
Randomized Weighted Caching

with Two Page Weights

Sandy Irani

April ��� ����

Abstract

We consider a special case of the weighted caching problem where
the weight of every page is either � or some �xed number M � �� We
present a randomized algorithm which achieves a competitive ratio
which is O�log k� where k is the number of pages which can �t in the
cache�

� Introduction

A caching algorithm manages a two�level store consisting of a fast memory
�or cache� that can hold k pages� and a slow memory� The algorithm is
presented with a sequence of requests to virtual memory pages� If the page
requested is in fast memory �a hit� it incurs no cost� but if not �a fault�� the
algorithm must bring it in to fast memory at unit cost� and decide which of
the k pages currently in fast memory to evict in order to make room for it� In
the weighted version of the caching problem� each page p has a non�negative
weight w�p�� The cost of bringing the page p into the cache is w�p�� Note
that although pages have di�erent weights� they all have the same size� so it
is always the case that exactly k pages can �t in the cache at any point in
time� We will think of the cache as having k slots each of which can hold a
single page at any point in time� The cost incurred by an algorithm A on
a sequence of requests � is the sum of the weights of the requested pages
for all requests on which the algorithm faults� We will denote this value by
costA����

A caching algorithm is online if it makes the decision about which page
to evict without knowledge of future requests� We evaluate the performance
of an online algorithm with respect to the performance of the optimal o	ine
algorithm� For a �nite c� we say that A is a c�competitive algorithm if for all ��
costA����c �costOPT ��� remains bounded by a constant� For a randomized






algorithm A� we replace costA��� by its expectation in the above de�nition�
The competitiveness of A� denoted cA� is the in�mum of c such that A is
c�competitive� if such a c exists� If no such c exists then A is said to be
non�competitive� all algorithms discussed in this paper are competitive�

In this paper� we present and analyze a randomized algorithm for a special
case of the weighted caching problem� We consider the problem where all
requests are limited to pages whose weights are either 
 or some �xed integer
M greater than 
� There are no other restrictions placed onM � For example�
it could be the case that M �� k�

� Previous Work

The competitive analysis of paging where the pages have uniform weight was
�rst studied by Sleator and Tarjan �ST��� They showed that any determin�
istic algorithm must have a competitive ratio of at least k� Furthermore� the
well�known Least�Recently�Used algorithm achieves a competitive ratio of k�
Randomized uniform paging was �rst studied by Fiat et al� �FKL��
� who
developed the Randomized Marking Algorithm and showed that it achieves
a competitive ratio no worse than �Hk� Moreover� Fiat et al� showed a lower
bound of ln k for the competitive ratio of any randomized algorithm� Mc�
Geoch and Sleator showed an algorithm which achieves a competitive ratio
of ln k �MS�
�� Later� Achlioptas et al� �ACN��� showed a much simpler
algorithm achieving a competitive ratio of ln k and determined the exact
competitive ratio of the Marking algorithm� �Hk � 
�

k�competitive deterministic algorithms for weighted caching have been
known for some time �CKPV�
� You���� It has been conjectured �Fia�
�
that algorithms similar to the one presented here are O�log k��competitive
ratio for the special case where pages have one of two �xed weights� but no
bounds were known on their performance� Ours is the �rst algorithm to be
proven O�log k��competitive for this problem� thus giving the �rst improve�
ment over the bound for deterministic algorithms� Our algorithm� devised
independently of the work in �Fia�
�� draws heavily on the RandomizedMark�
ing Algorithm introduced by Fiat et al� �FKL��
�� It is essentially a nested
version of the Randomized Marking Algorithm� the Randomized Marking
Algorithm is run on each class of pages separately while making sure that
each class of pages occupies a �fair� share of the cache� We believe that this
algorithm could� in principle� be extended to a constant number of classes of
pages� although that question is not addressed in this paper� However� the
constant factor in the competitive ratio is likely to increase rapidly with the
number of classes which would limit extending this method to an arbitrary
number of classes�

The weighted caching problem is also an important special case of the

�



well�known k�server problem �MMS���� In the k�server problem� k mobile
servers move about on nodes in a metric space� The cost of moving a server
from node a to node b in the metric space is the distance from a to b� A
sequence of requests is presented to the algorithm� Each request is a node
in the metric space� When a request is received� a server must be moved to
that node� The goal is to serve a sequence of requests so as to minimize the
total distance traveled by all servers�

The weighted cache problem is a special case of the k�server problem
where the metric space has the property that each node has a weight and the
distance to a node p from any other node in the metric space is the weight
of p� The set of nodes represent virtual memory pages� The k mobile servers
represent slots for pages in the cache� A server occupies a node whenever
that page resides in the cache� The process of moving a server from a node p
to a node q represents evicting p from the cache and replacing it by q� This
move costs the algorithm w�q��

Despite much e�ort� very little is known about randomized algorithms for
the k�server problem� Bartal et al� have shown in �BBBT��� a randomized
algorithm which achieves a competitive ratio which is polylogarithmic in k
when the number of servers is one less than the number of nodes in the metric
space �the metric task system problem�� Also� Bartal et al� have shown an
algorithm for two servers on the line �BCL���� Other than these results�
no other results for the randomized k�server problem are known which beat
deterministic bounds� The result in this paper represents an important step
towards randomized weighted caching and the randomized k�server problem�

