
Formal Methods for Dynamic Power Management

Rajesh K. Gupta Sandy lrani Sandee K Shukla
Computer Science & School of Information & FERMAT fah; Electrical

UC Irvine, Irvine, CA
Engineering Computer Science and Computer Engineering

UC San Diego, La Jolla. CA Virginia Tech, Blacksburg, VA

ABSTRACT
Dynamic Power Management or DPM refers to the problem of
judicious application of various low power techniques based on
runtime conditions in an embedded system to minimize the total
energy consumption. To be effective, often such decisions take
into account the operating conditions and the system-level de-
sign goals. DPM has been a subject of intense research in the
pest decade driven by the need for low power in modern embed-
ded devices. We present an overview of the formal methods that
have been explored in solving the system-level DPM problem.
We show how formal reasoning frameworks can potentially unify
apparently disparate DPM techniques.

1. INTRODUCTION
1.1 Dynamic Power Management

Minimization of power consumption is rapidly becoming
the chief optimization criterion in system design for a range
of systems from general purpose computing to embedded,
mobile computing devices. To be useful, such optimizations
must often be done against other competing criteria, such as
functionality delivery within performance and timing con-
straints. Often a balance is sought between the amount
of computing (as in local processing) verus the amount of
communication that would be needed as computation is re-
duced 143, 37, 411.

Our focus in this paper is on system-level dynamic power
management that can be implemented in the operating sys-
tem. These power saving measures allow for observation and
incorporation of application behavior [8, 9, 61 in a Power
Manager (PM). The PM can change the power consump-
tion of a device through selection of shutdownjsleeplwakeup
states for the device, or by changing its speed through volt-
age or frequency scaling. For historical reasons, system level
DPM generally refers to the techniques that save energy in
devices by turning these on and off under operating system
control. Ftom an OS point of view, shutdown/wakeup re-
mains a key decision in effective power management even
as the effectiveness of speed-scaling is sometimes called into
question because of the process technology effects such as

Permission to make digital or hard copier of all or part of this work for
personal or classrmm use is granted withovr fee provided that copier are
not made or dishibuted for profit or commercial advantage and ulat copies
bear this notice and the full citation OIL the Brst wage. To COPY otherwise. to
republish. to post 00 S C N C ~ I or to r e d i h b u i e to Bsu, requires prior specific
permission andlor a fee.
Copyright 2003 ACM 0~89791-88-6/97/05 ... $5.00.

Permission lo make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
lCCAD'O3. November I I-I3,20V3. San Jose, Caiifomiu, USA.
Copyright 2003 ACM 1-58] 13-762-i1031001 i ... $5.00.

874

dominance of leakage 1271. DPM has been studied by sev-
eral research groups [15, 44, 9, 8, 40, 36, 11, 391, as well as
concerted industry efforts such as Microsoft's OnNow I261
and ACPI [16].

1.2 Previous Survey
A survey of the DPM techniques developed prior to 2000

can be found in [6]. In this extensive review, the solu-
tion approaches to DPM have been classified into predictive
schemes and stochastic optimum control schemes. Predic-
tive schemes attempt t o predict a device's usage behavior in
the future, usually based on the past history of usage pat-
terns, and decide to change power states of the device ac-
cordingly. The chief parameter of interest here is the idleness
threshold, i.e., the time period for a device to transition from
an active state to a sleep state. Work on prediction based
dynamic power management can be categorized into two
groups: adaptive and non-adaptive. Non-adaptive strategies
set the idleness thresholds for the algorithm once and for
all and do not alter them based on observed input pattems.
Adaptive strategies, on the other hand, use the history of
idle periods to guide the decisions of the algorithm for future
idle periods. There have been a number of adaptive strate-
gies proposed in the literature 115, 19, 7, 11, 44). Stochastic
approaches make probabilistic assumptions (based on obser-
vations) about usage pattems and exploit the nature of the
probability distribution to formulate an optimization prob-
lem, the solution to which drives the DPM strategy. Exam-
ples are in [7, 331. Until very recently predictive schemes
have been mostly based on devices with two power saving
states (e.g., standby and sleep). In case of multiple states,
the predictive schemes can be extended to use a sequence
of idleness thresholds to determine when to transition to
the next power state. By comparison, multi-state systems
are naturally modeled in most stochastic optimum control
approaches [6, 42, 7, 11, 33, 351. Examples of session c lus
tering and prediction strategies are in [24], on-line strategies
are in [36], and adaptive learning based strategies are in [12].
Lu et. al. in [23] provide a quantitative comparison of var-
ious power management strategies. Most adaptive dynamic
power management strategies [15, 44, 36, 19, 11, 241 use a
sequence of past idle period lengths to predict the length
of the next idle period. These strategies typically describe
their prediction for the next idle period with a single value.
Given this prediction, they transition to the power state that
is optimal for this specific idle period length. In c a e the pre-
diction is wrong, they transition to the lowest power state
if the idle period extends beyond a fixed threshold value,
For the sake of comparison with other approaches, we shall
call these predictive DPM schemes Single-Value Prediction

schemes (SVP). Among SVPs, of particular interest is 1121
that addresses multiple idle state systems using a prediction
scheme, based on adaptive learning trees, that improves the
hit ratio of the predicted interval significantly.

