Randomized Weighted Caching
with Two Page Weights

Sandy Irani
April 18, 2001

Abstract

We consider a special case of the weighted caching problem where
the weight of every page is either 1 or some fixed number M > 1. We
present a randomized algorithm which achieves a competitive ratio
which is O(log k) where k is the number of pages which can fit in the
cache.

1 Introduction

A caching algorithm manages a two-level store consisting of a fast memory
(or cache) that can hold k pages, and a slow memory. The algorithm is
presented with a sequence of requests to virtual memory pages. If the page
requested is in fast memory (a hit) it incurs no cost; but if not (a fault), the
algorithm must bring it in to fast memory at unit cost, and decide which of
the k pages currently in fast memory to evict in order to make room for it. In
the weighted version of the caching problem, each page p has a non-negative
weight w(p). The cost of bringing the page p into the cache is w(p). Note
that although pages have different weights, they all have the same size, so it
is always the case that exactly k pages can fit in the cache at any point in
time. We will think of the cache as having k slots each of which can hold a
single page at any point in time. The cost incurred by an algorithm A on
a sequence of requests o is the sum of the weights of the requested pages
for all requests on which the algorithm faults. We will denote this value by
cost (o).

A caching algorithm is online if it makes the decision about which page
to evict without knowledge of future requests. We evaluate the performance
of an online algorithm with respect to the performance of the optimal offline
algorithm. For a finite ¢, we say that A is a e-competitive algorithm if for all o,
costa(o)—c-costpopr(o) remains bounded by a constant. For a randomized

algorithm A, we replace cost (o) by its expectation in the above definition.
The competitiveness of A, denoted ¢y, i1s the infimum of ¢ such that A is
c-competitive, if such a ¢ exists. If no such ¢ exists then A is said to be
non-competitive; all algorithms discussed in this paper are competitive.

In this paper, we present and analyze a randomized algorithm for a special
case of the weighted caching problem. We consider the problem where all
requests are limited to pages whose weights are either 1 or some fixed integer
M greater than 1. There are no other restrictions placed on M. For example,
it could be the case that M >> k.

2 Previous Work

The competitive analysis of paging where the pages have uniform weight was
first studied by Sleator and Tarjan [ST85]. They showed that any determin-
istic algorithm must have a competitive ratio of at least k. Furthermore, the
well-known Least-Recently-Used algorithm achieves a competitive ratio of k.
Randomized uniform paging was first studied by Fiat et al. [FKL*91] who
developed the Randomized Marking Algorithm and showed that it achieves
a competitive ratio no worse than 2Hj,. Moreover, Fiat et al. showed a lower
bound of Ink for the competitive ratio of any randomized algorithm. Mec-
Geoch and Sleator showed an algorithm which achieves a competitive ratio
of Ink [MS91]. Later, Achlioptas et al. [ACNO0O] showed a much simpler
algorithm achieving a competitive ratio of Ink and determined the exact
competitive ratio of the Marking algorithm, 2Hj, — 1.

k-competitive deterministic algorithms for weighted caching have been
known for some time [CKPV91, You94]. It has been conjectured [Fia0l]
that algorithms similar to the one presented here are O(log k)-competitive
ratio for the special case where pages have one of two fixed weights, but no
bounds were known on their performance. Ours is the first algorithm to be
proven O(log k)-competitive for this problem, thus giving the first improve-
ment over the bound for deterministic algorithms. Our algorithm, devised
independently of the work in [Fia01], draws heavily on the Randomized Mark-
ing Algorithm introduced by Fiat et al. [FKLT91]. It is essentially a nested
version of the Randomized Marking Algorithm: the Randomized Marking
Algorithm is run on each class of pages separately while making sure that
each class of pages occupies a ‘fair’ share of the cache. We believe that this
algorithm could, in principle, be extended to a constant number of classes of
pages, although that question is not addressed in this paper. However, the
constant factor in the competitive ratio is likely to increase rapidly with the
number of classes which would limit extending this method to an arbitrary
number of classes.

The weighted caching problem is also an important special case of the

well-known k-server problem [MMS90]. In the k-server problem, k& mobile
servers move about on nodes in a metric space. The cost of moving a server
from node @ to node b in the metric space is the distance from a to b. A
sequence of requests is presented to the algorithm. Each request is a node
in the metric space. When a request is received, a server must be moved to
that node. The goal is to serve a sequence of requests so as to minimize the
total distance traveled by all servers.

The weighted cache problem is a special case of the k-server problem
where the metric space has the property that each node has a weight and the
distance to a node p from any other node in the metric space is the weight
of p. The set of nodes represent virtual memory pages. The k mobile servers
represent slots for pages in the cache. A server occupies a node whenever
that page resides in the cache. The process of moving a server from a node p
to a node g represents evicting p from the cache and replacing it by ¢g. This
move costs the algorithm w(q).

Despite much effort, very little is known about randomized algorithms for
the k-server problem. Bartal et al. have shown in [BBBT97] a randomized
algorithm which achieves a competitive ratio which is polylogarithmic in &
when the number of servers is one less than the number of nodes in the metric
space (the metric task system problem). Also, Bartal et al. have shown an
algorithm for two servers on the line [BCL98]. Other than these results,
no other results for the randomized k-server problem are known which beat
deterministic bounds. The result in this paper represents an important step
towards randomized weighted caching and the randomized k-server problem.

