Homework 1

Instructor: Sandy Irani

- 1. Give a truth table for the following logical expession: $(p \lor \neg r) \to \neg q$.
- 2. The propositional variables p, q, and r have the following truth values:
 - \bullet p = T
 - \bullet q = F
 - \bullet r = F

What is the truth value of the following compound propositions:

- (a) $(p \land q) \rightarrow \neg r$
- (b) $\neg (r \lor \neg p \lor \neg q)$
- (c) $\neg (q \land r) \rightarrow \neg p$
- (d) $\neg (q \land r) \lor (p \land \neg r)$
- 3. Which statements below evaluate to true?
 - (a) If 3 is a prime number then 4 is also a prime number.
 - (b) If January has 28 days, then 4 is a prime number.
- 4. Are the expressions $p \to q$ and $q \to p$ logically equivalent? Use a truth table to prove your answer.
- 5. Define the following propositions:
 - s: a person is a senior.
 - v: a person is at least seventeen years of age.
 - p: a person is allowed to park in the parking lot.

Express each of the following English sentences with a logical expression:

- (a) A person is allowed to park in the parking lot only if they are a senior and at least seventeen years of age.
- (b) A person can park in the parking lot if they are a senior or at least seventeen years of age.
- 6. In this question the domain of discourse is a set of employees in a company. Define the following predicates:
 - T(x): person x is a member of the executive team.
 - S(x): person x received a large bonus.

Express the following English sentences with quantified logical expressions:

- (a) Someone did not get a large bonus.
- (b) Everyone got a large bonus.
- (c) Sam did not receive a large bonus even though he is a member of the executive team.

- (d) Someone who is not an executive received a large bonus.
- (e) Every executive team member got a large bonus.
- 7. In this problem, the domain of discourse is the set of all integers. Which statements are true? If an existential statement is true, give an example. If a universal statement is false, give a counter-example.
 - (a) $\exists x(x + x = 1)$
 - (b) $\forall x(x^2 x \neq 1)$
 - (c) $\forall x(x^2 x \neq 0)$
 - (d) $\exists x(x+2=1)$
- 8. Define the following sets:
 - $A = \{x \in \mathbb{Z} : x \text{ is even}\}$
 - $B = \{x \in R : x > 1\}$
 - $C = \{-3, 1, 2, 6, 7, 9\}$
 - $D = \{2, 3, 5, 9, 10, 17\}$

Indicate whether the following statements are true or false:

- (a) $\pi \in B$
- (b) $A \subseteq B$
- (c) $C \subseteq B$
- (d) $8 \in A \cap B$
- (e) $A \cap C \subseteq B$
- (f) $C \subseteq A \cup B$
- (g) $A \cap C \cap D = \emptyset$
- (h) |C| = |D|
- (i) $|C \cap D| = 3$
- 9. Venn diagram question.

$$A \cap (B \cup C)$$

$$\overline{B} \cap (A \cup C)$$
.

- 10. Define the sets $X = \{a, b, c\}$ and $Y = \{1, 2\}$. Show the set $X \times Y$ by listing the elements with set notation.
- 11. Show the set $\{0,1\}^3$ by listing the elements with set notation. You can specify each element as a string instead of including the parentheses and commas.
- 12. What is $|\{0,1\}^2|$? What is $|\{0,1\}^3|$?
- 13. For each of the functions below, indicate whether the function is onto, one-to-one or both. If the function is not one-to-one, give an example showing why.
 - (a) $f: R \to R$. $f(x) = x^2$.
 - (b) $q: R \to R$. $q(x) = x^3$.
 - (c) $h: Z \to Z$. $g(x) = x^3$.

- 14. For each of the functions below, indicate whether the function is onto, one-to-one or both. If the function is not onto, specify its range by listing the elements using set notation. If the function is not one-to-one, give an example showing why.
 - (a) $f: \{0,1\}^4 \to \{0,1\}^3$. The output of f is obtained by taking the input string and dropping the first bit. For example, f(1011) = 011.
 - (b) $g: \{0,1\}^3 \to \{0,1\}^3$. The output of g is obtained by replacing the first bit with 1 regardless of whether the first bit is a 0 or a 1. For example, g(001) = 101 and g(110) = 110.
 - (c) $h: \{0,1\}^3 \to \{0,1\}^3$. The output of h is obtained by reversing the bits. For example h(001) = 100 and h(110) = 011.
- 15. Let f be a function $f: \{0,1\}^2 \to \{0,1\}^3$. Is it possible that f is a bijection? Why or why not?
- 16. Express the following sums using summation notation:

(a)
$$(-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5$$

(b)
$$2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8$$

(c)
$$0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + \dots + (17)^3$$
.

- (d) The sum of the squares of the odd integers between 0 and 100.
- 17. Indicte whether the following equality is true and justify your answer:

$$\sum_{j=0}^{100} j^3 = \sum_{j=1}^{100} j^3$$

- 18. Give the first six terms of the following sequences. You can assume that the sequences start with an index of 1.
 - (a) The n^{th} term is n^2 .
 - (b) The first term is 1 and the second term is 2. The rest of the terms are the product of the two preceding terms.
 - (c) $g_1 = 2$ and $g_2 = 1$. $g_n = n \cdot g_{n-2} + g_{n-1}$.
 - (d) A geometric sequence in which the first value is 3 and the common ratio is 2.
 - (e) An arithmetic sequence in which the first value is 3 and the common difference is 5.
- 19. Evaluate the following summations:

(a)
$$\sum_{j=-2}^{2} j^3$$

(b)
$$\sum_{k=0}^{3} 2^k$$