1.3 The System Model
Consider a single peripheral device whose power state is

managed by the operating system. The device can be in one
ofthenpowerstatesdeuotedby{sl, ..., s,}. Thepowercon-
sumption for state i is denoted by ai. Without loss of gener-
ality, we assume that the states are ordered so that a; > aj
for i < j. Thus, state SI is the ready state which is the high-
est power consumption state. (As an example, the ACPI [I61
standard specifies the different devices classes and their rec-
ommcnded power states in an Intel PC platform.) In addi-
tion to the states, we are also given (typically from device
manufacturer's specification) the transition power pij, and
transition times tu , to move from state s i to s,. Typically,
the power nceded and time spent to go from a higher (powcr
consumption) state to a lower state is negligible, while the
converse is not true. In this model, predictive schemes of-
ten consider the transition power and transition time num-
bers as deterministic 19, 11, 12, 15, 39, 18, 361, whereas
in stochastic approaches these numbers are used as parame-
t e n to the probability distributions assumed. In some cases,
these numbers are experimentally determined [24, 231. An-
other characteristic of predictive schemes is that they gener-
ally transition to the ready state when powering up and not
to an intermediate (higher powered) state. Schemes using
predictive wakeup (23, 121 are a notable exception and be-
yond the scope of this paper. However, stochastic strategies
often have probabilistic predictive wakeup built into DPM
algorithm. As a result, when discussing deterministic DPM
we only need the time and total energy consumed (0;) in
transitioning up from each state i to the ready state.

We note that, in cases where the time and energy used
in transitioning to lower power consumption states is non-
negligible, these can also be incorporated in the model by
folding them into the corresponding power-up parameters.
This can be done as long as the time and energy used in
transitioning down is additive. That is, we require that for
i < j < k, the cost to go from i to j and then from j to
k is the same as the cost of going from i directly down to
k. Recently, DPM analysis has bcen extended to the case
where additivity assumptions do not hold [Z].

The input to the P M is a sequence of requests for service
that arrive over time. With each request, the PM notes the
time of its arrival and the length of time it will take to satisfy
the request. If the device is busy when a new request arrives,
it enters a queue and is served on a first-come-first-serve
basis. In this case, there is no idle period and the device
remains active through the time that the request is finished.
Thus, the number of idle periods is less than the number of
requests serviced. Whenever a request terminates and there
are no outstanding requests waiting in the system, an idle
period begins. In these situations, the P M determines the
power consumption states the device should transition and
at what times.

If the device is not busy when a new request arrives, it will
immediately transition to the ready state to serve the new
request if it is not already there. In the case where the de-
vice is not already in the ready state, the request can not be
serviced immediately, but will have to incur some latency in
waiting for the transition to complete. This delay will cause
futurc idle periods to he shorter. In fact, if a request is de-
layed, some idle periods may disappear. Thus, the behavior

of the algorithm affects future inputs (idle period lengths)
given to the algorithm. Similarly, note that without perfor-
mance constraints, delaying the servicing of a request will
tend to lower the power usage. Consider the extreme case
where the power manager remains in the deepest sleep state
while it waits for all the requests to arrive and then pro-
cesses all of them consecutively. This extreme case is not
allowed to happen in our model since we require that the
strategy transition to the ready state as soon as any request
appears. However, it illustrates the natural trade-off which
occurs between power consumption and latency. See [36] for
a more extensive discussion of this trade-off.

1.4 Formal Methods for DPM
A common method for prediction of the next idle period

is to use some form of regression equation over the previ-
ous idle periods, and/or use of interpolation or learning-
based techniques. In contrast to these ad hoc techniques,
the stochastic DPM literature tends to be more formal in
the sense that assumptions are made about the character-
istics of the probability distribution of idle periods, device
response times etc. These are then used to formulate the
optimization problems. Much of the stochastic DPM strat-
egy literature uses Markov models, based on assumptions
about how and when requests can arrive (whether at cer-
tain time points or at any time). For example, discrete-time
and continuous-time Markov chains have been used.

Our focus on formal methods is from the point of view of
developing DPM strategies that attempt to ensure bounds
on the efficiency of achievable power reduction and power-
latency tradeoffs without the need for time consuming sim-
ulation techniques. We seek methods that can determine
these hounds either in the deterministic or probabilistic sense.

The remainder of this tutorial paper is organized BS fol-
lows. Section 2 focuses mostly on predictive schemes. Due
to space limitations, this presentation complements survey
in [6] by focusing on the more recent work in the area. We
introduce the basic concepts of on-line algorithms and com-
petitive analysis in the context of DPM. Section 3 considers
the stochastic approaches to DPM. Section 4 describes the
most recent approaches based on probabilistic model check-
ing. Finally, Section 5 summarizes the tutorial.

2.
Dynamic power management is an inherently online prob-

lem, in that the power manager must make decisions about
the expenditure of resources before all the input to the sys-
tem is available [I]. The input here is the length of an up-
coming idle period and the decision to be made is whether
to transition to a lower power dissipation state while the
system is idle. A short idleness threshold will lead to higher
power-up costs, whereas a large threshold would lead to sub-
optimal power usage. Analytical solutions to such online
problems are often best characterized in terms of a wm-
petitiwe ratio [32] that compares the cost of an online algo-
rithm to the optimal offline solution which knows the input
in advance (and thus chooses the best assignment of power
states). Earliest work on competitive analysis of dynamic
power management strategies presents bounds on the qual-
ity of various DPM solutions [36, 19, 201.