3 The algorithm

We examine a specialization of the weighted caching problem where the
weight of each page is either 1 or M. A page of weight 1 is said to be a
1-page. A page of weight M is said to be an M-page. We will assume that
M is an integer. If this is not the case, we can round M down to the nearest
integer and execute the algorithm for the rounded value. This change will
effect the competitive ratio by at most a constant factor.

Since the algorithm presented here is so heavily based on the Randomized
Marking Algorithm (RMA) of Fiat et al. , we will review RMA here and point
out some similarities. RMA falls into a general class of algorithms called
marking algorithms first introduced by Karlin et al. In a marking algorithm,
the set of pages in the cache are divided into marked and unmarked pages.
Initially, all pages are unmarked. If the requested page is not already in the
cache, then an unmarked page is evicted and the newly requested page is
brought into the cache. If there are no unmarked pages in the cache on a
fault, then all pages become unmarked before a page is chosen for eviction.

After the newly requested page is brought into the cache, it is marked. This
process divides the request sequence into phases, where a new phase begins
whenever the set of pages in the cache are unmarked. The Randomized
Marking Algorithm is a marking algorithm which, on a fault, chooses an
unmarked page uniformly at random for eviction.

The algorithm RandCache is shown in Figures 1, 2 and 3. At a high level,
the algorithm presented here runs RMA on each class of pages separately,
while making sure that each class of pages occupies an appropriate share of
the cache. To determine how the cache is divided between the 1-pages and
the M-pages the following set of rules are observed:

o All pages are marked as soon as they enter the cache.

e On a fault, if there are unmarked pages of the same class as the re-
quested page, the algorithm picks one such page at random and evicts
it.

e On a fault, if there are only unmarked pages of the other class,

— If the requested page is an M-page, evict a random unmarked
1-page.
— If the requested page is a 1-page,

* Roughly, every M* time this happens, evict a random un-
marked M-page. This is achieved using the counter Ny in
Figure 1.

* All other times, unmark all 1-pages and evict one such page
at random.

o If on a fault, all pages are marked,

— Unmark all 1-pages.

— Unmark all M-pages pages only if there have been M occasions
where a 1-page did not replace an unmarked M-page. This is
achieved using the counter Ny in Figure 1.

The Figures 1,2 and 3 represent what is done when a request to a page
p arrives. All marked pages reside in the cache. We start off with all pages
unmarked. Furthermore, when the sequence starts, we assume that the cache
is empty. To make the algorithm well defined, we will assume that the cache
is actually filled with unmarked 1-pages which will never be requested. The
algorithm makes use of two counters, N; and Ny, which are initialized to 0.

The marking scheme divides the sequence into a number of phases which
are in turn divided into a number of subphases. A new phase begins whenever

the procedure NEWPHASE is called. A new subphase begins whenever the
procedure NEWSUBPHASE is called. Specifically, if NEWSUBPHASE(P) is
called, the old subphase ends and a new one begins before the current request
to page p.

We will work through the following two examples to illustrate how the
algorithm works. Consider the case where M = 2 and & = 4. The M-
pages are {A, B,C, D} and the l-pages are {1,2,3,4}. The first sequence
we will consider is ¢ = 1,2,3, A, B,4,C,1,2,3. For the first three requests,
the requested page is brought into the cache and marked in step (16). For
the fourth request, page A is brought into the cache and marked in step (7).
At this point, the contents of the cache are {1,2,3, A} and all pages in the
cache are marked. When B is requested, the algorithm increments Ny in step
(10). Note that the algorithm starts with only 1-pages in the cache, so no M-
pages have been evicted. Since Ny = 1 and M = 2, a new subphase begins.
The previous subphase consisted of requests 1,2,3, A. Pages 1, 2 and 3 are
unmarked. Then RANDCACHE(B) is called again from NEWSUBPHASE(B)
and a randomly chosen page from 1, 2, or 3 is evicted. B is marked and
brought into the cache in step (7). Let’s say it was page 2 that was evicted.
At this point, the contents of the cache are {1,3, A, B} and the pages A
and B are marked. When 4 is requested, a randomly chosen page from 1
or 3 is evicted. 4 is marked and brought into the cache in step (16). Let’s
say it was page 1 that was evicted. When C' is requested, page 3 is evicted
and page C' is marked and brought into the cache in step (7). Now the the
contents of the cache are {A, B, (4} and all pages in the cache are marked.
When page 1 is requested, Ny is incremented in step (28). Now Ny = M
and NEWPHASE is called. The last subphase consisted of requests B,4,C.
The phase consisted of requests 1,2,3, A, B,4, C. At this point everything is
unmarked. When RANDCACHE(1) is called from NEWSUBPHASE(1), page 4
is evicted and page 1 is marked and brought into the cache. Since page 1 was
not requested in the previous subphase, V; is incremented in step (18). The
contents of the cache are now {A, B, C,1} and only page 1 is marked. Now 2
is requested. Since Ny < M, NEWSUBPHASE(2) is called in step (25). The
last subphases consisted only of the request to page 1. Page 1 is unmarked.
When RANDCACHE(2) is called from NEWSUBPHASE(2), page 1 is evicted
and page 2 is marked and brought into the cache. N; is incremented in
step (18). The contents of the cache are {A, B, 1,2} and pages 1 and 2 are
marked. Now 3 is requested. At this point Ny > M. A randomly chosen
page from A or B is evicted in step (21). Page 3 is marked and brought into
the cache. Ny is incremented by 1 in step (23) and decremented by 2 in step
(24).