� The algorithm

We examine a specialization of the weighted caching problem where the
weight of each page is either 
 or M � A page of weight 
 is said to be a
��page� A page of weight M is said to be an M�page� We will assume that
M is an integer� If this is not the case� we can round M down to the nearest
integer and execute the algorithm for the rounded value� This change will
e�ect the competitive ratio by at most a constant factor�

Since the algorithm presented here is so heavily based on the Randomized
Marking Algorithm �RMA� of Fiat et al� � we will review RMA here and point
out some similarities� RMA falls into a general class of algorithms called
marking algorithms �rst introduced by Karlin et al� In a marking algorithm�
the set of pages in the cache are divided into marked and unmarked pages�
Initially� all pages are unmarked� If the requested page is not already in the
cache� then an unmarked page is evicted and the newly requested page is
brought into the cache� If there are no unmarked pages in the cache on a
fault� then all pages become unmarked before a page is chosen for eviction�

�



After the newly requested page is brought into the cache� it is marked� This
process divides the request sequence into phases� where a new phase begins
whenever the set of pages in the cache are unmarked� The Randomized
Marking Algorithm is a marking algorithm which� on a fault� chooses an
unmarked page uniformly at random for eviction�

The algorithm RandCache is shown in Figures 
� � and �� At a high level�
the algorithm presented here runs RMA on each class of pages separately�
while making sure that each class of pages occupies an appropriate share of
the cache� To determine how the cache is divided between the 
�pages and
the M �pages the following set of rules are observed�

� All pages are marked as soon as they enter the cache�

� On a fault� if there are unmarked pages of the same class as the re�
quested page� the algorithm picks one such page at random and evicts
it�

� On a fault� if there are only unmarked pages of the other class�

� If the requested page is an M �page� evict a random unmarked

�page�

� If the requested page is a 
�page�

� Roughly� every M th time this happens� evict a random un�
marked M �page� This is achieved using the counter N� in
Figure 
�

� All other times� unmark all 
�pages and evict one such page
at random�

� If on a fault� all pages are marked�

� Unmark all 
�pages�

� Unmark all M �pages pages only if there have been M occasions
where a 
�page did not replace an unmarked M �page� This is
achieved using the counter N� in Figure 
�

The Figures 
�� and � represent what is done when a request to a page
p arrives� All marked pages reside in the cache� We start o� with all pages
unmarked� Furthermore� when the sequence starts� we assume that the cache
is empty� To make the algorithm well de�ned� we will assume that the cache
is actually �lled with unmarked 
�pages which will never be requested� The
algorithm makes use of two counters� N� and N�� which are initialized to ��

The marking scheme divides the sequence into a number of phases which
are in turn divided into a number of subphases� A new phase begins whenever

�



the procedure NewPhase is called� A new subphase begins whenever the
procedure NewSubPhase is called� Speci�cally� if NewSubPhase�P� is
called� the old subphase ends and a new one begins before the current request
to page p�

We will work through the following two examples to illustrate how the
algorithm works� Consider the case where M � � and k � �� The M �
pages are fA�B�C�Dg and the 
�pages are f
� �� �� �g� The �rst sequence
we will consider is � � 
� �� �� A�B� �� C� 
� �� �� For the �rst three requests�
the requested page is brought into the cache and marked in step �
��� For
the fourth request� page A is brought into the cache and marked in step ����
At this point� the contents of the cache are f
� �� �� Ag and all pages in the
cache are marked� When B is requested� the algorithm incrementsN� in step
�
��� Note that the algorithm starts with only 
�pages in the cache� so noM �
pages have been evicted� Since N� � 
 and M � �� a new subphase begins�
The previous subphase consisted of requests 
� �� �� A� Pages 
� � and � are
unmarked� Then RandCache�B� is called again from NewSubPhase�B�
and a randomly chosen page from 
� �� or � is evicted� B is marked and
brought into the cache in step ���� Let�s say it was page � that was evicted�
At this point� the contents of the cache are f
� �� A�Bg and the pages A
and B are marked� When � is requested� a randomly chosen page from 

or � is evicted� � is marked and brought into the cache in step �
��� Let�s
say it was page 
 that was evicted� When C is requested� page � is evicted
and page C is marked and brought into the cache in step ���� Now the the
contents of the cache are fA�B�C� �g and all pages in the cache are marked�
When page 
 is requested� N� is incremented in step ����� Now N� � M
and NewPhase is called� The last subphase consisted of requests B� �� C�
The phase consisted of requests 
� �� �� A�B� �� C� At this point everything is
unmarked� WhenRandCache��� is called fromNewSubPhase���� page �
is evicted and page 
 is marked and brought into the cache� Since page 
 was
not requested in the previous subphase� N� is incremented in step �
��� The
contents of the cache are now fA�B�C� 
g and only page 
 is marked� Now �
is requested� Since N� �M � NewSubPhase��� is called in step ���� The
last subphases consisted only of the request to page 
� Page 
 is unmarked�
When RandCache��� is called from NewSubPhase���� page 
 is evicted
and page � is marked and brought into the cache� N� is incremented in
step �
��� The contents of the cache are fA�B� 
� �g and pages 
 and � are
marked� Now � is requested� At this point N� � M � A randomly chosen
page from A or B is evicted in step ��
�� Page � is marked and brought into
the cache� N� is incremented by 
 in step ���� and decremented by � in step
�����

