
Formal Methods for Dynamic Power Management 

Rajesh K. Gupta Sandy lrani Sandee K Shukla 
Computer Science & School of Information & FERMAT fah; Electrical 

UC Irvine, Irvine, CA 
Engineering Computer Science and Computer Engineering 

UC San Diego, La Jolla. CA Virginia Tech, Blacksburg, VA 

ABSTRACT 
Dynamic Power Management or DPM refers to the problem of 
judicious application of various low power techniques based on 
runtime conditions in an embedded system to  minimize the total 
energy consumption. To be effective, often such decisions take 
into account the operating conditions and the system-level de- 
sign goals. DPM has been a subject of intense research in the 
pest decade driven by the need for low power in modern embed- 
ded devices. We present an overview of the formal methods that 
have been explored in solving the system-level DPM problem. 
We show how formal reasoning frameworks can potentially unify 
apparently disparate DPM techniques. 

1. INTRODUCTION 
1.1 Dynamic Power Management 

Minimization of power consumption is rapidly becoming 
the chief optimization criterion in system design for a range 
of systems from general purpose computing to embedded, 
mobile computing devices. To be useful, such optimizations 
must often be done against other competing criteria, such as 
functionality delivery within performance and timing con- 
straints. Often a balance is sought between the amount 
of computing (as in local processing) verus the amount of 
communication that would be needed as computation is re- 
duced 143, 37, 411. 

Our focus in this paper is on system-level dynamic power 
management that can be implemented in the operating sys- 
tem. These power saving measures allow for observation and 
incorporation of application behavior [8, 9, 61 in a Power 
Manager (PM). The PM can change the power consump- 
tion of a device through selection of shutdownjsleeplwakeup 
states for the device, or by changing its speed through volt- 
age or frequency scaling. For historical reasons, system level 
DPM generally refers to the techniques that save energy in 
devices by turning these on and off under operating system 
control. Ftom an OS point of view, shutdown/wakeup re- 
mains a key decision in effective power management even 
as the effectiveness of speed-scaling is sometimes called into 
question because of the process technology effects such as 
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dominance of leakage 1271. DPM has been studied by sev- 
eral research groups [15, 44, 9, 8, 40, 36, 11, 391, as well as 
concerted industry efforts such as Microsoft's OnNow I261 
and ACPI [16]. 

1.2 Previous Survey 
A survey of the DPM techniques developed prior to 2000 

can be found in [6]. In this extensive review, the solu- 
tion approaches to DPM have been classified into predictive 
schemes and stochastic optimum control schemes. Predic- 
tive schemes attempt t o  predict a device's usage behavior in 
the future, usually based on the past history of usage pat- 
terns, and decide to change power states of the device ac- 
cordingly. The chief parameter of interest here is the idleness 
threshold, i.e., the time period for a device to transition from 
an active state to a sleep state. Work on prediction based 
dynamic power management can be categorized into two 
groups: adaptive and non-adaptive. Non-adaptive strategies 
set the idleness thresholds for the algorithm once and for 
all and do not alter them based on observed input pattems. 
Adaptive strategies, on the other hand, use the history of 
idle periods to guide the decisions of the algorithm for future 
idle periods. There have been a number of adaptive strate- 
gies proposed in the literature 115, 19, 7, 11, 44). Stochastic 
approaches make probabilistic assumptions (based on obser- 
vations) about usage pattems and exploit the nature of the 
probability distribution to formulate an optimization prob- 
lem, the solution to which drives the DPM strategy. Exam- 
ples are in [7, 331. Until very recently predictive schemes 
have been mostly based on devices with two power saving 
states (e.g., standby and sleep). In case of multiple states, 
the predictive schemes can be extended to use a sequence 
of idleness thresholds to determine when to transition to 
the next power state. By comparison, multi-state systems 
are naturally modeled in most stochastic optimum control 
approaches [6, 42, 7, 11, 33, 351. Examples of session c lus  
tering and prediction strategies are in [24], on-line strategies 
are in [36], and adaptive learning based strategies are in [12]. 
Lu et. al. in [23] provide a quantitative comparison of var- 
ious power management strategies. Most adaptive dynamic 
power management strategies [15, 44, 36, 19, 11, 241 use a 
sequence of past idle period lengths to predict the length 
of the next idle period. These strategies typically describe 
their prediction for the next idle period with a single value. 
Given this prediction, they transition to the power state that  
is optimal for this specific idle period length. In c a e  the pre- 
diction is wrong, they transition to the lowest power state 
if the idle period extends beyond a fixed threshold value, 
For the sake of comparison with other approaches, we shall 
call these predictive DPM schemes Single-Value Prediction 



schemes (SVP). Among SVPs, of particular interest is 1121 
that addresses multiple idle state systems using a prediction 
scheme, based on adaptive learning trees, that improves the 
hit ratio of the predicted interval significantly. 