In the second example, the request sequenceis 0 = A, B,C, D, 1. For the
first four requests, the requested page is marked and brought into the cache

in step (7). Now 1 is requested. Nj is incremented in step (28) but is still less
than M, so NEWSUBPHASE(1) is called which in turn calls RANDCACHE(1).
The last subphase consisted of requests A, B,C, D. Since there are no 1-
pages in the cache, nothing has changed. N, is incremented again in step
(28) and this time NEWPHASE(1) is called. Note that this results in an
empty subphase. At this point all four M-pages in the cache are unmarked.
Since there are no 1-pages in the cache, a randomly chosen M-page is evicted
in step (21). Page 1 is marked and brought into the cache. Ny is incremented
by one in step (23) and then decremented by 2 in step (24). At this point
Ny = —1.

The main result of this paper is the following theorem:
Theorem 1 The competitive ratio of the algorithm RandCache is O(log k).

We start with a few important observations about the algorithm. Once
a l-page is brought into the cache, it remains marked and does not leave
the cache until the end of the current subphase at which point all 1-pages
become unmarked. This follows from the fact that the algorithm never evicts
a marked page. The only place in the algorithm where 1-pages are unmarked
is in NEWSUBPHASE which is only called when all 1-pages in the cache are
marked. Thus, the set of distinct 1-pages requested in a subphase is the same
as the set of marked 1-pages which RandCache has in its cache at the end of
the subphase which is the same as the set of (marked or unmarked) 1-pages
which RandCache has in its cache at the end of the subphase. Similarly,
when an M-page is brought into the cache, it remains marked and in the
cache until the end of the current phase at which point all pages become
unmarked. This follows from the fact that the only place where M-pages
are unmarked is in NEWPHASE which is only called when all pages in the
cache are marked. Thus, the set of distinct M-pages requested in a phase is
the same as the set of marked M-pages which RandCache has in its cache at
the end of the phase which is the same as the set of (marked or unmarked)
M-pages which RandCache has in its cache at the end of the phase.

Each subphase will be designated M-heavy or 1-heavy. The designation
is determined as follows. At some point in the course of a phase it happens
that there are no unmarked M-pages in the cache. This includes the case
where there are no M-pages in the cache. Once this happens, there will be
no unmarked M-pages in the cache for the remainder of the phase. Suppose
that this first happens during the r* subphase in the phase. If the phase
starts with no M-pages in the cache, then let r = 1. All subphases after the
rt" subphase are M-heavy. All subphases which precede the r** subphase are
l-heavy. The r'* subphase is said to be 1-heavy if any M-pages are evicted
to make room for a newly requested 1-page and is M-heavy otherwise.

We will use the following five lemmas in the proof of the main result.
Throughout the proofs of these lemmas, the r** subphase will be the subphase
in which it first happens that there are no unmarked M-pages in the cache.

Lemma 2 During a 1-heavy subphase, no request to an M-page is served by
evicting a 1-page.

Proof. We claim that whenever an M-page is brought into the cache during
a l-heavy subphase, there are unmarked M-pages in the cache. This means
that the request will be served by evicting an unmarked M-page in step (5)
of the algorithm. The claim is certainly true for all subphases before the
" subphase since it is only in the r* subphase that there are no unmarked
M-pages in the cache. Moreover, by definition, the r** subphase is M-heavy
only if at some point ¢ in that subphase, an M-heavy page was evicted to
accommodate a request for a l-page. This can only happen in step (21).
When step (21) is reached, it must be the case that all 1-pages are marked
and there are unmarked M-pages. Suppose this happens at time t. The
point in time when there are no unmarked M-pages in the cache happens
at some time ¢’ which is greater than ¢t. We know that ¢’ happens within
the subphase since the r** subphase is when all the M-pages in the cache
first become marked. Note that at time ¢’ all pages in the cache are marked
since all 1-pages were marked at time ¢. This means that any request after
time t' for a page which is not in the cache will cause a new subphase to
begin. Thus, we have established that if the r* phase is 1-heavy, then the
next fault after all M-pages become marked begins a new subphase. This
means that whenever RandCache faults during the r** subphase, there are
unmarked M-pages in the cache. m

Lemma 3 During an M-heavy subphase, no request to a 1-page is served by
evicting an M-page.