DPM AS AN ON-LINE PROBLEM

2.1 Competitve Analysis of Deterministic DPM
An algorithm is c - competitiue if, for any input, the cost

of the online algorithm is bounded by c times the cost of the
optimal offline algorithm for that input. The competitive

a75

ratio of an algorithm is the infimum over all c such that the
algorithm is c-competitive. It has been known for some time
that 2 is the optimal competitive ratio that can he achieved
for any two-state system by a deterministic algorithm [32].
We will sketch the idea behind this result in order to illus-
trate how competitive analysis works. Since the system has
only two states, we call these the active and the sleep state.
Lct p be the energy cost to transition from the sleep to the
active state. Let c1 be the power dissipation rate in the ac-
tive state. Without loss of generality, we assume that the
power dissipation in the sleep state is zero.

The optimal offline algorithm is assumed to know the
length T of the idle period in advance. Thus, it chooses
the best state for this idle period length and stays in that
state for the duration of the idle period. Staying in the ac-
tive state costs a T . lkansitioning immediately to the sleep
state costs 0 because the algorithm must transition back to
the active state at the end of the idle period. This means
that the cost for the optimal offline algorithm for an idle
period of length T is min{aT,p}.

Since the online algorithm does not know the length of
the idle period in advance, it selects a threshold r and stays
in the active state for time r , after which it transitions to
the sleep state if the system is still idle. If the idle period
length T is less than T , its cost is aT. If the idle period is
longer than r , its cost is @+or. The online algorithm seeks
to minimize the ratio of its cost to the cost of the optimal
offline algorithm for all T . I t can be shown that if r = p/a ,
this ratio is never more than two. The worst case for the
online algorithm is if the idle period ends immediately after
it transitions to the sleep state. This puts a tight bound of
2 for the competitive ratio of any deterministic algorithm.

For multi-state systems, the situation is a bit more com-
plex in that the optimal competitive ratio will, in general,
depend on the parameteffi of the system (e.g. the num-
ber of states, power dissipation rates, start-up costs, etc.).
In 1181 a generalization of the 2-competitive algorithm for
two-state systems is given for multi-state systems that also
achieves a competitive ratio of 2. In general, this bound is
not tight because it may be possible to attain a better com-
petitive ratio for specific systems. The hound holds under
the assumption that the cost to power-down is negligible or
that the state transition costs are additive. The algorithm
is non-adaptive since it does not use any information ahout
the arrival sequence of jobs to the device.

More recently, (21 have developed competitive algorithms
for multi-state systems that work for arbitrary transition
costs on the states. The authors give an online algorithm
that obtains a competitive ratio of 8. This can be improved
t o 5.828 under the very reasonable assumption that p,, > p a
for any i < 6 < j. They also develop a meta-algorithm (i.e.,
a DPM algorithm generator) that takes as input the param-
eters of a system and produces a DPM strategy (sequence
of states and threshold times). The strategy they produce
is guaranteed to achieve a competitive ratio that is within
an arbitrary e of the best possible competitive ratio for that
system. The running time of the meta-algorithm is polyno-
mial in the number of states and l J c . An interesting open
question is if similar techniques can he used when the idle
period length is generated by a known probability distribu-
tion.

Another direction that has recently been undertaken is to
combine DPM strategies with Dynamic Voltage Scaling for
devices that have both the ability to run at varying speeds
and the ability to shut down when idle [17]. Combining
these two problems of DSS and DPM, introduces challenges

which do not appear in either of Lhe original problems. In
DPM, the lengths of the idle intervals are given as part of
the input whereas in the combined problem they are c r e
ated by the scheduler which decides when and how fast to
perform the tasks. In DVS, it is always in the best interest
of the scheduler to run jobs as slowly as possible within the
constraints of the arrival times and deadlines due to the con-
vexity of the power function. By contrast in the combined
problem, it may be beneficial to speed up a task in order
to create an idle period in which the system can sleep. An
offline algorithm is described that is within a factor of three
of the optimal algorithm as well as an online algorithm with
a constant competitive ratio. Some of the same issues are
dealt with in (221 in which process scheduleffi have some lat-
itude in scheduling the execution of tasks so as to maximize
the benefit of dynamic power scheduling.

2.2 Probabilistic Analysis
As discussed above, competitive analysis often gives overly

pessimistic hounds for the behavior of algorithms. This is
because competitive analysis is a worst-case analysis. In
many applications there is structure in the input sequence
that can be utilized to fine tune online strategies and im-
prove their performance. Indeed, important earlier works
in this area [7, 331 have relied on modeling the distribution
governing inter-arrival times as an exponential distribution.
In practice, such stochastic modeling seems to hold well for
specific kinds of applications. However, these assumptions
have led to complications in other settings due to phenom-
ena such as the non-stationary nature of the arrival process,
clustering, and the lack of independence between subsequent
events. These problems have been addressed to some extent
in [24, 121.

In [le], we introduced an approach that models the up-
coming input sequence by a probability distribution that is
leamt based on historical data. One of the strengths of this
method is that it makes no assumptions about the form of
this distribution. Once the distribution is learnt, we can au-
tomatically generate a probability-based DPM strategy that
minimizes the expected power dissipation given that the in-
put is generated according to that distribution based on the
notion of a probabilistic Competitive ratio (391.