1.3 The System Model 
Consider a single peripheral device whose power state is 

managed by the operating system. The device can be in one 
ofthenpowerstatesdeuotedby{sl, ..., s,}. Thepowercon- 
sumption for state i is denoted by ai. Without loss of gener- 
ality, we assume that the states are ordered so that a; > aj 
for i < j. Thus, state SI is the ready state which is the high- 
est power consumption state. (As an example, the ACPI [I61 
standard specifies the different devices classes and their rec- 
ommcnded power states in an Intel PC platform.) In addi- 
tion to the states, we are also given (typically from device 
manufacturer's specification) the transition power pij, and 
transition times tu ,  to move from state s i  to s,. Typically, 
the power nceded and time spent to go from a higher (powcr 
consumption) state to a lower state is negligible, while the 
converse is not true. In this model, predictive schemes of- 
ten consider the transition power and transition time num- 
bers as deterministic 19, 11, 12, 15, 39, 18, 361, whereas 
in stochastic approaches these numbers are used as parame- 
t e n  to the probability distributions assumed. In some cases, 
these numbers are experimentally determined [24, 231. An- 
other characteristic of predictive schemes is that they gener- 
ally transition to the ready state when powering up and not 
to an intermediate (higher powered) state. Schemes using 
predictive wakeup (23, 121 are a notable exception and be- 
yond the scope of this paper. However, stochastic strategies 
often have probabilistic predictive wakeup built into DPM 
algorithm. As a result, when discussing deterministic DPM 
we only need the time and total energy consumed (0;) in 
transitioning up from each state i to the ready state. 

We note that, in cases where the time and energy used 
in transitioning to lower power consumption states is non- 
negligible, these can also be incorporated in the model by 
folding them into the corresponding power-up parameters. 
This can be done as long as the time and energy used in 
transitioning down is additive. That is, we require that for 
i < j < k, the cost to go from i to j and then from j to 
k is the same as the cost of going from i directly down to 
k. Recently, DPM analysis has bcen extended to the case 
where additivity assumptions do not hold [Z]. 

The input to the P M  is a sequence of requests for service 
that arrive over time. With each request, the PM notes the 
time of its arrival and the length of time it will take to satisfy 
the request. If the device is busy when a new request arrives, 
it enters a queue and is served on a first-come-first-serve 
basis. In this case, there is no idle period and the device 
remains active through the time that the request is finished. 
Thus, the number of idle periods is less than the number of 
requests serviced. Whenever a request terminates and there 
are no outstanding requests waiting in the system, an idle 
period begins. In these situations, the P M  determines the 
power consumption states the device should transition and 
at  what times. 

If the device is not busy when a new request arrives, it will 
immediately transition to the ready state to serve the new 
request if it is not already there. In the case where the de- 
vice is not already in the ready state, the request can not be 
serviced immediately, but will have to incur some latency in 
waiting for the transition to complete. This delay will cause 
futurc idle periods to he shorter. In fact, if a request is de- 
layed, some idle periods may disappear. Thus, the behavior 

of the algorithm affects future inputs (idle period lengths) 
given to the algorithm. Similarly, note that without perfor- 
mance constraints, delaying the servicing of a request will 
tend to lower the power usage. Consider the extreme case 
where the power manager remains in the deepest sleep state 
while it waits for all the requests to arrive and then pro- 
cesses all of them consecutively. This extreme case is not 
allowed to happen in our model since we require that the 
strategy transition to the ready state as soon as any request 
appears. However, it illustrates the natural trade-off which 
occurs between power consumption and latency. See [36] for 
a more extensive discussion of this trade-off. 