Proof. The fact is certainly true for all subphases which follow the r*
subphase since all M-pages in the cache are marked and none of them will
be evicted until the beginning of a new phase. The r'* phase is said to be M-
heavy if and only if no request to a 1-page is served by evicting an M-page.
The lemma follows. =

Lemma 4 There are M M-heavy subphases in a phase.
Proof. A new phase will begin if and only if there are no unmarked pages

in the cache and Ny > M. N, starts out at 0. We need to establish that
N, is incremented at the end of a subphase if and only if the subphase was

M-heavy. Note that N; is incremented at the end of a subphase if and
only if there are no unmarked M-pages and no M-pages have been evicted
in the subphase on a request to a 1-page. This means that at the end of
the subphases which precede the r* subphase (which are all 1-heavy), N,
is not incremented because there are unmarked M-pages in the cache at
the end of these subphases. For all the subphases after the r** subphase
(which are all M-heavy), all the M-pages are marked at the beginning of the
subphase. Furthermore by Lemma 3, no M-pages are evicted in the subphase
to accommodate a request for a 1-page. This means that NV, is incremented.
Now we consider the r** subphase. All M-pages are marked at the end of
the r** subphase. Furthermore, the phase is declared to be M-heavy if and
only if no M-pages have been evicted to accommodate requests for 1-pages.
Therefore N; is incremented if and only if the subphase is M-heavy. m

For the next lemma, we will need the following definitions. A 1-page is
said to be newif it is requested in the current subphase but was not requested
in the previous subphase. An M-page is said to be new if it is requested in
the current phase but was not requested in the previous phase.

Lemma 5 Suppose that at the end of a 1-heavy subphase which is not the
last 1-heavy subphase in the phase, there have been y new 1-pages requested
in the phase so far. Then the number of M-pages which have been evicted to
make room for a 1-page is at least |y/M|.

Proof. First we must establish that N; is incremented exactly once for
every new l-page requested in the phase. This follows from the fact that just
after a 1-page is brought into the cache, the algorithm checks if it is a new
page. If it is a new page, V; is incremented by 1. Furthermore, these are the
only times when Nj is incremented.

Since it is a l-heavy subphase and not the last 1-heavy subphase, the
subphase ends with unmarked M-pages in the cache. Thus, any request to
an M-page must be resolved in step (5) of the algorithm. This means that
the subphase must end on a request to a 1-page in which there are unmarked
M-pages left in the cache. This means the subphase ends in step (25) and it
must be the case that N; < M.

The only time Nj is decremented is when an M-page is evicted to make
room for a 1-page in which case it is decremented by M. Putting this fact
together with the fact that Nj is incremented by 1 for every new 1l-page
requested and that N; starts at 0 and ends at a value below M, we get that
if there have been y new pages requested in the subphase, then the number
of times and M-page has been evicted to make room for a 1-page is at least

ly/M]|. =

Lemma 6 If there are x > 1 1-pages served in a phase by evicting an M -
page, then there are at least x M new 1-pages requested in that phase.

Proof. By Lemmas 2 and 3, the number of 1-pages in the cache can not
decrease during a 1-heavy subphase and can not increase in an M-heavy sub-
phase. Since all the 1-heavy subphases precede all the M-heavy subphases,
the number of 1-pages in the cache during the course of a phase is monoton-
ically non-decreasing and then monotonically non-increasing. Thus, it can
only happen once in a phase that the number of 1-pages in the cache goes
from 0 to 1. Furthermore, in any phase, this can only happen the very first
time an M-page is evicted to make room for a 1-page.

If it happens again in the phase that an M-page is evicted to make room
for a 1-page, it must be the case that at this point, the number of 1-pages in
the cache is at least 1. M-pages can only be evicted to make room for 1-pages
in line (21) of Figure 1. If line (21) is reached and there is at least 1 1-page
in the cache, then N; > M. In this case, when N; is decremented, it will
remain non-negative. Thus, either it happens at most once that an M-page
is evicted to make room for a 1-page or Ny > 0 at the end of the phase. In
the first case, the lemma holds vacuously. In the second case, observe that
a new l-page is requested for every time that N; is incremented and N is
decremented by M every time a 1-page is served by evicting an M-page. =

We will fix a sequence o and analyze the expected cost of RandCache and
the cost of the optimal algorithm on o. First, we require some definitions.
Suppose there are m phases in the sequence o. For 1 <1 < m,

o Let t; be the total number of distinct M-pages requested in the
phase.

e Let ¢;; be the number of distinct 1-pages requested in the 7 subphase
of the " phase.

o Let n; be the number of M-pages requested in the :** phase that were
not requested in the (i — 1)* phase (i.e., the number of new M-pages
requested in phase 7).

e Let n;; be the number of 1-pages requested in the ;" subphase of the
" phase that were not requested in the previous subphase (i.e., the
number of new 1-pages in the ;' subphase of the i'* phase).

o Let kps; be the number of slots in the cache of the optimal algorithm
that ever hold an M-page in phase ¢ or phase 1 — 1. This includes the
slots that hold an M-page at the beginning of phase ¢ — 1 and the slots
into which an M-page is placed in phases 1 — 1 or 1.

o Let ky; be the number of slots in the cache of the optimal algorithm
that ever hold a 1-page in phase 7 or phase 1 — 1. This includes the
slots that hold a 1-page at the beginning of phase : — 1 and the slots
into which a 1-page is placed in phases 1 — 1 or 1.

RandCache has exactly ¢; ; 1-pages in the cache at the end of subphase j
of phase i. Similarly, there are exactly ¢; M-pages in the cache at the end of
phase ¢. Suppose that there are p; 1-heavy subphases in phase . By Lemma
4, this means that there are a total of p; + M subphases in the i'" phase. At
the end of phase i, there are {; M-pages in the cache and ¢; , 4 1-pages in
the cache. Thus, t; + ¢, .40 = k.