In the second example� the request sequence is � � A�B�C�D� 
� For the
�rst four requests� the requested page is marked and brought into the cache





in step ���� Now 
 is requested� N� is incremented in step ���� but is still less
thanM � so NewSubPhase��� is called which in turn callsRandCache����
The last subphase consisted of requests A�B�C�D� Since there are no 
�
pages in the cache� nothing has changed� N� is incremented again in step
���� and this time NewPhase��� is called� Note that this results in an
empty subphase� At this point all four M �pages in the cache are unmarked�
Since there are no 
�pages in the cache� a randomly chosenM �page is evicted
in step ��
�� Page 
 is marked and brought into the cache� N� is incremented
by one in step ���� and then decremented by � in step ����� At this point
N� � �
�

The main result of this paper is the following theorem�

Theorem � The competitive ratio of the algorithm RandCache is O�log k��

We start with a few important observations about the algorithm� Once
a 
�page is brought into the cache� it remains marked and does not leave
the cache until the end of the current subphase at which point all 
�pages
become unmarked� This follows from the fact that the algorithm never evicts
a marked page� The only place in the algorithm where 
�pages are unmarked
is in NewSubPhase which is only called when all 
�pages in the cache are
marked� Thus� the set of distinct 
�pages requested in a subphase is the same
as the set of marked 
�pages which RandCache has in its cache at the end of
the subphase which is the same as the set of �marked or unmarked� 
�pages
which RandCache has in its cache at the end of the subphase� Similarly�
when an M �page is brought into the cache� it remains marked and in the
cache until the end of the current phase at which point all pages become
unmarked� This follows from the fact that the only place where M �pages
are unmarked is in NewPhase which is only called when all pages in the
cache are marked� Thus� the set of distinct M �pages requested in a phase is
the same as the set of markedM �pages which RandCache has in its cache at
the end of the phase which is the same as the set of �marked or unmarked�
M �pages which RandCache has in its cache at the end of the phase�

Each subphase will be designated M �heavy or 
�heavy� The designation
is determined as follows� At some point in the course of a phase it happens
that there are no unmarked M �pages in the cache� This includes the case
where there are no M �pages in the cache� Once this happens� there will be
no unmarkedM �pages in the cache for the remainder of the phase� Suppose
that this �rst happens during the rth subphase in the phase� If the phase
starts with no M �pages in the cache� then let r � 
� All subphases after the
rth subphase areM �heavy� All subphases which precede the rth subphase are

�heavy� The rth subphase is said to be 
�heavy if any M �pages are evicted
to make room for a newly requested 
�page and is M �heavy otherwise�

�



We will use the following �ve lemmas in the proof of the main result�
Throughout the proofs of these lemmas� the rth subphase will be the subphase
in which it �rst happens that there are no unmarked M �pages in the cache�

Lemma � During a 
�heavy subphase� no request to an M�page is served by

evicting a 
�page�

Proof� We claim that whenever anM �page is brought into the cache during
a 
�heavy subphase� there are unmarked M �pages in the cache� This means
that the request will be served by evicting an unmarked M �page in step ��
of the algorithm� The claim is certainly true for all subphases before the
rth subphase since it is only in the rth subphase that there are no unmarked
M �pages in the cache� Moreover� by de�nition� the rth subphase is M �heavy
only if at some point t in that subphase� an M �heavy page was evicted to
accommodate a request for a 
�page� This can only happen in step ��
��
When step ��
� is reached� it must be the case that all 
�pages are marked
and there are unmarked M �pages� Suppose this happens at time t� The
point in time when there are no unmarked M �pages in the cache happens
at some time t� which is greater than t� We know that t� happens within
the subphase since the rth subphase is when all the M �pages in the cache
�rst become marked� Note that at time t� all pages in the cache are marked
since all 
�pages were marked at time t� This means that any request after
time t� for a page which is not in the cache will cause a new subphase to
begin� Thus� we have established that if the rth phase is 
�heavy� then the
next fault after all M �pages become marked begins a new subphase� This
means that whenever RandCache faults during the rth subphase� there are
unmarked M �pages in the cache�

Lemma � During an M�heavy subphase� no request to a 
�page is served by

evicting an M�page�

Proof� The fact is certainly true for all subphases which follow the rth

subphase since all M �pages in the cache are marked and none of them will
be evicted until the beginning of a new phase� The rth phase is said to beM �
heavy if and only if no request to a 
�page is served by evicting an M �page�
The lemma follows�

Lemma � There are M M�heavy subphases in a phase�

Proof� A new phase will begin if and only if there are no unmarked pages
in the cache and N� � M � N� starts out at �� We need to establish that
N� is incremented at the end of a subphase if and only if the subphase was

�



M �heavy� Note that N� is incremented at the end of a subphase if and
only if there are no unmarked M �pages and no M �pages have been evicted
in the subphase on a request to a 
�page� This means that at the end of
the subphases which precede the rth subphase �which are all 
�heavy�� N�

is not incremented because there are unmarked M �pages in the cache at
the end of these subphases� For all the subphases after the rth subphase
�which are allM �heavy�� all theM �pages are marked at the beginning of the
subphase� Furthermore by Lemma �� noM �pages are evicted in the subphase
to accommodate a request for a 
�page� This means that N� is incremented�

Now we consider the rth subphase� AllM �pages are marked at the end of
the rth subphase� Furthermore� the phase is declared to be M �heavy if and
only if no M �pages have been evicted to accommodate requests for 
�pages�
Therefore N� is incremented if and only if the subphase is M �heavy�

For the next lemma� we will need the following de�nitions� A 
�page is
said to be new if it is requested in the current subphase but was not requested
in the previous subphase� An M �page is said to be new if it is requested in
the current phase but was not requested in the previous phase�

Lemma � Suppose that at the end of a 
�heavy subphase which is not the

last 
�heavy subphase in the phase� there have been y new 
�pages requested

in the phase so far� Then the number of M�pages which have been evicted to

make room for a 
�page is at least by�Mc�

Proof� First we must establish that N� is incremented exactly once for
every new 
�page requested in the phase� This follows from the fact that just
after a 
�page is brought into the cache� the algorithm checks if it is a new
page� If it is a new page� N� is incremented by 
� Furthermore� these are the
only times when N� is incremented�

Since it is a 
�heavy subphase and not the last 
�heavy subphase� the
subphase ends with unmarked M �pages in the cache� Thus� any request to
an M �page must be resolved in step �� of the algorithm� This means that
the subphase must end on a request to a 
�page in which there are unmarked
M �pages left in the cache� This means the subphase ends in step ��� and it
must be the case that N� � M �

The only time N� is decremented is when an M �page is evicted to make
room for a 
�page in which case it is decremented by M � Putting this fact
together with the fact that N� is incremented by 
 for every new 
�page
requested and that N� starts at � and ends at a value below M � we get that
if there have been y new pages requested in the subphase� then the number
of times and M �page has been evicted to make room for a 
�page is at least
by�Mc�

�



Lemma � If there are x � 
 
�pages served in a phase by evicting an M�

page� then there are at least xM new 
�pages requested in that phase�

Proof� By Lemmas � and �� the number of 
�pages in the cache can not
decrease during a 
�heavy subphase and can not increase in anM �heavy sub�
phase� Since all the 
�heavy subphases precede all the M �heavy subphases�
the number of 
�pages in the cache during the course of a phase is monoton�
ically non�decreasing and then monotonically non�increasing� Thus� it can
only happen once in a phase that the number of 
�pages in the cache goes
from � to 
� Furthermore� in any phase� this can only happen the very �rst
time an M �page is evicted to make room for a 
�page�

If it happens again in the phase that an M �page is evicted to make room
for a 
�page� it must be the case that at this point� the number of 
�pages in
the cache is at least 
� M �pages can only be evicted to make room for 
�pages
in line ��
� of Figure 
� If line ��
� is reached and there is at least 
 
�page
in the cache� then N� � M � In this case� when N� is decremented� it will
remain non�negative� Thus� either it happens at most once that an M �page
is evicted to make room for a 
�page or N� � � at the end of the phase� In
the �rst case� the lemma holds vacuously� In the second case� observe that
a new 
�page is requested for every time that N� is incremented and N� is
decremented by M every time a 
�page is served by evicting an M �page�

We will �x a sequence � and analyze the expected cost of RandCache and
the cost of the optimal algorithm on �� First� we require some de�nitions�

Suppose there are m phases in the sequence �� For 
 � i � m�

� Let ti be the total number of distinct M �pages requested in the ith

phase�

� Let ti�j be the number of distinct 
�pages requested in the jth subphase
of the ith phase�

� Let ni be the number of M �pages requested in the ith phase that were
not requested in the �i � 
�st phase �i�e�� the number of new M �pages
requested in phase i��

� Let ni�j be the number of 
�pages requested in the jth subphase of the
ith phase that were not requested in the previous subphase �i�e�� the
number of new 
�pages in the jth subphase of the ith phase��

� Let kM�i be the number of slots in the cache of the optimal algorithm
that ever hold an M �page in phase i or phase i� 
� This includes the
slots that hold an M �page at the beginning of phase i� 
 and the slots
into which an M �page is placed in phases i� 
 or i�

�



� Let k��i be the number of slots in the cache of the optimal algorithm
that ever hold a 
�page in phase i or phase i � 
� This includes the
slots that hold a 
�page at the beginning of phase i � 
 and the slots
into which a 
�page is placed in phases i� 
 or i�

RandCache has exactly ti�j 
�pages in the cache at the end of subphase j
of phase i� Similarly� there are exactly ti M �pages in the cache at the end of
phase i� Suppose that there are pi 
�heavy subphases in phase i� By Lemma
�� this means that there are a total of pi �M subphases in the ith phase� At
the end of phase i� there are ti M �pages in the cache and ti�pi�M 
�pages in
the cache� Thus� ti � ti�pi�M � k�

By Lemma �� during a 
�heavy subphase� no 
�pages are evicted to ac�
commodate an M �page� Thus� we have that

ti���pi���M � ti�� � ti�� � � � � � ti�pi�

During an M �heavy subphase� no M �pages are evicted to accommodate a

�page� Thus� we have that

ti�pi � ti�pi�� � ti�pi�� � � � � � ti�pi�M �

Theorem 
 follows from the following two lemmas�

Lemma 	



costOPT ��� �
mX
i��

max

��
�M � ��

�
�M � ni �

pi�MX
j��

ni�j

�
�
�	

� �k � 
�M�

Lemma 


E�costRC���� � �
��

� �



M

�
log k � 


� mX
i��

max

��
�M�

�
�M � ni �

pi�MX
j��

ni�j

�
�
�	

�k log k�

We start with the proof of Lemma �� We separate Lemma � into three
bounds� The �rst bound will justify the �max� part of the lower bound� Then
we lower�bound the cost of the optimal algorithm by the sum of the weights
of the new M �pages in each phase plus the cost of the new 
�pages in all
of the M �heavy subphases� Finally we lower�bound the cost of the optimal
algorithm by the sum of the weights of the new 
�pages in all the 
�heavy
subphases�

Lemma � Let S be the subset of f
� �� � � � �mg such that i � S if and only if

Mni �
Ppi�M

j�� ni�j � M � �� Then costOPT ��� � �jSj � 
� �M �


�



Lemma ��

�costOPT ��� �
mX
i��

�
�M � ni �

pi�MX
j�pi��

ni�j

�
��Mk�

Lemma ��

�costOPT ��� �
mX
i��

piX
j��

ni�j�

Proof of Lemma �� Consider a phase i such that Mni �
PM�pi

j�� ni�j �
M � �� This means that ni � � �i�e� there are no new M �pages requested�
and the total number of new 
�pages requested is smaller than M � �� By
the contrapositive of Lemma �� there is at most one M �page evicted on a
request to a 
�page in the phase� Thus� if there are y M �pages in the cache
at the beginning of the phase� there are always at least y � 
 M �pages in
the cache� Furthermore� the number of M �pages in the cache never exceeds
y �otherwise there would have to have been a new M �page requested in the
phase��

We will �rst establish that there is an empty subphase among the lastM�

 subphases� If a subphase is not empty� then there is a �rst served request
either for a 
�page or an M �page� We will show that the �rst possibility can
only happen at most M � � times and the second possibility can happen at
most once in the last M � 
 subphases� Thus� it must be the case that one
of the last M � 
 subphases is empty�

Recall that the last M � 
 subphases are all M �heavy subphases� Fur�
thermore� at the beginning of each one of these subphases� all the M �pages
in the cache are marked� If the �rst request of one of these subphases is to
a 
�page� then it must be a new 
�page otherwise it would already be in the
cache and no new subphase would have started� By the assumptions of the
lemma� this happens at mostM�� times� If the �rst request of the subphase
is for an M �page� then that page is not currently in RandCache�s cache and
the number of M �pages in the cache increases� The number of M �pages in
the cache can not decrease during the last M � 
 subphases since all the
M �pages in the cache are marked� Thus� it can only happen once that the
�rst request of one of the last M � 
 subphases is for an M �page� Note that
we are using the fact argued above that the number of M �pages in the cache
never varies by more than one�

Thus� we have established that one of the last M � 
 subphases is empty�
This possibility occurs only when there are no unmarked 
�pages at the
beginning of a subphase which means that there are no 
�pages in the cache�
Since all the M �pages in the cache are marked �i�e� have been requested
in the phase�� this means that M distinct M �pages have been requested







during the phase� A new page is then requested on the �rst request of the
next phase� This means that from the interval after the �rst request of the
current phase through the �rst request of the following phase� the optimal
algorithm must evict an M �page� Thus� we have that for each phase i in
which Mni �

PM�pi
j�� ni�j � M � �� except for the last phase� the optimal

algorithm must evict an M �page�

Proof of Lemma ��� We will denote the cost that the optimal algorithm
incurs in serving requests for M �pages in � by costMOPT ����

In phases i and i � 
� there are a total of ti � ni�� distinct M �pages
requested� These are served by the optimal algorithm using at most kM�i��

slots in the cache� Thus� during phase i and i � 
� the optimal algorithm
spends at least M�ti � ni�� � kM�i��� in serving M �pages� Thus� we can
lower�bound the cost of the optimal algorithm by

costMOPT ��� �M

m
�
��X

i��

�t�i�� � n�i�� � kM��i����

Since every algorithm starts out without any pages in the cache� the optimal
algorithm must spend Mn� in the �rst phase� Thus� we have a lower bound
of

costMOPT ��� �Mn� �M

m
�
��X

i��

�t�i � n�i�� � kM��i����

Adding the two inequalities� we get that

�costMOPT ��� �Mn� �M
m��X
i��

�ti � ni�� � kM�i����

Now we will lower�bound the cost the optimal algorithm incurs in serving
requests to 
�pages� We will denote this cost by cost�OPT ���� Consider
subphase j in phase i and the preceding subphase� There are a total of
�ti�j�� � ni�j� distinct 
�pages requested in the two consecutive subphases�
Note that if j � �� then the preceding subphase is part of the previous
phase� in which case there are a total of �ti���pi���M � ni��� distinct 
�pages
requested in the two consecutive subphases� For notational convenience� we
will occasionally denote ti���pi���M by ti��� Thus� we can always say that
the number of pages requested in subphase j of phase i and the preceding
subphase is �ti�j���ni�j�� At most k��i cache slots are used for these requests�
Thus� the optimal algorithm spends at least maxf�� ti�j�� � ni�j � k��ig on
serving requests to 
�pages in the two consecutive subphases� We can sum
up over all pairs of consecutive subphases and get that