1.4 Formal Methods for DPM 
A common method for prediction of the next idle period 

is to use some form of regression equation over the previ- 
ous idle periods, and/or use of interpolation or learning- 
based techniques. In contrast to these ad hoc techniques, 
the stochastic DPM literature tends to be more formal in 
the sense that assumptions are made about the character- 
istics of the probability distribution of idle periods, device 
response times etc. These are then used to formulate the 
optimization problems. Much of the stochastic DPM strat- 
egy literature uses Markov models, based on assumptions 
about how and when requests can arrive (whether at  cer- 
tain time points or at any time). For example, discrete-time 
and continuous-time Markov chains have been used. 

Our focus on formal methods is from the point of view of 
developing DPM strategies that attempt to ensure bounds 
on the efficiency of achievable power reduction and power- 
latency tradeoffs without the need for time consuming sim- 
ulation techniques. We seek methods that can determine 
these hounds either in the deterministic or probabilistic sense. 

The remainder of this tutorial paper is organized BS fol- 
lows. Section 2 focuses mostly on predictive schemes. Due 
to space limitations, this presentation complements survey 
in [6] by focusing on the more recent work in the area. We 
introduce the basic concepts of on-line algorithms and com- 
petitive analysis in the context of DPM. Section 3 considers 
the stochastic approaches to DPM. Section 4 describes the 
most recent approaches based on probabilistic model check- 
ing. Finally, Section 5 summarizes the tutorial. 

2. 
Dynamic power management is an inherently online prob- 

lem, in that the power manager must make decisions about 
the expenditure of resources before all the input to the sys- 
tem is available [I]. The input here is the length of an up- 
coming idle period and the decision to be made is whether 
to transition to a lower power dissipation state while the 
system is idle. A short idleness threshold will lead to higher 
power-up costs, whereas a large threshold would lead to sub- 
optimal power usage. Analytical solutions to such online 
problems are often best characterized in terms of a wm- 
petitiwe ratio [32] that compares the cost of an online algo- 
rithm to the optimal offline solution which knows the input 
in advance (and thus chooses the best assignment of power 
states). Earliest work on competitive analysis of dynamic 
power management strategies presents bounds on the qual- 
ity of various DPM solutions [36, 19, 201. 

DPM AS AN ON-LINE PROBLEM 

2.1 Competitve Analysis of Deterministic DPM 
An algorithm is c - competitiue if, for any input, the cost 

of the online algorithm is bounded by c times the cost of the 
optimal offline algorithm for that input. The competitive 
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ratio of an algorithm is the infimum over all c such that the 
algorithm is c-competitive. It has been known for some time 
that 2 is the optimal competitive ratio that can he achieved 
for any two-state system by a deterministic algorithm [32]. 
We will sketch the idea behind this result in order to illus- 
trate how competitive analysis works. Since the system has 
only two states, we call these the active and the sleep state. 
Lct p be the energy cost to transition from the sleep to the 
active state. Let c1 be the power dissipation rate in the ac- 
tive state. Without loss of generality, we assume that the 
power dissipation in the sleep state is zero. 

The optimal offline algorithm is assumed to know the 
length T of the idle period in advance. Thus, it chooses 
the best state for this idle period length and stays in that 
state for the duration of the idle period. Staying in the ac- 
tive state costs a T .  lkansitioning immediately to the sleep 
state costs 0 because the algorithm must transition back to 
the active state at the end of the idle period. This means 
that the cost for the optimal offline algorithm for an idle 
period of length T is min{aT,p}. 

Since the online algorithm does not know the length of 
the idle period in advance, it selects a threshold r and stays 
in the active state for time r ,  after which it transitions to 
the sleep state if the system is still idle. If the idle period 
length T is less than T ,  its cost is aT. If the idle period is 
longer than r ,  its cost is @+or. The online algorithm seeks 
to minimize the ratio of its cost to the cost of the optimal 
offline algorithm for all T .  I t  can be shown that if r = p/a ,  
this ratio is never more than two. The worst case for the 
online algorithm is if the idle period ends immediately after 
it transitions to the sleep state. This puts a tight bound of 
2 for the competitive ratio of any deterministic algorithm. 