By Lemma 2, during a 1-heavy subphase, no 1-pages are evicted to ac-
commodate an M-page. Thus, we have that

ti—l,pi—l-l'M < ti,l < ti,Z <--- < ti,pi‘

During an M-heavy subphase, no M-pages are evicted to accommodate a
1-page. Thus, we have that

Lipi 2 Lipitr 2 Lipiga 2> - 2 Lipynr
Theorem 1 follows from the following two lemmas.

Lemma 7

m pi+M
llcostopr(o) > Zmax {M -2, [M “n; + Z n”] } —(k+1)M.
=1 7=1
Lemma 8

m pi+M
FElcostpe(o)] <2 ((2 + %) log k + 1) Zmax {M, [M “n; 4 Z ni
7=1

=1

}—I—klog 3

We start with the proof of Lemma 7. We separate Lemma 7 into three
bounds. The first bound will justify the ‘max’ part of the lower bound. Then
we lower-bound the cost of the optimal algorithm by the sum of the weights
of the new M-pages in each phase plus the cost of the new 1-pages in all
of the M-heavy subphases. Finally we lower-bound the cost of the optimal
algorithm by the sum of the weights of the new 1-pages in all the 1-heavy
subphases.

Lemma 9 Let S be the subset of {1,2,...,m} such that i € S if and only if
Mun; + 5234 0y < M — 2. Then costopr(o) > (|S|— 1) M.

J=1

10

Lemma 10

m pi+M
6COStopT(O') > Z M-n; + Z nm] — MEk.
=1 J=pi+1
Lemma 11 N

4COStopT(O') > Z Z N g

=1 j5=1

Proof of Lemma 9. Consider a phase ¢ such that Mn; + Z?ﬁ’pi n;; <
M — 2. This means that n; = 0 (i.e. there are no new M-pages requested)
and the total number of new 1-pages requested is smaller than M — 2. By
the contrapositive of Lemma 6, there is at most one M-page evicted on a
request to a 1-page in the phase. Thus, if there are y M-pages in the cache
at the beginning of the phase, there are always at least y — 1 M-pages in
the cache. Furthermore, the number of M-pages in the cache never exceeds
y (otherwise there would have to have been a new M-page requested in the
phase).

We will first establish that there is an empty subphase among the last M —
1 subphases. If a subphase is not empty, then there is a first served request
either for a 1-page or an M-page. We will show that the first possibility can
only happen at most M — 3 times and the second possibility can happen at
most once in the last M — 1 subphases. Thus, it must be the case that one
of the last M — 1 subphases is empty.

Recall that the last M — 1 subphases are all M-heavy subphases. Fur-
thermore, at the beginning of each one of these subphases, all the M-pages
in the cache are marked. If the first request of one of these subphases is to
a l-page, then it must be a new 1-page otherwise it would already be in the
cache and no new subphase would have started. By the assumptions of the
lemma, this happens at most M —3 times. If the first request of the subphase
is for an M-page, then that page is not currently in RandCache’s cache and
the number of M-pages in the cache increases. The number of M-pages in
the cache can not decrease during the last M — 1 subphases since all the
M-pages in the cache are marked. Thus, it can only happen once that the
first request of one of the last M — 1 subphases is for an M-page. Note that
we are using the fact argued above that the number of M-pages in the cache
never varies by more than one.

Thus, we have established that one of the last M — 1 subphases is empty.
This possibility occurs only when there are no unmarked 1-pages at the
beginning of a subphase which means that there are no 1-pages in the cache.
Since all the M-pages in the cache are marked (i.e. have been requested
in the phase), this means that M distinct M-pages have been requested

11

during the phase. A new page is then requested on the first request of the
next phase. This means that from the interval after the first request of the
current phase through the first request of the following phase, the optimal
algorithm must evict an M-page. Thus, we have that for each phase ¢ in
which Mn; + Z?ﬁ’pi n;; < M — 2, except for the last phase, the optimal
algorithm must evict an M-page. =

Proof of Lemma 10. We will denote the cost that the optimal algorithm
incurs in serving requests for M-pages in o by cost¥py (o).

In phases ¢« and 7 4+ 1, there are a total of ¢; + n;1; distinct M-pages
requested. These are served by the optimal algorithm using at most kas 41
slots in the cache. Thus, during phase ¢ and ¢ + 1, the optimal algorithm
spends at least M(¢; + ni11 — kari1) in serving M-pages. Thus, we can
lower-bound the cost of the optimal algorithm by

m_y
COStng(U) > M Z (toi41 + n2iv2 — karite)-
i=0
Since every algorithm starts out without any pages in the cache, the optimal
algorithm must spend Mny in the first phase. Thus, we have a lower bound

of

m_y
2
COStng(U) > Mn, +M Z (toi + n2iv1 — karzigr)-
=1
Adding the two inequalities, we get that

m—1

2costgPT(U) > Mn, + M Z (t; 4+ niv1 — karitr)-
i=1

Now we will lower-bound the cost the optimal algorithm incurs in serving
requests to 1-pages. We will denote this cost by costfpp(c). Consider
subphase 7 in phase ¢ and the preceding subphase. There are a total of
(t;j—1 + n;;) distinct 1-pages requested in the two consecutive subphases.
Note that if j = 0, then the preceding subphase is part of the previous
phase, in which case there are a total of (¢;—1,,_,+m + ni1) distinct 1-pages
requested in the two consecutive subphases. For notational convenience, we
will occasionally denote ¢;_; ,,_,1am by ¢;9. Thus, we can always say that
the number of pages requested in subphase j of phase 7 and the preceding
subphase is (¢; ;-1 +ni;). At most k1, cache slots are used for these requests.
Thus, the optimal algorithm spends at least max{0,t; ;_1 + n;; — k1;} on
serving requests to 1-pages in the two consecutive subphases. We can sum
up over all pairs of consecutive subphases and get that