Optimizing Power Based on a Probability Distribution
Let us suppose that th~e length of the idle interval is gener-
ated by a fixed, known distribution whose density function
is r. Let us consider systems with two states. As before, let
B be the start-up energy of the sleep state and a the power
dissipation of the active state. Suppose that the online algo-
rithm uses r as the threshold at which time it will transition
from the active state to the sleep state if the system is still
idle. In this case, the ezpected energy cost for the algorithm
for a single idle period is given as:

The best online algorithm will select a value for r which
minimizes this expression. On the other hand, the offline
optimal algorithm which knows the actual length of an up-
coming idle period will have an expected cost o f

I t has been shown that for the 2-state case, the online algo-

876

rithm can pick its threshold T so that the ratio of its expected
cost to the expected cost of the optimal algorithm is at most
e/(. - 1) = 1.58 [19]. A generalization of this algorithm to
the multi-state case is given in [39]. The generalized algo-
rithm is called the Probabilistic Lower Envelope Algorithm
(or PLEA) and the authors have shown that for any dis-
tribution, the expected cost of PLEA is within a factor of

Thus a knowledge of the input pattern and its use can help
bridge the gap between the performance of online strategy
and that of the optimal offline strategy. Results show the
the worst case competitive ratio can be improved by 21%,
with respect to the deterministic case [18].

Learning the Probabilitj Distribution
The algorithm PLEA above assumes perfect knowledge of
the probability distribution governing the length of the idle
period. Rather than assuming such a distribution, it can
he learnt based on recent history. For instance, a learn-
ing scheme in conjunction with PLEA is called the Online
Probability-Based Algorithm (OPBA). The probability esti-
mator works as follows: a window size w is chosen in advance
and is used throughout the execution of the algorithm. The
algorithm keeps track of the last w idle period lengths and
summarizes this information in a histogram. Periodically,
the histogram is used to generate a new power management
strategy.

The set of all possible idle period lengths (0, CO) is parti-
tioned into n intervals, where n is the number of bins in the
histogram. Let 7; he the left endpoint of the i ih interval,
The it' bin has a counter ci which indicates the number of
idle periods among that last w idle periods whose length
fell in the range [ri,ri+I). Instead of using the continuous
probability distribution r with PLEA as described in the
previous section, we use a discrete distribution, where the
probability the idle period has length ri is cj/w. A similar
approach was taken for a two state system in the context of
determining virtual circuit holding time policies in IP-over-
ATM Networks (ZO].

Efficient implementation of such an algorithm is impor-
tant to ensure overall gains in power reduction. In 1181,
we present an implementation for finding the m - 1 thresh-
olds in time O(mn), where m is the number of states and
n is the number of bins in the histogram. Two important
factors which determine the cost (in time expenditure) of
implementing our method is the frequency with which the
thresholds are updated and the number of bins in the his-
togram. Selecting the right granularity for the histogram is
an important consideration since there is a tradeoff between
efficiency and accuracy. The algorithm employs non-uniform
bin sizes so as to have a high degree of accuracy in critical
regions. The reader is referred to [lS] for a description of
how system parameters are used to select bin sizes.

3. STOCHASTIC APPROACHES TO DPM
We now discuss the stochastic version of the DPM prob-

lem. The problem basically requires one. to devise a strategy
(policy) which is probabilistic, in the sense that the actions
to he taken by the strategy have probabilities attached to
them. Unlike determiniptic strategies, where a particular
state of the system will lead the strategy to take a determin-
istic action, here, the strategy can choose between multiple
actions with pre-designated probabilities.

In recent years, several approaches for designing stochas-
tic DPM strategies have been proposed 130, 7, 6, 11, 33,

- e', of the expected cost for the optimal offline algorithm.

35, 34, 42). These methodologies are based on a stochastic
model of the DPM prohlem, which incorporates the proha-
bilistic characteristics of request arrivals to the device, the
device response time distribution, the power consumption
by the device in various states and the distribution of en-
ergy consumption in changing states. From this stochastic
model, an exact optimization problem is formulated, the
solution to which is the required optimal stochastic DPM
policy. The strategy devised must ensure that power sav-
ings are not achieved at an undue cost in performance. For
example, a new request should be always served in a rea-
sonable time. The constructed policy optimizes the average
energy usage while minimizing average delay. The policies
are usually validated by simulation to check for the sound-
ness of the modeling assumptions, and the effectiveness of
the strategies in practice 133, 301.

The stochastic models which have been used in the litera-
ture are discrete-time Markov chains 130, 71, continuous-time
Markov chains 133: 35, 341 or their variants 142). The ap-
proaches vary in the model of time. Iu the continuous-time
case, mode switching commands can be issued a t any time,
and events can happen a t any time. In the discrete-time
case, all eveuts and actions occur a t certain discrete time
points. The continuous-time assumption makes the formu-
lation of the problem easier. In practice, such stochastic
modeling seems to work well for specific kinds of applica-
tions. Generally, the stochastic matrices for these models
are created manually. In 1341, stochastic Petri nets are used,
which allows automatic generation of the stochastic matrices
and formulation of the optimization problems.