For multi-state systems, the situation is a bit more com- 
plex in that the optimal competitive ratio will, in general, 
depend on the parameteffi of the system (e.g. the num- 
ber of states, power dissipation rates, start-up costs, etc.). 
In  1181 a generalization of the 2-competitive algorithm for 
two-state systems is given for multi-state systems that also 
achieves a competitive ratio of 2. In general, this bound is 
not tight because it may be possible to attain a better com- 
petitive ratio for specific systems. The hound holds under 
the assumption that the cost to power-down is negligible or 
that the state transition costs are additive. The algorithm 
is non-adaptive since it does not use any information ahout 
the arrival sequence of jobs to the device. 

More recently, (21 have developed competitive algorithms 
for multi-state systems that work for arbitrary transition 
costs on the states. The authors give an online algorithm 
that obtains a competitive ratio of 8. This can be improved 
t o  5.828 under the very reasonable assumption that p,, > p a  
for any i < 6 < j. They also develop a meta-algorithm (i.e., 
a DPM algorithm generator) that takes as input the param- 
eters of a system and produces a DPM strategy (sequence 
of states and threshold times). The strategy they produce 
is guaranteed to achieve a competitive ratio that is within 
an arbitrary e of the best possible competitive ratio for that 
system. The running time of the meta-algorithm is polyno- 
mial in the number of states and l J c .  An interesting open 
question is if similar techniques can he used when the idle 
period length is generated by a known probability distribu- 
tion. 

Another direction that has recently been undertaken is to 
combine DPM strategies with Dynamic Voltage Scaling for 
devices that have both the ability to run at varying speeds 
and the ability to shut down when idle [17]. Combining 
these two problems of DSS and DPM, introduces challenges 

which do not appear in either of Lhe original problems. In 
DPM, the lengths of the idle intervals are given as part of 
the input whereas in the combined problem they are c r e  
ated by the scheduler which decides when and how fast to 
perform the tasks. In DVS, it is always in the best interest 
of the scheduler to run jobs as slowly as possible within the 
constraints of the arrival times and deadlines due to the con- 
vexity of the power function. By contrast in the combined 
problem, it may be beneficial to speed up a task in order 
to create an idle period in which the system can sleep. An 
offline algorithm is described that is within a factor of three 
of the optimal algorithm as well as an online algorithm with 
a constant competitive ratio. Some of the same issues are 
dealt with in (221 in which process scheduleffi have some lat- 
itude in scheduling the execution of tasks so as to maximize 
the benefit of dynamic power scheduling. 

2.2 Probabilistic Analysis 
As discussed above, competitive analysis often gives overly 

pessimistic hounds for the behavior of algorithms. This is 
because competitive analysis is a worst-case analysis. In 
many applications there is structure in the input sequence 
that can be utilized to fine tune online strategies and im- 
prove their performance. Indeed, important earlier works 
in this area [7, 331 have relied on modeling the distribution 
governing inter-arrival times as an exponential distribution. 
In practice, such stochastic modeling seems to hold well for 
specific kinds of applications. However, these assumptions 
have led to complications in other settings due to phenom- 
ena such as the non-stationary nature of the arrival process, 
clustering, and the lack of independence between subsequent 
events. These problems have been addressed to some extent 
in [24, 121. 

In [le], we introduced an approach that models the up- 
coming input sequence by a probability distribution that is 
leamt based on historical data. One of the strengths of this 
method is that it makes no assumptions about the form of 
this distribution. Once the distribution is learnt, we can au- 
tomatically generate a probability-based DPM strategy that 
minimizes the expected power dissipation given that the in- 
put is generated according to that distribution based on the 
notion of a probabilistic Competitive ratio (391. 

Optimizing Power Based on a Probability Distribution 
Let us suppose that th~e length of the idle interval is gener- 
ated by a fixed, known distribution whose density function 
is r. Let us consider systems with two states. As before, let 
B be the start-up energy of the sleep state and a the power 
dissipation of the active state. Suppose that the online algo- 
rithm uses r as the threshold at which time it will transition 
from the active state to the sleep state if the system is still 
idle. In this case, the ezpected energy cost for the algorithm 
for a single idle period is given as: 

The best online algorithm will select a value for r which 
minimizes this expression. On the other hand, the offline 
optimal algorithm which knows the actual length of an up- 
coming idle period will have an expected cost o f  

I t  has been shown that for the 2-state case, the online algo- 
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rithm can pick its threshold T so that the ratio of its expected 
cost to the expected cost of the optimal algorithm is at most 
e/( .  - 1) = 1.58 [19]. A generalization of this algorithm to 
the multi-state case is given in [39]. The generalized algo- 
rithm is called the Probabilistic Lower Envelope Algorithm 
(or PLEA) and the authors have shown that for any dis- 
tribution, the expected cost of PLEA is within a factor of 

Thus a knowledge of the input pattern and its use can help 
bridge the gap between the performance of online strategy 
and that of the optimal offline strategy. Results show the 
the worst case competitive ratio can be improved by 21%, 
with respect to the deterministic case [18]. 