2costhpp(o) > Y > max{0,4; ;-1 + nij — ki,

m pi+M
=1 j=1

12

where t1 9 = 0. Since the first p; terms in the inner summation are at least
zero, they can be dropped to get:

m pi+M
2cost0PT Z Z (tij-1 + iy — k).
: :p

Now we can add the lower bounds for cost}p, (o) and cost} py(o) and
rearrange as follows:

2costopr(c) > 2costYpp(o) + 2costy pr(o)
m—1 m pi+M
> Mng+ MDY (G4 nip — kg + Y. Y. (Lijo1 + 1y
=1 =1 j=p;+1
m pi+M
> > [Mni+ Y nm]
=1 J=pi+1

-1

3

pi+M m m
Mt;+ D - 1] = Mky;—> Mk,

J=pi+1 =2

o
Il
—

As argued in the two paragraphs preceding Lemma 7, t; + ¢; pryp, = k. Fur-
thermore,

Lipi 2 Lipitr 2 Lipiga 2> - 2 Lipynr
This means for any 0 < 57 < M, we know that ¢; +¢;,,+; > k. We can
incorporate this into our lower bound for costopr(o) as follows:

o

pi+M
2costopr(o) > Mn; + Z N5

=1 J=pi+1
m—1 pi+M m m
+ > Z tittijo1) — > My — Y Mk,
=1 j=p;+ =2 =1
m pi+M m—1 m m
> Z Mn;+ > nij| + > kM => Mkn,; — > Mk
=1 | 7=p;+1] =1 =2 =
m | pi+M i m
= > | Mn;+ Y nig| — Mg +Y Mk — ki — ki)
=1 L 7=p;+1] =2

Since there are k slots in the cache, £y ; < k and we get that

2COStopT

||M§

pit+M m
Mni + Z nm] — Mk + ZM(k — kMJ' — kl,i) (1)

J=pi+1 i=2

13

— ki)

Now consider two consecutive phases, : — 1 and 2. During this period,
ks of the optimal algorithm’s cache slots ever have M-pages and ky ; of the
optimal algorithm’s cache slots ever have 1-pages. This means that at least
(kari + k1, — k) cache slots have an M-page and a 1-page. If we charge the
optimal algorithm M/2 for evicting an M-page and M/2 for bringing in an
M-page, then the optimal algorithm must spend at least (M/2)(knr;+k1i—k)
in the two consecutive subphases. Adding up over all pairs of consecutive
subphases (and multiplying by 2), we get that

dcost(o) > Z M(kni + ki — k).

=2

If we add this to the bound from (1), we have that

m pi+M
bcost(o) > Z Mn; + Z ni;| — Mk.
=1 J=pi+1

Proof of Lemma 11. Let o; denote the sequence of requests which occur
in the i** phase. costopr(oi_10;) will denote the cost that the optimal
algorithm incurs in phases ¢ — 1 and ¢. Note that o will be assumed to be
an empty sequence. We will prove that for every ¢ in the range 1 <1 < m,

Pi

2COStopT(O'Z'_1O'Z') > an (2)
7=1

This will be sufficient to prove the lemma since

mo P

4COStopT(O') > ZQCOStopT(Ui_ldi) > ZZTLZ”]‘.
=1

=1 7=1

We will charge the optimal algorithm (w(p) 4+ w(g¢))/2 when it evicts page
p on a request to page g. w(p)/2 is the cost of evicting page p, and w(q)/2
is the cost of bringing in page ¢g. This change in the charging scheme will
result in at most a constant additive difference in the cost of serving any
sequence. We start by accounting for the cost the optimal algorithm incurs
while evicting and bringing in M-pages in phases ¢ — 1 and :. We denote
this cost by cost}pr(0;_10;). Then we will account for the cost that the
optimal algorithm spends evicting and bringing in 1-pages in phases 1 — 1
and ¢, which we will denote by cost},pr(0i—10;).

Let a be the number of slots that hold the same M-page throughout
phases ¢t — 1 and ¢. Let b be the number of cache slots that only have 1-pages

14

in the two phases. Let ¢ be the number of cache slots that hold an M-page
and some other page in the phase. For each slot ¢ of these ¢ slots, let P(i) be
the set of M-pages held in slot ¢ during the phase. Let ¢/ = |U; P(7)|. The cost
the optimal algorithm incurs is at least M ¢’ /2. We know that a + b+ ¢ =k
since the three categories partition the cache slots. Also b + ¢ is an upper
bound on the number of cache slots that ever hold 1-pages in the two phases,
so b+c¢ > ky ;. In addition a+¢’ is an upper bound on the number of M-pages
that are ever in the cache in the two phases, so a + ¢ > t;_;. Putting these
inequalities together, we get that
M M(a—l—b—l—c—l—c’—k)>M(ku—l—ti_l—k)