3.1 Analysis using Model Checking
Probabiltstic Model Checking (PMC) offers a promising

way to verify stochastic approaches to DPM as shown in
128, 291. The idea is to construct a probabilistic model of
the system under study. As in the deterministic case, this is
usually a labeled transition system which defines the set of
all possible states and the transitions between these states.
In PMC, the model is augmented with information about
the likelihood that each transition will take place. Examples
of such models are discrete-time Markov chains (DTMCs),
continuoustime Markov chains (CTMCs) and Markov de-
cision processes (MDPs). The properties to be verified, are
specified typically in Probabilistic extensions of temporal
logic. These allow specification of properties such as: "shut-
down occurs with probability a t most 0.01"; or "the video
frame will be delivered within 5ms with probability at least
0.97." The properties can be verified with a probabilistic
model checker either as graph-based analysis and solution
of linear equation systems or linear optimization problems

Like the conventional, non-probabilistic case, prohahilis-
tic model checking usually constitutes verifying whether or
not %me temporal logic formula is satisfied by a model.
The two most common temporal logics for this purpose are
PCTL 114, IO] and CSL 13, 51, both extensions of the logic
CTL. PCTL is used to specify properties for DTMCs and
MDPs and CSL is used for CTMCs. One common feature
of the two logics is the probabilistic P operator, which al-
lows one to reason about the probability that executions of
the system satisfy some property. For example, the formula
P21[0 terminate] states that with probability 1, the system
will eventually terminate. On the other hand, the formula
P,o.m[-repair U5z00 terminate] asserts that with proha-
hility 0.95 or greater, the system will terminate within 200
time steps and without requiring any repairs. These prop-

(311.

877

erties can be seen as analogues of the non-probabilistic case,
where a formula would typically state that all executions
satisfy a particular property, or that there ezists an execu-
tion which satisfies it. CSL also provides the S operator to
reason about steady-state (long-run) behavior. The formula
S,o.ol(gueue.size = maz], for example, states that in the
long-run, the probability that a queue is full is strictly less
than 0.01. Further properties can be analyzed by introduc-
ing the notion of costs (or, conversely, rewards). If each state
of the probabilistic model is assigned a real-valued cost, one
can compute properties such as the expected cost to reach
a certain states, the expected accumulated cost over some
time period, or the expected cost a t a particular time in-
stant. Such properties can also be expressed concisely and
unambiguously in temporal logic 113, 41.

4. DPM ANALYSIS USING PRISM
PRISM (31, 28, 291 is a probabilistic model checker devel-

oped at the University of Birmingham in England. In [ZS,
291 PRISM was used for deriving stochastic DPM policies
for disk-drive, and was shown to be a uniform framework
in which DPM policies can be derived and evaluated. The
basic approach is to build a probabilistic model of the DPM
system from which, for a given constraint, an optimization
problem is constructed. The solution to this problem is the
optimum randomized power management policy satisfying
this constraint.

Once an optimal power management policy has been con-
structed, it must be validated to ensure it performs as in-
tended. Possible approaches are to use tracebased simula-
tion or to actually implement the schemes in device drivers.
The advantage of PMC is that it allows one to validate and
analyze the policies statically leading to a wide range of use-
ful information about the policy to be generated.

Modeling DPM in PRISM
While PMC has been applied to both DTMC of 130, 71, as
well as CTMC of [33, 35, 341, we focus on the former here in
view of the limited space. The approach is described through
the example of the IBM TYavelStar V P disk-drive 1451. The
device has 5 power states, labelled sleep, stby, idle, idlelp
and active. I t is only in the state active that the drive can
perform data read and write operations. In state idle, the
disk is spinning while some of the electronic components
of the disk drive have been switched off. The state idle$
[idle low power) is similar except that it has a lower power
dissipation. The states stby and sleep correspond to the disk
being spun down. Based on the fastest possible transition
performed by system, one can choose a time resolution of
Ims for the model, i.e., each discrete-time step of the DTMC
will correspond to lms.
The system model shown in Figure I consists of. a Ser-

vice Provider (SP), which represents the device under power
management control; a Service Requester (SR), which is-
sues requests to the device; a Service Request Queue (SRQ),
which stores requests that are not serviced immediately; and
the Power Manager (PM), which issues commands to the
SP, based on observations of the system and a stochastic
DPM policy. Each component is represented by an individ-
ual PRISM module, which we now consider in turn. Due to
lack of space, we only provide examples of important com-
ponents for illustration purposes.

I

Figure 1: The System Model

Modelin the Power Manager(PM). Service Requester
(SR) aniQueue(SRQ)
The PM decides to which state the SP should move a t each
time step. To model this, each step is split into two parts:
in the first, the PM (instantaneously) decides what the SP
should do next (based on the current state); and in the sec-
ond, the system makes a transition (with the SP's move
based on the choice made by the PM). These steps are syn-
chronized with other components using two synchronization
actions tick1 and tic!&, described in a CLOCK module (not
shown here). Figure 3 shows an example PM in PRISM.

Both the SRQ and the SR will synchronize on tick2. The
SR has two states: idle where no requests are generated and
lreq where one request is generated per time step (lms). The
transitions between these states is based on time-stamped
traces of disk access measured on real machines 171. The
module of the SR is given by:

.-A,. SR ., : ID..,) lilt 0;
/ I 0 . d l C "d I - I-?