Learning the Probabilitj Distribution 
The algorithm PLEA above assumes perfect knowledge of 
the probability distribution governing the length of the idle 
period. Rather than assuming such a distribution, it can 
he learnt based on recent history. For instance, a learn- 
ing scheme in conjunction with PLEA is called the Online 
Probability-Based Algorithm (OPBA). The probability esti- 
mator works as follows: a window size w is chosen in advance 
and is used throughout the execution of the algorithm. The 
algorithm keeps track of the last w idle period lengths and 
summarizes this information in a histogram. Periodically, 
the histogram is used to generate a new power management 
strategy. 

The set of all possible idle period lengths (0, CO) is parti- 
tioned into n intervals, where n is the number of bins in the 
histogram. Let 7; he the left endpoint of the i ih  interval, 
The it' bin has a counter ci which indicates the number of 
idle periods among that last w idle periods whose length 
fell in the range [ri,ri+I). Instead of using the continuous 
probability distribution r with PLEA as described in the 
previous section, we use a discrete distribution, where the 
probability the idle period has length ri is cj/w. A similar 
approach was taken for a two state system in the context of 
determining virtual circuit holding time policies in IP-over- 
ATM Networks (ZO]. 

Efficient implementation of such an algorithm is impor- 
tant to ensure overall gains in power reduction. In 1181, 
we present an implementation for finding the m - 1 thresh- 
olds in time O(mn), where m is the number of states and 
n is the number of bins in the histogram. Two important 
factors which determine the cost (in time expenditure) of 
implementing our method is the frequency with which the 
thresholds are updated and the number of bins in the his- 
togram. Selecting the right granularity for the histogram is 
an important consideration since there is a tradeoff between 
efficiency and accuracy. The algorithm employs non-uniform 
bin sizes so as to have a high degree of accuracy in critical 
regions. The reader is referred to [lS] for a description of 
how system parameters are used to select bin sizes. 

3. STOCHASTIC APPROACHES TO DPM 
We now discuss the stochastic version of the DPM prob- 

lem. The problem basically requires one. to devise a strategy 
(policy) which is probabilistic, in the sense that the actions 
to he  taken by the strategy have probabilities attached to 
them. Unlike determiniptic strategies, where a particular 
state of the system will lead the strategy to take a determin- 
istic action, here, the strategy can choose between multiple 
actions with pre-designated probabilities. 

In recent years, several approaches for designing stochas- 
tic DPM strategies have been proposed 130, 7, 6, 11, 33, 

- e', of the expected cost for the optimal offline algorithm. 

35, 34, 42). These methodologies are based on a stochastic 
model of the DPM prohlem, which incorporates the proha- 
bilistic characteristics of request arrivals to the device, the 
device response time distribution, the power consumption 
by the device in various states and the distribution of en- 
ergy consumption in changing states. From this stochastic 
model, an exact optimization problem is formulated, the 
solution to which is the required optimal stochastic DPM 
policy. The strategy devised must ensure that power sav- 
ings are not achieved at an undue cost in performance. For 
example, a new request should be always served in a rea- 
sonable time. The constructed policy optimizes the average 
energy usage while minimizing average delay. The policies 
are usually validated by simulation to check for the sound- 
ness of the modeling assumptions, and the effectiveness of 
the strategies in practice 133, 301. 

The stochastic models which have been used in the litera- 
ture are discrete-time Markov chains 130, 71, continuous-time 
Markov chains 133: 35, 341 or their variants 142). The ap- 
proaches vary in the model of time. Iu the continuous-time 
case, mode switching commands can be issued a t  any time, 
and events can happen a t  any time. In the discrete-time 
case, all eveuts and actions occur a t  certain discrete time 
points. The continuous-time assumption makes the formu- 
lation of the problem easier. In practice, such stochastic 
modeling seems to work well for specific kinds of applica- 
tions. Generally, the stochastic matrices for these models 
are created manually. In 1341, stochastic Petri nets are used, 
which allows automatic generation of the stochastic matrices 
and formulation of the optimization problems. 