M
t i—107) 2 =
costopr(0i-107) > 5 5 = 5

As argued in the two paragraphs preceding Lemma 7, k = #;,_1 4 ¢;0. This
means we can say that

M(ki; —tio)
2

AV

costpr(oi107) (3)

Now we will account for the cost that the optimal algorithm incurs bring-
ing in and evicting 1-pages during the two phases. Consider the j* subphase
of phase 7 and the subphase that immediately precedes it. We know that
t;j—1 + n;; distinct 1-pages are requested in the course of these two sub-
phases. Since the optimal algorithm only uses k;; cache slots for 1-pages,
it must incur a cost of at least max{0,¢; ;—1 + n;; — k1,} in evicting and
bringing in 1-pages in these two subphases. Thus, by summing up over all
pairs of consecutive subphases, we can say that

pi
2 - costypr(oii07) > Zmax{(),tm_l +ni;— ki) (4)

i=1

The factor of 2 comes from the fact that each subphases is counted at most
twice.

Consider the first time in the phase when the total number of new 1-pages
reaches M(ky; —t;0). Suppose that this happens in subphase r;. If r; > p;,
then we can use the bound from (3) to get that

Pq
Z nij < M(kyi —tip) < 2- costypr(oiii0i),
7=1

which establishes Inequality 2. Thus, we shall assume that r; < p;. Let n;,,
be such that

ri—1

Z nij;+ i, = M(k1; —tio). (5)

i=1

15

We know that 1 < n;,, < n;,,. Recall that ¢;; is defined to be the number
of distinct 1-pages which are requested in subphase j of phase i. This is
exactly the number of marked 1-pages which RandCache has in its cache at
the end of subphase j of phase i. Since all 1-pages are marked at the end of
a subphase, this is also the number of 1-pages which RandCache has in its
cache at the end of subphase j ofphase 1.

Since RandCache does not evict any 1-pages on requests to M-pages in
the first p; subphases, we know that for ;7 < p;, ¢;; — t;¢ is the number of
M-pages which RandCache has evicted to accommodate requests to 1-pages
in the first j subphases of phase . By Lemma 5,

i iy
Lipi—1 — tio 2 {% .
Thus, we have that:

ri—1
Z 7 n: -
~]_1 (2%} ~
tirict + iy, 2 tio+ {7J + 14

M
T’l‘—l L A .
> liog+ Z]:A}nw + n];;
Mk ; —t;
= tio+ —(IM o) =k, (6)

The second inequality comes from the fact that removing the floor can in-
crease the expression by at most an additive (M — 1)/M and dividing n;,,
by M will decrease the expression by at least (M — 1)/M. The series of
inequalities gives us that ¢;,,_1 + 7; ., > k1.

The total number of new 1-pages is at least M(ky; — t;0), by the end of
phase r;. This means that by Lemma 5, for any r; < j < p;, at least k1 ; — 1,
M-pages have been evicted on requests for 1-pages by the end of subphase
J which means that ¢, ; is at least ¢, + (k1,; — tio) = k1. This fact and (6)
are used in the last inequality below. This first inequality is a restatement

of (4).

2. costypr(oii0y) > imax{(),tm_l +ni;— kit
=1
> tipio1 g+ (i — Niy) — Ky
-1
+ pz max{(),tm + Ni+1 — kl,i}
o pi
> e — et Y N (7)

J=ri+l

16

Recall from Inequality (3) and Equation (5) that

ri—1

2. COStgPT(Ui_ldi) > M(kl,i — tip) = Z N + ﬁiﬁ’i' (8)

Adding the bound for cost for 1-pages (7) to the bound for the cost for
M-pages (8), we get that

2 - costopr(oi_10y) = 2- costgPT(ai_lai) +2 - cost)pr(oi_i10;)
ri—1 Pi Pi
> i R (i, = i)+ D mig =) 0
=1 j=ritl =1

which is the bound from Inequality 2 that we wanted to establish. m

Proof of Lemma 8. We will first account for the cost RandCache incurs in
bringing 1-pages into the cache. Consider subphase j of phase i. RandCache
will incur a cost of 1 on all the new pages of subphase j of phase 1. We
must now account for the faults which occur on old pages (i.e., those page
which are requested in subphase j of phase ¢ which were also requested in the
previous subphase). Consider the r'* request to an old page. This means the
r — 1 old pages are marked. Suppose that ¢ new pages have been requested
and that a 1-pages have been evicted on requests to M-pages at this point.
There are ¢; ;-1 — (r — 1) pages which were requested in the last subphase
which have not been requested yet in the current subphase. Call this set of
pages S. There are t;, ; — (r — 1) — g — a random pages from S in the cache.
This means that there are a 4+ ¢ pages in S which are not in the cache. The
probability that the page requested in the r** request to an old page is not
in the cache is (g4 a)/(tij—1 — (r—1)). If we let a; ; denote the total number
of 1-pages which are evicted on requests to M-pages in subphase j of phase
i, then the r** request to an old page is a fault with probability at most
(nji + aig)/(tij-r —r+1).