Itkk21 . . io - 0.898 : ,.r'=O) + 0.102 : (.r'=t);
ItiCkll .r-l - 0.114 : (.r'=O) + 0.548 i (./=I,;

The SRQ models queue of service requests. It responds to
the arrival of requests from the SR and the service of re-
quests hy the SP. The queue size will only decrease when
the SR and SP are in states idle and active, respectively.
Similarly, it will only increase when the SR is in state lreq
and t.he SP is not active. The PRISM code is as follows:

I . . _ d D 1 . I

4.1 Policy Construction and Analysis
Using the PRISM language description shown in the pre-

vious section, the PRISM model checking tool can be used
to construct a generic model of the power management sys-
tem. From the transition matrix of this system, the linear
optimization problem (whose solution is the optimal pol-
icy) can be formulated, as described in [30, 71. This opti-
mization problem is then passed to the MAPLE symbolic
solver. Figure 2 shows policies constructed in this way for a
range of constraints on the average size of the service request

878

Figure 2: O p t i m u m policies under varying con-
s t ra in ts on t h e average q u e u e size

queue. The first column lists the constraint; the second col-
umn summarizes the corresponding policy.

Once a policy has been constructed, its performance can
he investigated using probabilistic model checking. The
generic power managcr PRISM module is modified to repre-
sent a specific policy. Figure 3 shows an example of this for
the constraint "queue size is less than 0.05". This can be
seen to correspond to the policy in the 6th row of the table
in Figure 2. PWSM is then used to construct and analyze
the DTMC for this policy.

F igure 3: Example inpu t to PRISM for a derived
Pol icy under performance constraint = 0.05

From the analysis, we can see that the average power con-
sumption of a policy decreases as the constraint on quene
length used to construct it is relaxed (i.e. the queue size is
larger). One can also validate the policy by confirming that
the expected size of the queue matches the value in the con-
straint which was used to construct it. Finally, we see that
a side-effect of this is that the average number of requests
lost is also increased.

In Figure 4, we show results for a range of policies from 1291
Using the same awiguments of model states t o costs as dis-
cussed above, we compute and plot, for a range of values
of T "expected power consumption by time T" , "expected
queue size at time T", and "expected number of lost CUP-

tomers by time T". The first and third properties are dcter-
mined hy computing expected cast cumulated up until time
T the second by computing the instantaneous cost a t time
T. Again, we see that policies which consume less power
have larger queue sizes and are more likely to lose requcsts.
Here, though, we can get a much clearer view of how these
properties change oveI time. We see, for example, that the
expected qwue size a t timc T initially increases and then
decreaes. This follows from the fact that the strategies wait
for the queue to become full before switching the SP on.

Figure 5 shows the probability that a request is served

F a d e I I O
I . d

Figure 4: Power and per formance by t ime T (ms)

by time T , given that it arrived into a certain position in
the queue. Figure 6 shows the probability that N requests
get lost by time T for N = 500 and N = 1000. Again this
information has been computed for a range of policies and
for a range of values of T. These properties are computed
by adding additional state variables to the PRISM model.
For those in Figure 6 , for example, we add a variable which
is initially zero and is increased each time a customer is lost
(up to a maximum on N). We then calculate the probability
of reaching any state where this variable's value is equal to
N .

The graphs show that the probability of requests heing
lost within a certain time hound increases more quickly for
those strategies that consume less power. These results are
to be expected since, to reduce power, the strategies must
force the service provider to spend more time in low power
states which cannot service requests, e.g., sleep and standby.

Probabilistic model checking has also been applied [ZS]
to the stochastic optimum control approach of (33, 35, 341,
which is based on CTMCs rather than DTMCs. Since the
model is a CTMC, components change state according to ex-
ponentially distributed delays and the PM acts when such a
state transition occurs. The construction of optimum poli-
cies from the PRISM model follows the approach of 133, 35,
341 hut is essentially the same overall process. For analysis
of policies, one can consider similar properties to the DTMC
case. The main differences are that the logic CSL is used
as opposed to the logic PCTL, and that the time hound T
used in the properties is now a real-value as opposed to a
number of discrete steps. In addition, in this case, using

a79

Figure 5 :
time T (ms)

Probabi l i ty that a request is served by

the approach of [Z l] one can also analyze the policies for al-
ternative inter-arrival distributions, to give a more realistic
model of the arrival of service requests. Far example, Fig-
ure 7 shows the performance (average power consumption,
average queue size and average number of lost requests) for
optimum policies under five different inter-arrival distribu-
tions. All the chosen distributions have the same mean and
it can be seen that, with the exception of the Pareto distri-
bution, the long-run performance and costs are reasonably
close to those of the exponential arrival process. For the
Pareto distribution, the average queue size is generally much
smaller. This is due to the Pareto distribution's heavy tail:
in the long run, many requests will not arrive for a very long
time, in which case the service provider (SP) will serve all
pending requests, leaving the queue empty.

5. SUMMARY
In this tutorial, we focused on techniques for power man-

agement that rely on formal techniques for evaluation of the
effectiveness of DPM algorithms. For deterministic models
of the system, competitive analysis along with learning tech-
niques provide a reaonsable framework for their analyses.
Stochastic optimization approaches to DPM can he analyzed
using advances in probabilistic model checking techniques.