3.1 Analysis using Model Checking 
Probabiltstic Model Checking (PMC) offers a promising 

way to verify stochastic approaches to DPM as shown in 
128, 291. The idea is to construct a probabilistic model of 
the system under study. As in the deterministic case, this is 
usually a labeled transition system which defines the set of 
all possible states and the transitions between these states. 
In PMC, the model is augmented with information about 
the likelihood that each transition will take place. Examples 
of such models are discrete-time Markov chains (DTMCs), 
continuoustime Markov chains (CTMCs) and Markov de- 
cision processes (MDPs). The properties to be verified, are 
specified typically in Probabilistic extensions of temporal 
logic. These allow specification of properties such as: "shut- 
down occurs with probability a t  most 0.01"; or "the video 
frame will be delivered within 5ms with probability at least 
0.97." The properties can be verified with a probabilistic 
model checker either as graph-based analysis and solution 
of linear equation systems or linear optimization problems 

Like the conventional, non-probabilistic case, prohahilis- 
tic model checking usually constitutes verifying whether or 
not %me temporal logic formula is satisfied by a model. 
The two most common temporal logics for this purpose are 
PCTL 114, IO] and CSL 13, 51, both extensions of the logic 
CTL. PCTL is used to specify properties for DTMCs and 
MDPs and CSL is used for CTMCs. One common feature 
of the two logics is the probabilistic P operator, which al- 
lows one to reason about the probability that executions of 
the system satisfy some property. For example, the formula 
P21[0 terminate] states that with probability 1, the system 
will eventually terminate. On the other hand, the formula 
P,o.m[-repair U5z00 terminate] asserts that with proha- 
hility 0.95 or greater, the system will terminate within 200 
time steps and without requiring any repairs. These prop- 

(311. 
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erties can be seen as analogues of the non-probabilistic case, 
where a formula would typically state that all executions 
satisfy a particular property, or that there ezists an execu- 
tion which satisfies it.  CSL also provides the S operator to 
reason about steady-state (long-run) behavior. The formula 
S,o.ol(gueue.size = maz], for example, states that in the 
long-run, the probability that a queue is full is strictly less 
than 0.01. Further properties can be analyzed by introduc- 
ing the notion of costs (or, conversely, rewards). If each state 
of the probabilistic model is assigned a real-valued cost, one 
can compute properties such as the expected cost to reach 
a certain states, the expected accumulated cost over some 
time period, or the expected cost a t  a particular time in- 
stant. Such properties can also be expressed concisely and 
unambiguously in temporal logic 113, 41. 

4. DPM ANALYSIS USING PRISM 
PRISM (31, 28, 291 is a probabilistic model checker devel- 

oped at the University of Birmingham in England. In [ZS, 
291 PRISM was used for deriving stochastic DPM policies 
for disk-drive, and was shown to be a uniform framework 
in which DPM policies can be derived and evaluated. The 
basic approach is to build a probabilistic model of the DPM 
system from which, for a given constraint, an optimization 
problem is constructed. The solution to this problem is the 
optimum randomized power management policy satisfying 
this constraint. 

Once an optimal power management policy has been con- 
structed, it must be validated to ensure it performs as in- 
tended. Possible approaches are to use tracebased simula- 
tion or to  actually implement the schemes in device drivers. 
The advantage of PMC is that it allows one to validate and 
analyze the policies statically leading to a wide range of use- 
ful information about the policy to be generated. 