Thus, the total expected cost incurred in serving 1-pages in subphase j
of phase 7 is at most

tz]l

" j

i+ Z L - _I_ 1 < nig+ (g taig) log(tij—1) < nij+(ni;+ai;)logk.
=1 tig-1—

This first term comes from the fact that RandCache always incurs a cost for

serving the new pages. The sum comes from the expected cost in serving

old pages. Thus, the total expected cost of serving 1-pages over the entire

sequence is at most

m pi+M m pit+M
10gk + 1 Z Z n;; + 10gk2 Z A q.
=1 j5=1 =1 j=1

17

Let b; be the number of slots which are occupied by an M-page and then
later by a 1-page in phase i. Using the same reasoning, we can upper bound
the cost of the algorithm in serving M-pages by

(logk 4+ 1)> Mn; +loghk > Mb;.

Putting these bounds together, we get that

pi+M

costpre(o) < (logk + 1) ZMnZ—I— Z ni; —|—10ng

pi+M
Mb; + Z a”] .

The number of times a 1-page is evicted on a request to an M-page can be
at most the number of times a M-page is evicted on a request to a 1-page

plus k. Thus,
pi+M

> ai; <Y b+ k.
=1

=1 j=1 =
Which gives us that

pi+M

ZMnHr > iy

=1 7=1

costpe(o) < (logk+1)

+klog k+log k [Z(M + 1)62»] :

=1
By Lemma 6, for each 1,

pi+M pi+M
sz S max M, Z g S M—I— Z ngj.
=1 7=1

Putting it all together, we get that

m pit+M

=1 7=1

costpe(o) < ((2—|— M) logk—l—l) + klog k

pi+M
an—l- Z nm

i=1

IA

2 ((2—|— M) log k + 1) ZmaX{M,

=1

}—|—klogk

References

[ACNO00O] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competi-
tive analysis of randomized paging algorithms. Theoretical Com-

puter Science, 234(1-2):203-218, 2000.

18

[BBBTYT]

[BCLOS]

[CKPV91]

[Fia01]

[FKL*+91]

[MMS90]

[MS91]

[STS5]

[You94]

Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A
polylog(n)-competitive algorithm for metrical task systems. In

Proc. 29th Symp. Theory of Computing, pages 711-719, 1997.

Yair Bartal, Marek Chrobak, and Lawrence L. Larmore. A ran-
domized algorithm for two servers on the line. In Proc. 6th Euro-
pean Symp. on Algorithms, Lecture Notes in Computer Science,

pages 247-258. Springer, 1998.
Marek Chrobak, Howard Karloff, Tom H. Payne, and Sundar

Vishwanathan. New results on server problems. SIAM Journal
on Discrete Mathematics, 4:172-181, 1991.

Amos Fiat. Personal communication, 2001.

Amos Fiat, Richard Karp, Michael Luby, Lyle A. McGeoch,
Daniel Sleator, and Neal E. Young. Competitive paging algo-
rithms. Journal of Algorithms, 12:685-699, 1991.

Mark Manasse, Lyle A. McGeoch, and Daniel Sleator. Com-
petitive algorithms for server problems. Journal of Algorithms,

11:208-230, 1990.

Lyle McGeoch and Daniel Sleator. A strongly competitive ran-
domized paging algorithm. Journal of Algorithms, 6:816-825,
1991.

Daniel Sleator and Robert E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28:202—
208, 1985.

Neal E. Young. The k-server dual and loose competitiveness for
paging. Algorithmica, 11:525-541, 1994.

19

Algorithm RANDCACHE(P)

Let p denote the requested page.

(1) if p is marked,
do nothing and return.

(2) if p is in the cache and unmarked,
mark the page and return.

(3) if w(p) =M,

(4) if there are unmarked M-pages in the cache,
(5) Pick one at random and evict it.

Mark page p and bring it into the cache.
(6) else if there are unmarked l-pages in the cache,
&) Evict a random unmarked l-page.

Mark page p and bring it into the cache.
(8) else

(9) if no M-pages have been evicted in the subphase
to accommodate a request for a l-page,
(10) Ny« Ny +1.
(11) if Ny <M
(12) Call NEWSUBPHASE(P)
(13) else Call NEWPHASE(P)
(14) if w(p) =1,
(15) if there are unmarked l-pages in the cache,
(16) Evict a random unmarked l-page.
Mark page p and bring it into the cache.
(17) if p was not requested in the previous subphase
(18) Ny« Ny +1
(19) else if there are unmarked M-pages in the cache,
(20) if Ny > M or there are no l-pages in the cache,
(21) Evict a random unmarked M-page,
Mark page p and bring it into the cache.
(22) if p was not requested in the previous subphase
(23) Ny N +1
(24) Ny« N — M.
(25) else Call NEWSUBPHASE(P)
(26) else
(27) if no M-pages have been evicted in the subphase
to accommodate a request for a l-page,
(28) No— Ny +1.
(29) if Ny <M
(30) Call NEWSUBPHASE(P)
(31) else Call NEWPHASE(P)
end

Figure 1: Randomized Algorithm for Weighted Caching with two weights.
20

Procedure NEWPHASE(P)
Unmark all M-pages.
Ny« 0.

Ny 0.
Call NEWSUBPHASE(P).

Figure 2: Start a new phase.

Procedure NEWSUBPHASE(P)
Unmark all l-pages.
Call RANDCACHE(P).

Figure 3: Start a new subphase.

21