�cost�OPT ��� �
mX
i��

pi�MX
j��

maxf�� ti�j�� � ni�j � k��ig�


�



where t��� � �� Since the �rst pi terms in the inner summation are at least
zero� they can be dropped to get�

�cost�OPT ��� �
mX
i��

pi�MX
j�pi��

�ti�j�� � ni�j � k��i��

Now we can add the lower bounds for costMOPT ��� and cost�OPT ��� and
rearrange as follows�

�costOPT ��� � �costMOPT ��� � �cost�OPT ���

� Mn� �M
m��X
i��

�ti � ni�� � kM�i��� �
mX
i��

pi�MX
j�pi��

�ti�j�� � ni�j � k��i�

�
mX
i��

�
�Mni �

pi�MX
j�pi��

ni�j

�
�

�
m��X
i��

�
�Mti �

pi�MX
j�pi��

ti�j��

�
�� mX

i��

MkM�i �
mX
i��

Mk��i

As argued in the two paragraphs preceding Lemma �� ti � ti�M�pi � k� Fur�
thermore�

ti�pi � ti�pi�� � ti�pi�� � � � � � ti�pi�M �

This means for any � � j � M � we know that ti � ti�pi�j � k� We can
incorporate this into our lower bound for costOPT ��� as follows�

�costOPT ��� �
mX
i��

�
�Mni �

pi�MX
j�pi��

ni�j

�
�

�
m��X
i��

pi�MX
j�pi��

�ti � ti�j����
mX
i��

MkM�i �
mX
i��

Mk��i

�
mX
i��

�
�Mni �

pi�MX
j�pi��

ni�j

�
�� m��X

i��

kM �
mX
i��

MkM�i �
mX
i��

Mk��i

�
mX
i��

�
�Mni �

pi�MX
j�pi��

ni�j

�
��Mk��� �

mX
i��

M�k � kM�i � k��i�

Since there are k slots in the cache� k��i � k and we get that

�costOPT ��� �
mX
i��

�
�Mni �

pi�MX
j�pi��

ni�j

�
��Mk �

mX
i��

M�k � kM�i � k��i� �
�


�



Now consider two consecutive phases� i � 
 and i� During this period�
kM�i of the optimal algorithm�s cache slots ever haveM �pages and k��i of the
optimal algorithm�s cache slots ever have 
�pages� This means that at least
�kM�i � k��i � k� cache slots have an M �page and a 
�page� If we charge the
optimal algorithm M�� for evicting an M �page and M�� for bringing in an
M �page� then the optimal algorithmmust spend at least �M����kM�i�k��i�k�
in the two consecutive subphases� Adding up over all pairs of consecutive
subphases �and multiplying by ��� we get that

�cost��� �
mX
i��

M�kM�i � k��i � k��

If we add this to the bound from �
�� we have that

�cost��� �
mX
i��

�
�Mni �

pi�MX
j�pi��

ni�j

�
��Mk�

Proof of Lemma ��� Let �i denote the sequence of requests which occur
in the ith phase� costOPT ��i���i� will denote the cost that the optimal
algorithm incurs in phases i� 
 and i� Note that �� will be assumed to be
an empty sequence� We will prove that for every i in the range 
 � i � m�

�costOPT ��i���i� �
piX
j��

ni�j ���

This will be su�cient to prove the lemma since

�costOPT ��� �
mX
i��

�costOPT ��i���i� �
mX
i��

piX
j��

ni�j�

We will charge the optimal algorithm �w�p� � w�q���� when it evicts page
p on a request to page q� w�p��� is the cost of evicting page p� and w�q���
is the cost of bringing in page q� This change in the charging scheme will
result in at most a constant additive di�erence in the cost of serving any
sequence� We start by accounting for the cost the optimal algorithm incurs
while evicting and bringing in M �pages in phases i � 
 and i� We denote
this cost by costMOPT ��i���i�� Then we will account for the cost that the
optimal algorithm spends evicting and bringing in 
�pages in phases i � 

and i� which we will denote by cost�OPT ��i���i��

Let a be the number of slots that hold the same M �page throughout
phases i�
 and i� Let b be the number of cache slots that only have 
�pages


�



in the two phases� Let c be the number of cache slots that hold an M �page
and some other page in the phase� For each slot i of these c slots� let P �i� be
the set ofM �pages held in slot i during the phase� Let c� � j�iP �i�j� The cost
the optimal algorithm incurs is at least Mc���� We know that a� b� c � k
since the three categories partition the cache slots� Also b � c is an upper
bound on the number of cache slots that ever hold 
�pages in the two phases�
so b�c � k��i� In addition a�c� is an upper bound on the number ofM �pages
that are ever in the cache in the two phases� so a � c� � ti��� Putting these
inequalities together� we get that

costMOPT ��i���i� �
Mc�

�
�
M�a� b� c � c� � k�

�
�
M�k��i � ti�� � k�

�
�

As argued in the two paragraphs preceding Lemma �� k � ti�� � ti��� This
means we can say that

costMOPT ��i���i� �
M�k��i � ti���

�
���

Now we will account for the cost that the optimal algorithm incurs bring�
ing in and evicting 
�pages during the two phases� Consider the jth subphase
of phase i and the subphase that immediately precedes it� We know that
ti�j�� � ni�j distinct 
�pages are requested in the course of these two sub�
phases� Since the optimal algorithm only uses k��i cache slots for 
�pages�
it must incur a cost of at least maxf�� ti�j�� � ni�j � k��ig in evicting and
bringing in 
�pages in these two subphases� Thus� by summing up over all
pairs of consecutive subphases� we can say that