We showed (&om (28, 291) how probabilistic model check-
ing allows generation of a wide range of performance mea-
sures for the analysis of DPM policies. Statistics such as
power consumption, service queue length and the number
of requests lost can be computed both in the average case
and for particular time instances over a given range. Fur-
thermore, the policies' behavior can be examined under al-
ternative service request inter-arrival distributions such as
Erlang and Pareto. In addition to the exhaustic analysis
(including corner-case scenarios), probabilistic model check-
ing presents an attractive unified framework for automated
construction, validation and analysis of DPM policies.

Due to lack of space we have not been able to cover some
new efforts in power management in the context of power
aware ad-hoc network protocols. Notable among these are

F igure 6: Probabi l i ty that N requests ge ts lost b y
t i m e T (ms)

the use of an economicshased model for networking pro-
tocols in 1411 and power aware source routing in 12.51. We
also did not discuss DPM models that consider the battery
model which is not considered in any of the approaches dis-
cussed above. Rang and Pedram in (381 provide a stochastic
model that takes into account the current discharge rates by
the batteries in formulating stochastic DPM strategies.

6. REFERENCES
[I] A. Borodin and R. El-Yaniv. Online Computotion and

Competitiue Analysis. Cambridge University Press, 1998.
[2] J. Augustine and C . Swamy. Dynamic power management with

non-additive state transitions. Submitted for publication
Available ae Technical Report. Information and Camnuter
science. uc 1rvine.

[3] A. Aziz, K. Sanwal, V . Singhal, and R. Brayton. Verifying
continuous time Markov chains. In Proc. Conference on
Computer-Aided Venfcotion. July 1996.

(41 C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. On the
logical characterisation of performability properties. In Proc.
ICALPBO, 2000.

151 C. Baier, J.-P. Katoen, and H . Hermanns. Approximative
symbolic model checking of continuous-time Markov chains. In
Proc. CONCUR'BB, Eindhoven, August 1999.

techniques far system-level dynamic power management. IEEE

Syatema, 8(3):299-316, 2000.

optimization for dynamic power management. IEEE
Donsoctiona on Computer-Aided Design of Integmted
Circuits and Syatema, 18(6):813-833, 1999.

(81 L. Benini, G . De Micheli, and E. Macii. Designing Low-power
Circuits: Practical Recipes. IEEE Circuit8 and Suatema
Magoline, 1(1):6-25, Mar. 2001.

[9] L. Benini and G . D. Micheli. Dynamic Power Monogement:
Design Techniques and CAD Tools. Kluwer Publications, 1998.

[lo] A. Bianeo and L. d e Alfaro. Model checking of probabilistic
and nondeterministic systems. In Prac. FSTTCS, volume 1026
of LNCS, pages 499-513. Springer, 1995.

Dynamic Power Management for Non-Stationary Service
Requegts. in Proceedings of the Design Automation and Test

161 L. Benini, A. Bogliolo, and G . D. Micheii. A survey of design

rrnnaoctions on very Large Scnle 1ntegrotion (TVLSIJ

[7] L. Benhi, A. Bogliolo, G. Paleoiogo, and G. D. Micheli. Policy

[I l l E. Y . Chung, L. Benini, A. Bogliolo, and 6. D. Micheli.

Europe, 1999.

Management Using Adaptive Learning Trees. In Pmceedinga of
ICCAD, 1999.

PhD thesis, Stanford University, 1997.

[12] E.-Y. Chung, L. Benini, and G. D. Micheli. Dynamic Power

[I31 L. de Aifaro. F o m o l Verification of Probabilistic Systema.

880

Figure 7: Analysis.offe-ha~CTMC case fh a variety
of inter-arrival distri€k&ik

[14] H. Hansson and B. Jonsson. A logic for reasoning about time.
and probability. Fomol Aapecta of Computing, 6512-335,
1994.

(151 C.-H. Hwang, C. Allen, and H. Wu. A Predictive System
Shutdown Method For Energy Saving of Event-Driven
Computation, In Proceeding. of the iEEE/ACM Internotional
Conference on Computer Aided Design, pages 28-32, 1996.

1161 Intel and Microsoft and Toshiba. Advanced Configuration and
Power Interface Specification. Website, December 1996.

[lrl S. Irani, S. Shukla, and R.Gupta. Algorithms for power savings.
In Proceedings of the 14th Symposium on Diacr'ete
Algorithms, pages 37-46, 2003.

1181 S. Irani, S. Shukla, and R.Gupta. Dynamic power management
of devices with multiple power saving states. ACM
'7bneoctiona on Embedded Systems, Accepted for publication,
2003.

[I91 A. Karlin, M. Manasre, L. McCeoch, and S. Owicki.
Randomized competitive algorithms far non-uniform problems.
In First Annual ACM-SIAM Symposium on Diacretc
Algorithms, pages 301-309, 1990.

(201 S. Keshav, C. Lund. S. Philliips, N. Fleaingold, and H. Saran.
An empirical evaluation of virtual Circuit holding time policies
in ip-over-atm networks. IEEE Journal on Selecled Areas in
Communications, 131371-1382, 1995.

[21] M. Kwiatkowska, G. Norman, and A. Pacheco. Model checking
expected time and expected reward formulae with random time
bounds. In Proe. 2nd Euro-Jnponeae Warkahop on Stachodtic
Riak Modelling for Finonce, insurance, Production and
Retiobilitv, 2002.