Modeling DPM in PRISM 
While PMC has been applied to both DTMC of 130, 71, as 
well as CTMC of [33, 35, 341, we focus on the former here in 
view of the limited space. The approach is described through 
the example of the IBM TYavelStar V P  disk-drive 1451. The 
device has 5 power states, labelled sleep, stby, idle, idlelp 
and active. I t  is only in the state active that the drive can 
perform data read and write operations. In state idle, the 
disk is spinning while some of the electronic components 
of the disk drive have been switched off. The state idle$ 
[idle low power) is similar except that it has a lower power 
dissipation. The states stby and sleep correspond to the disk 
being spun down. Based on the fastest possible transition 
performed by system, one can choose a time resolution of 
Ims for the model, i.e., each discrete-time step of the DTMC 
will correspond to lms. 
The system model shown in Figure I consists of. a Ser- 

vice Provider (SP), which represents the device under power 
management control; a Service Requester (SR), which is- 
sues requests to the device; a Service Request Queue (SRQ), 
which stores requests that are not serviced immediately; and 
the Power Manager (PM), which issues commands to the 
SP, based on observations of the system and a stochastic 
DPM policy. Each component is represented by an individ- 
ual PRISM module, which we now consider in turn. Due to 
lack of space, we only provide examples of important com- 
ponents for illustration purposes. 

I 

Figure 1: The System Model 

Modelin the Power Manager(PM). Service Requester 
(SR) aniQueue(SRQ) 
The PM decides to which state the SP should move a t  each 
time step. To model this, each step is split into two parts: 
in the first, the PM (instantaneously) decides what the SP 
should do next (based on the current state); and in the sec- 
ond, the system makes a transition (with the SP's move 
based on the choice made by the PM). These steps are syn- 
chronized with other components using two synchronization 
actions tick1 and tic!&, described in a CLOCK module (not 
shown here). Figure 3 shows an example PM in PRISM. 

Both the SRQ and the SR will synchronize on tick2. The 
SR has two states: idle where no requests are generated and 
lreq where one request is generated per time step (lms). The 
transitions between these states is based on time-stamped 
traces of disk access measured on real machines 171. The 
module of the SR is given by: 

.-A,. SR ., : ID..,) lilt 0;  
/ I  0 .  d l C  "d I - I-? 

Itkk21 . . io  - 0.898 : ,.r'=O) + 0.102 : (.r'=t); 
ItiCkll .r-l - 0.114 : (.r'=O) + 0.548 i (./=I,; 

The SRQ models queue of service requests. It responds to 
the arrival of requests from the SR and the service of re- 
quests hy the SP. The queue size will only decrease when 
the SR and SP are in states idle and active, respectively. 
Similarly, it will only increase when the SR is in state lreq 
and t.he SP is not active. The PRISM code is as follows: 

I . . _ d D 1 .  I 

4.1 Policy Construction and Analysis 
Using the PRISM language description shown in the pre- 

vious section, the PRISM model checking tool can be used 
to construct a generic model of the power management sys- 
tem. From the transition matrix of this system, the linear 
optimization problem (whose solution is the optimal pol- 
icy) can be formulated, as described in [30, 71. This opti- 
mization problem is then passed to the MAPLE symbolic 
solver. Figure 2 shows policies constructed in this way for a 
range of constraints on the average size of the service request 
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Figure  2: O p t i m u m  policies under varying con- 
s t ra in ts  on t h e  average q u e u e  size 

queue. The first column lists the constraint; the second col- 
umn summarizes the corresponding policy. 

Once a policy has been constructed, its performance can 
he investigated using probabilistic model checking. The 
generic power managcr PRISM module is modified to repre- 
sent a specific policy. Figure 3 shows an example of this for 
the constraint "queue size is less than 0.05". This can be 
seen to correspond to the policy in the 6th row of the table 
in Figure 2. PWSM is then used to construct and analyze 
the DTMC for this policy. 

F igure  3: Example  inpu t  to PRISM for a derived 
Pol icy under performance constraint  = 0.05 

From the analysis, we can see that the average power con- 
sumption of a policy decreases as the constraint on quene 
length used to construct it is relaxed (i.e. the queue size is 
larger). One can also validate the policy by confirming that 
the expected size of the queue matches the value in the con- 
straint which was used to construct it. Finally, we see that 
a side-effect of this is that the average number of requests 
lost is also increased. 

In Figure 4, we show results for a range of policies from 1291 
Using the same awiguments of model states t o  costs as dis- 
cussed above, we compute and plot, for a range of values 
of T "expected power consumption by time T" ,  "expected 
queue size at time T", and "expected number of lost CUP- 

tomers by time T". The first and third properties are dcter- 
mined hy computing expected cast cumulated up until time 
T the second by computing the instantaneous cost a t  time 
T.  Again, we see that policies which consume less power 
have larger queue sizes and are more likely to lose requcsts. 
Here, though, we can get a much clearer view of how these 
properties change oveI time. We see, for example, that the 
expected qwue size a t  timc T initially increases and then 
decreaes. This follows from the fact that the strategies wait 
for the queue to become full before switching the SP on. 

