We run sets of 500
queries at each selectivity level. We used queries of size 2%,
8%, 16%, 24% and 32% along each dimension, employing
the same technique as in the MRA-quadtree experiments
to distribute the aspect ratio of the queries while keeping
the overall spatial selectivity (which, for dimensionality d
and fraction f along each axis is fd) constant. We plot
the number of page 1/Os required on average to answer the
query load at each selectivity level for R-Tree, MRA-RTree
(exact answer) and MRA-RTree, if we are willing to tolerate
a maximum relative error of 10%. Instead of plotting n;o,

the absolute number of 1/Os, we plot (as a percentage) 212

DB
where np g is the number of full data pages that are required

to store all points in the database. If there are N points in
the database in total then npp = nzif . Roughly speaking,
all the database could be examined using a linear scan at
the time it takes to do 0.1npp random 1/Os. In all our
experiments the MRA-RTree found the exact answer to the
queries (on the average) much faster than this figure.

For all dimensionalities and query selectivities that we ex-
amined, the performance of MRA-RTree was better than
a plain R-Tree. Only in 3D and 4D and for very small
query selectivity were we able, using an R-Tree, to arrive
at an exact answer faster than with an MRA-RTree. This is
explained by the fact that small selectivity queries (preva-
lent in high dimensional spaces) usually return very small
COUNT' answers, therefore aggregation of the form we are
suggesting is not really useful. However even in 4D, for the
greater range of selectivities we investigated, MRA-RTree
was still able to find the exact answer faster than a plain R-
Tree scan. The number of 1/Os required to find an answer
with a 10% maximum relative error is significantly low in low
dimensionalities. In higher dimensionalities the figure gets
closer to the number of 1/Os needed to get the exact answer.
This is reasonable because many more nodes now partially
overlap or contain the query. Moreover the query answer
(which is in the denominator of the relative error expres-
sion) decreases, leading to higher relative errors. Overall,
we observe a noticeable improvement of 1/O performance if
an error of the estimation is tolerated.

In the next set of experiments we wanted to investigate
the accuracy of the estimation and how it decreases with

Relative Error of Estimation Vs. Page 1/Os (2D Synthetic, spatial sel. 16% per axis)

Relative Error
o o o o o
N e A @ o

o

MRA-RTree' —x—
Random Sampling —*—

60

80
Page l/Os

100 120 140

160

Relative Error of Estimation Vs. Page 1/Os (3D Synthetic, spatial sel. 16% per axis)

16 T

Relative Error

" MRARTIee —x—
Random Sampling —*—

300

500

400

Page l/Os

Relative Error

Relative Error of Estimation Vs. Page 1/Os (4D Synthetic, spatial sel. 16% per axis)

j " MRARTree —x—
Random Sampling —*— _|

50

100

150

200

250

Page l/Os

300

350 400 450 500

Figure 13: Absolute Relative Error Vs. Number of I/Os for MRA-RTree and Sampling (Synthetic Data)

Relative Error of Estimation Vs. Page 1/Os (2D Geographic Data, spatial sel. 16% per axis)

0.4

0.35

0.3

0.25

0.2

Relative Error

0.15

0.1

0.05

T

T

T

T
MRA-RTree —»—

T
N Random Sampling —*— |

o L= % x x
10 12 16
Page 1/0s

20 22

Relative Error of Estimation Vs. Page 1/Os (4D Forest Cover Data, spatial sel. 16% per axis)

0.7 T T T T T T
MRA-RTree —»—
Random Sampling —*—
0.6 4
05
8
o 04
o
2
8 03 4
[}
4
0.2 B
01 B
0 M & "
60 80 100 120 140 160 180 200 220
Page I/0s

Figure 14: Absolute Relative Error Vs. Number of I/Os for MRA-RTree and Sampling (Real Data)

successive 1/Os. The results are shown in Figure 12. We
plot once more the average absolute relative error of the
estimation (for the query load) as well as the average max-
imum possible relative error. To conserve space we only
report the results for spatial query selectivity 16% along
each dimension and for our real data sets. If a is the an-
swer to the query and @ is our estimate and 7°YNT = [1, h]
is the interval of confidence, then the relative error of the
estimation is J‘/Ilaa%(?ﬁa) while the maximum possible relative
a—1 h—a

of the graph, it is apparent that the actual error is approx-
imately two orders of magnitude less than the maximum
error throughout the run of the algorithm. This is both a
drawback and an advantage. It means, on the one hand,
that we will usually have much less error than the maxi-
mum possible error given by the TCYNT for each iteration
of the algorithm. On the other hand it means that 7¢¢VNT
is wide. Some applications do require such a deterministic
interval of confidence. In our current work we examine how
we can additionally provide a probabilistic interval of con-
fidence of the sort 1,99 which is interval of confidence 1999
for aggregate agg with probability p.

In a third set of experiments we studied the effectiveness of
the MRA-RTree for different database sizes. Intuitively, as
the database size increases, the performance of MRA-RTree
as determined by its ﬁgo— will improve. This is because, for

error is Maz(In the logarithmic scale

exact answering, the main benefit of the algorithm over a
plain R-Tree scan is derived from nodes that are contained
in the query region. As the size of the database increases, the
subtree rooted at each such node deepens, containing more
nodes. Thus, this benefit is realized. In Figure 15 we ask
a set of 10% special selectivity queries over a 3D synthetic
databases of varying size from 20,000 all the way to 1,280,000

MRA-RTree page I/Os for Exact Answer (3D Synthetic, 10% spatial sel.)
20 T T

"MRA-RTree —x—

Page 1/0s (% Database Size)

6 I I I I 1
600 800 1000

of points in the database (x1000)

1200 1400

Figure 15: I/O Performance Vs. Database Size

points. We see that the number of 1/Os required for an exact
answer (as a fraction of the database size) initially drops
significantly and then tends to approach some limit. This is
due to the fact that the leaf nodes (and their antescendants)
at the perimeter of the query have to be visited, hence for
some query selectivity, a fraction of the nodes must always
be visited no matter how deep the tree is.