1221 Y. Lu, L. Benini, and G. DeMieheli. Request-aware power
reduction. In Proceedings of the Internotional Svmpoaium on
Sydtem Synthesis, pages 18-23, 2000.

Quantitative Comparison of Powa Management Algorithms. In
Proceedings of the Design ond Automotion ond Test in
Europe, 2000

Management on Fersanal C O ~ P U ~ B I S . In Pmceedinga of the
G r ~ o t Lokee Sympoaium on VLSi, 1999.

[23] Y. Lu, E. Chung, t. Simunie, L. Benini, and G. DeMicheli.

1241 Y. Lu and G. DeMieheli. Adaptive Hard Disk Power

125) M. Msleki, K. Dantu, and M. Pedram. Power-aware source
routing protocol for mobile ad hoe networks. In Prowdings of
ISLPED, 2002.

Applications. Website, August 1997.
(27) R. Mi", M. Bhardwaj, S.-H. Cho, N. Ickes, E. Shih, A. Sinha,

A. Wang, and A. Chandrakasan. Energy-Centric Ensbling
Technologies for Wireless Sensor Networks. IEEE W k d e s s
Communications, August 2002.

R. Gupta. Formal a n a l y ~ i ~ and validation of CantinuOUS time
Markov chain based system level power management strategies.
In Proc. 7th Annual IEEE hternotianol Workshop on High
Leuel Deaign Volidntion and Test (HLDVT'OPJ, pages 45-50,

1261 Microsoft. UnNaw Power Management Architecture for

[28] G. Norman, D. Parker, M. Kwiatkowah, S. Shukla, and

?""?

1291 G. Norman, D. Parker, M. Kwiatkoweka, S. Shukla, and
R. Gupta. Using probabilistic model checking for dynamic
power management. In Proc. 3rd Workahop on Automated
Verificotian a j Critical Syatema (AVoCS'Os), pages 202-215,
Anril 2003. -

[SO] G. A. Paledogo, L. Benini, A. Boglido, and G. D. Micheli.
Policy Optimization for Dynamic Power Management. In
Proceedings of Design Automation Conference, 1998.

(311 D. Parker. Implementation of Symbolic Model Checking for
Probobilislie Systems. PhD thesis, University of Birmingham,
2002.

(321 S. Phillips and J. Westbrook. chnptev IO of Algorithms and
Theory of Computation Hondboak, chapter On-line algorithms:
Competitive analysis and beyond. CRC Press, Boca Raton,
1999.

[33] Q. Qiu and M. Pedram. Dynamic Power Management Based on
Continuous-Time Markov Decision Processes. In Proceeding8 of
Design Automation Conference, pages 555-561, June 1999.

management of complex system3 using generalized Stochastic
petri nets. In Proceedings af Design Automation Conference,
pages 352-356, June 2000.

Rbwer-Mhagedi Sptemi: Cbnnstructian,and,Opti~i~tibn; In,
Proceedings of,'tGe. Internotiand; S@poaium. on, Low;Rbwen
Elhctmnics, and, Deaign;,1999!

(341 Q. Qiu and Q. Wu and M. Pedram. Dynamic power

[35], Q: Qui,@ \Uu;andiM1 Redram..Stoohastio Modellng,&al

1361, D: Eamsnathani.S.,.Iiani,,,.snd:&l.I(..Gupta:.L'atenoy.EffBots~af.

[37]: Z. &en and'E! Krogh. Sentry-based Power Management in
Wireless Sensor Networks. In Proceedings of IPSN, 2003.

[38] P. Rong and M. Pedram. Extending the lifetime of a network of
battery-powered mobile devices by remote processing: a
Markovian decision-based approach. In Proceedings o j DAG,
2003.

(391 S. Irani and S. Shukla and R. Gupta. Competitive analysis of
dynamic power mansgement strategies far Systems with
multiple power saving states. In Proceedings of the Design
Automation and Test Europe Conference, 2002.

Evaluating System Level Power Management for Embedded
Systems. In Proceeding8 of IEEE Workahop on High Level
Design Volidotion and Test (HLDVTOI). IEEE Przss,
November 2001.

[41] L. Shang, R. Dick, and N. K. Jha. A n economics-baed
power-aware protocoI far computation distribution in mobile
ad-hoc networks. In Proceedings of 14th IASTED
Internotionol Conference on Parollel and Distributed
Computing and Systems, 2002.

[42] T. Simunic, L. Benini, and G. D. Micheli. Event Driven Power
Management of Portable System#. In In the Proceeding8 of
lnternationol Sympoaium on Syatem Synthesis, pages 18-23,
1099.

Methodologies, chapter Power-Aware Communication Systems.
Kluwer Academic Presii, 2002.

[44] M. B. Srivastava, A . P. C h a n d r a k a n , and R. W. Broderson.
Predictive Shutdown and Other Architectural Techniques for
Energy Efficient Programmable Computation. IEEE T+'ona. on
VLSI Swtema. 4111:42-54. march 1996.

S y * t e m , l e " e ~ . e a w e r - ~ ~ ~ ~ g ~ ~ ~ trgo+khm: Iht Pkc:
1CcA.q:. 2000:

1401 S. Shukla and R. Gupta. A Model Checking Approach to

(431 M. Srivastava. Chapter 11 of Power Aware Deaign

881