� � cost�OPT ��i���i� �
piX
j��

maxf�� ti�j�� � ni�j � k��ig� ���

The factor of � comes from the fact that each subphases is counted at most
twice�

Consider the �rst time in the phase when the total number of new 
�pages
reaches M�k��i � ti���� Suppose that this happens in subphase ri� If ri � pi�
then we can use the bound from ��� to get that

piX
j��

ni�j �M�k��i � ti��� � � � costMOPT ��i���i��

which establishes Inequality �� Thus� we shall assume that ri � pi� Let �ni�ri
be such that

ri��X
j��

ni�j � �ni�ri �M�k��i � ti���� ��






We know that 
 � �ni�ri � ni�ri� Recall that ti�j is de�ned to be the number
of distinct 
�pages which are requested in subphase j of phase i� This is
exactly the number of marked 
�pages which RandCache has in its cache at
the end of subphase j of phase i� Since all 
�pages are marked at the end of
a subphase� this is also the number of 
�pages which RandCache has in its
cache at the end of subphase j ofphase i�

Since RandCache does not evict any 
�pages on requests to M �pages in
the �rst pi subphases� we know that for j � pi� ti�j � ti�� is the number of
M �pages which RandCache has evicted to accommodate requests to 
�pages
in the �rst j subphases of phase i� By Lemma �

ti�ri�� � ti�� �

Pri��
j�� ni�j

M

�
�

Thus� we have that�

ti�ri�� � �ni�ri � ti�� �

Pri��
j�� ni�j

M

�
� �ni�ri

� ti�� �

Pri��
j�� ni�j

M
�

�ni�ri
M

� ti�� �
M�k��i � ti���

M
� k��i ���

The second inequality comes from the fact that removing the �oor can in�
crease the expression by at most an additive �M � 
��M and dividing �ni�ri
by M will decrease the expression by at least �M � 
��M � The series of
inequalities gives us that ti�ri�� � �ni�ri � k��i�

The total number of new 
�pages is at least M�k��i � ti���� by the end of
phase ri� This means that by Lemma � for any ri � j � pi� at least k��i� ti��
M �pages have been evicted on requests for 
�pages by the end of subphase
j which means that ti�j is at least ti�� � �k��i � ti��� � k��i� This fact and ���
are used in the last inequality below� This �rst inequality is a restatement
of ����

� � cost�OPT ��i���i� �
piX
j��

maxf�� ti�j�� � ni�j � k��ig

� ti�ri�� � �ni�ri � �ni�ri � �ni�ri� � k��i

�
pi��X
j�ri

maxf�� ti�j � ni�j�� � k��ig

� ni�ri � �ni�ri �
piX

j�ri��

ni�j ���


�



Recall from Inequality ��� and Equation �� that

� � costMOPT ��i���i� �M�k��i � ti��� �
ri��X
j��

ni�j � �ni�ri� ���

Adding the bound for cost for 
�pages ��� to the bound for the cost for
M �pages ���� we get that

� � costOPT ��i���i� � � � costMOPT ��i���i� � � � cost�OPT ��i���i�

�
ri��X
j��

ni�j � �ni�ri � �ni�ri � �ni�ri� �
piX

j�ri��

ni�j �
piX
j��

ni�j

which is the bound from Inequality � that we wanted to establish�

Proof of Lemma 
� We will �rst account for the cost RandCache incurs in
bringing 
�pages into the cache� Consider subphase j of phase i� RandCache
will incur a cost of 
 on all the new pages of subphase j of phase i� We
must now account for the faults which occur on old pages �i�e�� those page
which are requested in subphase j of phase i which were also requested in the
previous subphase�� Consider the rth request to an old page� This means the
r � 
 old pages are marked� Suppose that g new pages have been requested
and that a 
�pages have been evicted on requests to M �pages at this point�
There are ti�j�� � �r � 
� pages which were requested in the last subphase
which have not been requested yet in the current subphase� Call this set of
pages S� There are ti�j � �r � 
�� g � a random pages from S in the cache�
This means that there are a� g pages in S which are not in the cache� The
probability that the page requested in the rth request to an old page is not
in the cache is �g�a���ti�j��� �r�
��� If we let ai�j denote the total number
of 
�pages which are evicted on requests to M �pages in subphase j of phase
i� then the rth request to an old page is a fault with probability at most
�nj�i � ai�j���ti�j�� � r � 
��

Thus� the total expected cost incurred in serving 
�pages in subphase j
of phase i is at most

ni�j�
ti�j��X
r��

ni�j � ai�j
ti�j�� � r � 


� ni�j��ni�j�ai�j� log�ti�j��� � ni�j��ni�j�ai�j� log k�

This �rst term comes from the fact that RandCache always incurs a cost for
serving the new pages� The sum comes from the expected cost in serving
old pages� Thus� the total expected cost of serving 
�pages over the entire
sequence is at most