Finally, we compare MRA-RTree with on-line random sam-
pling. Our technique is not directly comparable with the off-
line estimation techniques, since these approximate the data
only at a fixed maximum resolution. We measure the abso-
lute relative estimation error for different number of 1/Os.
Random sampling is done as follows: a fraction f of the
pages in the database are read and count, is calculated on
the sample. The estimate is then: count = <24t If data
is placed on disk randomly then on-line random sampling

can be performed with sequential 1/Os that are faster than
the random 1/Os of the MRA-RTree technique. As noted in
[6], most often data is placed on disk in some order, hence
they must be read randomly to create a random sample.
We assume that this is the case in our experiments, and so
we can compare the accuracy of the two techniques for a
given number of 1/Os. The results are shown in Figures 13,
14. The right-hand side cutoff of the graphs is the point in
which MRA-RTree has less than 0.5% error. We conclude
that MRA-RTree provides a much better estimation than
could be achieved with random sampling.

7. CONCLUSIONS

We have presented a new data structure, Multi-Resulution
Aggregate tree for answering aggregate queries over point
data. The MRA-tree is a modified tree index storing aggre-
gate information about data at successive levels of resolution
as defined by the space partitioning/data grouping hierar-
chy. We have shown how a progressive algorithm can itera-
tively give increasing quality answers until some error bound
is satisfied or timing constraint is reached. The proposed ap-
proach can be used for any of the typical SQL aggregates
and produces answers within 100% guaranteed bounds.

Our experiments indicate that the method can be used
effectively to answer aggregate queries. For exact answer-
ing, MRA-tree outperforms both a simple index scan or a
linear scan of the database. The performance improvement
over these methods becomes more pronounced with an in-
crease of either query selectivity or database size. As dimen-
sionality increases, the performance of MRA-RTree worsens
because of the deterioration of R-Tree performance in high
dimensionality. In 4D which is the highest dimensionality
we tested for, the performance of MRA-RTree is still sat-
isfactory. In the future we will test MRA-RTree with the
specialized index structures for high-dimensional data that
have been been proposed in the past.

The quality of the estimation is generally good even after
only a few iterations. It is significantly better than the esti-
mation possible using simple on-line random sampling. It is
often possible to receive a good guaranteed-quality answer
after only a small fraction of the nodes required for the ex-
act answer have been visited. Usually the actual estimation
error is much less than the maximum possible error.

In the future we plan to incorporate MRA-tree in a virtual
reality application. Such an environment has strict timing
deadlines in order to maintain a high-frame rate and MRA-
tree will be used to answer aggregate queries over the space
as the user navigates through the environment. We also plan
to use MRA-tree in conjunction with a mining/visualization
tool and for OLAP applications in general. Our work is only
an aspect of the general problem of quality-aware database
management systems. Such systems will tackle the prob-
lems of high-update rates, large database sizes and expensive
query processing introduced by novel applications, utilizing
new ways to quantify imprecision in data and methods for
query-answering at various levels of quality.

8. REFERENCES
[1] P. M. Aocki. How to avoid building datablades (r) that
know the value of everything and the cost of nothing.
In 11th International Conference on Scientific and
Statistical Database Management, Proceedings,
Cleveland, Ohio, USA, 28-30 July, 1999.

[2] D. Barbar4 and X. Wu. Supporting online queries in
rolap. In Proceedings of the Second Int’l Conference on
Data Warehousing and Knowledge Discovery, DaWaK
2000, London, UK, September 4-6, 2000, pages
234-243.

[3] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using
wavelets. In VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt, pages 111-122.

[4] D. Gunopulos, G. Kollios, V. J. Tsotras, and
C. Domeniconi. Approximating multi-dimensional
aggregate range queries over real attributes. In
SIGMOD Conference 2000, Dallas, Texas., pages
463-474.

[5] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD’8}, Proceedings of
Annual Meeting, Boston, Massachusetts, June 18-21,
1984, pages 47-57.

[6] J. M. Hellerstein, P. J. Haas, and H. Wang. Online
aggregation. In SIGMOD 1997, Proceedings ACM
SIGMOD International Conference on Management of
Data, May 13-15, 1997, Tucson, Arizona, USA, pages
171-182.

[7] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In
VLDB’95, Proceedings of 21th International
Conference on Very Large Data Bases, September
11-15, 1995, Zurich, Switzerland, pages 562-573.

[8] Y. E. Toannidis and V. Poosala. Histogram-based
approximation of set-valued query-answers. In
VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, pages 174-185.

[9] 1. Lazaridis and S. Mehrotra. Progressive approximate
aggregate queries with a multi-resolution tree
structure. Technical Report TR-DB-01-02, Dept. of
Information and Computer Science, University of
California, Irvine, 2001.

[10] J. T. Robinson. The K-D-B-Tree: A search structure
for large multidimensional dynamic indexes. In
Proceedings of the 1981 ACM SIGMOD International
Conference on Management of Data, Ann Arbor,
Michigan, April 29 - May 1, 1981, pages 10-18.

[11] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, San Jose, California, May 22-25, 1995, pages
71-79.

[12] H. Samet. The quadtree and related hierarchical data
structures. Computing Surveys, 16(2):187-260, 1984.

[13] J. S. Vitter and M. Wang. Approximate computation
of multidimensional aggregates of sparse data using
wavelets. In SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadephia, Pennsylvania,
USA, pages 193-204.