Figure 5 shows the probability that a request is served 

F a  d e I I O  
I . d 

Figure 4: Power  and per formance  by t ime  T (ms)  

by time T ,  given that it arrived into a certain position in 
the queue. Figure 6 shows the probability that N requests 
get lost by time T for N = 500 and N = 1000. Again this 
information has been computed for a range of policies and 
for a range of values of T.  These properties are computed 
by adding additional state variables to the PRISM model. 
For those in Figure 6 ,  for example, we add a variable which 
is initially zero and is increased each time a customer is lost 
(up to a maximum on N). We then calculate the probability 
of reaching any state where this variable's value is equal to 
N .  

The graphs show that the probability of requests heing 
lost within a certain time hound increases more quickly for 
those strategies that consume less power. These results are 
to be expected since, to reduce power, the strategies must 
force the service provider to spend more time in low power 
states which cannot service requests, e.g., sleep and standby. 

Probabilistic model checking has also been applied [ZS] 
to the stochastic optimum control approach of (33, 35, 341, 
which is based on CTMCs rather than DTMCs. Since the 
model is a CTMC, components change state according to ex- 
ponentially distributed delays and the PM acts when such a 
state transition occurs. The construction of optimum poli- 
cies from the PRISM model follows the approach of 133, 35, 
341 hut is essentially the same overall process. For analysis 
of policies, one can consider similar properties to the DTMC 
case. The main differences are that the logic CSL is used 
as opposed to the logic PCTL, and that the time hound T 
used in the properties is now a real-value as opposed to a 
number of discrete steps. In addition, in this case, using 
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Figure  5 :  
time T (ms) 

Probabi l i ty  that a request is served by 

the approach of [ Z l ]  one can also analyze the policies for al- 
ternative inter-arrival distributions, to give a more realistic 
model of the arrival of service requests. Far example, Fig- 
ure 7 shows the performance (average power consumption, 
average queue size and average number of lost requests) for 
optimum policies under five different inter-arrival distribu- 
tions. All the chosen distributions have the same mean and 
it can be seen that, with the exception of the Pareto distri- 
bution, the long-run performance and costs are reasonably 
close to those of the exponential arrival process. For the 
Pareto distribution, the average queue size is generally much 
smaller. This is due to the Pareto distribution's heavy tail: 
in the long run, many requests will not arrive for a very long 
time, in which case the service provider (SP) will serve all 
pending requests, leaving the queue empty. 

5. SUMMARY 
In this tutorial, we focused on techniques for power man- 

agement that rely on formal techniques for evaluation of the 
effectiveness of DPM algorithms. For deterministic models 
of the system, competitive analysis along with learning tech- 
niques provide a reaonsable framework for their analyses. 
Stochastic optimization approaches to DPM can he analyzed 
using advances in probabilistic model checking techniques. 

We showed (&om (28, 291) how probabilistic model check- 
ing allows generation of a wide range of performance mea- 
sures for the analysis of DPM policies. Statistics such as 
power consumption, service queue length and the number 
of requests lost can be computed both in the average case 
and for particular time instances over a given range. Fur- 
thermore, the policies' behavior can be examined under al- 
ternative service request inter-arrival distributions such as 
Erlang and Pareto. In addition to the exhaustic analysis 
(including corner-case scenarios), probabilistic model check- 
ing presents an attractive unified framework for automated 
construction, validation and analysis of DPM policies. 

Due to lack of space we have not been able to cover some 
new efforts in power management in the context of power 
aware ad-hoc network protocols. Notable among these are 

F igure  6:  Probabi l i ty  that N requests ge ts  lost b y  
t i m e  T (ms) 

the use of an economicshased model for networking pro- 
tocols in 1411 and power aware source routing in 12.51. We 
also did not discuss DPM models that consider the battery 
model which is not considered in any of the approaches dis- 
cussed above. Rang and Pedram in (381 provide a stochastic 
model that takes into account the current discharge rates by 
the batteries in formulating stochastic DPM strategies. 
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