�log k � 
�
mX
i��

pi�MX
j��

ni�j � log k
mX
i��

pi�MX
j��

ai�j�


�



Let bi be the number of slots which are occupied by an M �page and then
later by a 
�page in phase i� Using the same reasoning� we can upper bound
the cost of the algorithm in serving M �pages by

�log k � 
�
mX
i��

Mni � log k
mX
i��

Mbi�

Putting these bounds together� we get that

costRC��� � �log k � 
�

�
� mX
i��

Mni �
pi�MX
j��

ni�j

�
�� log k

mX
i��

�
�Mbi �

pi�MX
j��

ai�j

�
� �

The number of times a 
�page is evicted on a request to an M �page can be
at most the number of times a M �page is evicted on a request to a 
�page
plus k� Thus�

mX
i��

pi�MX
j��

ai�j �
mX
i��

bi � k�

Which gives us that

costRC��� � �log k�
�

�
� mX
i��

Mni �
pi�MX
j��

ni�j

�
��k log k�log k

�
mX
i��

�M � 
�bi

�
�

By Lemma �� for each i�

Mbi � max

��
�M�

pi�MX
j��

ni�j

�	

 �M �

pi�MX
j��

ni�j�

Putting it all together� we get that

costRC��� �
��

� �



M

�
log k � 


� �� mX
i��

M�ni � 
� �
pi�MX
j��

ni�j

�
�� k log k

� �
��

� �



M

�
log k � 


� mX
i��

max

��
�M�

�
�Mni �

pi�MX
j��

ni�j

�
�
�	

� k log k

References

�ACN��� Dimitris Achlioptas� Marek Chrobak� and John Noga� Competi�
tive analysis of randomized paging algorithms� Theoretical Com�

puter Science� ����
���������
�� �����


�



�BBBT��� Yair Bartal� Avrim Blum� Carl Burch� and Andrew Tomkins� A
polylog�n��competitive algorithm for metrical task systems� In
Proc� ��th Symp� Theory of Computing� pages �

��
�� 
����

�BCL��� Yair Bartal� Marek Chrobak� and Lawrence L� Larmore� A ran�
domized algorithm for two servers on the line� In Proc� �th Euro�

pean Symp� on Algorithms� Lecture Notes in Computer Science�
pages ������� Springer� 
����

�CKPV�
� Marek Chrobak� Howard Karlo�� Tom H� Payne� and Sundar
Vishwanathan� New results on server problems� SIAM Journal

on Discrete Mathematics� ��
���
�
� 
��
�

�Fia�
� Amos Fiat� Personal communication� ���
�

�FKL��
� Amos Fiat� Richard Karp� Michael Luby� Lyle A� McGeoch�
Daniel Sleator� and Neal E� Young� Competitive paging algo�
rithms� Journal of Algorithms� 
��������� 
��
�

�MMS��� Mark Manasse� Lyle A� McGeoch� and Daniel Sleator� Com�
petitive algorithms for server problems� Journal of Algorithms�


��������� 
����

�MS�
� Lyle McGeoch and Daniel Sleator� A strongly competitive ran�
domized paging algorithm� Journal of Algorithms� ���
�����

��
�

�ST�� Daniel Sleator and Robert E� Tarjan� Amortized e�ciency of list
update and paging rules� Communications of the ACM� �������
���� 
���

�You��� Neal E� Young� The k�server dual and loose competitiveness for
paging� Algorithmica� 

����
� 
����


�



Algorithm RandCache�p�
Let p denote the requested page�

��� if p is marked�

do nothing and return�

��� if p is in the cache and unmarked�

mark the page and return�

��� if w�p� �M�

��� if there are unmarked M	pages in the cache�

�
� Pick one at random and evict it�

Mark page p and bring it into the cache�

��� else if there are unmarked 
	pages in the cache�

��� Evict a random unmarked 
	page�
Mark page p and bring it into the cache�

�� else

��� if no M	pages have been evicted in the subphase

to accommodate a request for a 
	page�
���� N� 	 N� � 
�
���� if N� � M
���� Call NewSubPhase�p�
���� else Call NewPhase�p�
���� if w�p� � 
�
��
� if there are unmarked 
	pages in the cache�

���� Evict a random unmarked 
	page�
Mark page p and bring it into the cache�

���� if p was not requested in the previous subphase

��� N� 	 N� � 

���� else if there are unmarked M	pages in the cache�

���� if N� �M or there are no 
	pages in the cache�

���� Evict a random unmarked M	page�

Mark page p and bring it into the cache�

���� if p was not requested in the previous subphase

���� N� 	 N� � 

���� N� 	 N� �M�

��
� else Call NewSubPhase�p�
���� else

���� if no M	pages have been evicted in the subphase

to accommodate a request for a 
	page�
��� N� 	 N� � 
�
���� if N� � M
���� Call NewSubPhase�p�
���� else Call NewPhase�p�
end

Figure 
� Randomized Algorithm for Weighted Caching with two weights�

��



Procedure NewPhase�p�
Unmark all M	pages�

N� 	 ��
N� 	 ��
Call NewSubPhase�p��

Figure �� Start a new phase�

Procedure NewSubPhase�p�
Unmark all 
	pages�
Call RandCache�p��

Figure �� Start a new subphase�

�



