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Abstract— We study the complexity of a class of problems most general case, even inaimensional quantum system,
involving satisfying constraints which remain the same amd finding the ground state is a computationally difficult prob-
translations in one or more spatial directions. In this pape show lem (modulo the usual complexity-theoretic assumptions).

hardness of a classical tiling problem on &nx N 2-dimensional H th tructi tedin M1 | ¢
grid and a quantum problem involving finding the ground state owever, the construction presentediin [1] involves a syste

energy of al-dimensional quantum system of particles. In both ~ Which is completely unnatural from a physical point of view.
cases, the only input &/, provided in binary. We show that the The most interesting physical systems frequently possess a

classical problem iSdEXP-complete and the quantum problem is additional symmetry: translational invariance. In thipea

QMAexp-complete. Thus, an algorithm for these problems whichyye || show that even al-dimensional translationally-
runs in time polynomial inV (exponential in the input size) would

imply that EXP = NEXP or BQEXP = QMAexp, respectively.  nvariant system can be hard. ,
Although tiling in general is already known to BEEXP-complete, One interesting feature of our proof which may have
to our knowledge, all previous reductions require thategithe set more general applicability is that the only free parameter

of tiles and their constraints or some varying boundary d@ws  for the language we consider is the size of the system.
be given as part of the input. In the problem considered lteese 15 i frequently the case for interesting systems: there
are fixed, constant-sized parameters of the problem. lastbe . . . .
problem instance is encoded solely in the size of the system. is a basic set of rules of constant size, and we W_'Sh to
study the effect of those rules when the system to which the
rules apply becomes large. In practice, many such systems
seem difficult to solve, but it is hard to see how to prove
One perennial difficulty with practical applications of a complexity-theoretic hardness result, since that reguir
hardness results is that the practically interesting imtsta  reducing a general problem in some complexity class to
of a hard language may not themselves form a hard classhe language under consideration, and there doesn’t seem
One approach to solving this problem is the difficult theoryto be room in this language to fit all the needed instances.
of average-case complexify [14]][2], in which one can showUsually, this difficulty is circumvented by modifying the
that “typical” cases of some language are hard. In this papgsroblem slightly, to add additional parameters in which
we take a different approach. In many cases, practicallyve can encode the description of the instance we wish to
interesting instances possess some shared property, suchsiamulate.
a symmetry, that distinguish them from the general instance To illustrate, let us present the classical tiling problem w
and might, in principle, make those instances easier. We wilstudy in this paper: We are given a set of square tiles which
study such an example and show that, even in a systemwome in a variety of colors. The area to be tiled is a square
possessing a great deal of symmetry, it is still possible t@area whose size is an integer multiple of the length of a
prove a hardness result. tile. We are given horizontal constraints indicating which
Specifically, we consider the related problems of deterpairs of colors can be placed next to each other in the
mining whether there is a possible tiling of asdimensional  horizontal direction and another set of constraints in the
grid with some fixed set of classical tiles and of finding thevertical direction. We specify a particular color which rhus
lowest energy state (aground statg of a quantum system go in the four corners of the grid. The description of the
involving interactions only between neighboring particle tile colors, placement constraints and boundary condition
on an r-dimensional grid. The ground state energy of aare fixed for all inputs of the problems. The input is just a
system is considered one of the basic properties of a pHysicaumber N written in binary and we wish to know whether
system, and over the last few decades, physicists haven N x N grid can be properly tiled given these constraints.
developed a number of heuristics that have been successfle show that this problem i8IEXP-complete. Note that
in finding the ground state energy in many special cases. Othe input in this case is sideg IV, so an algorithm to solve
the other hand, in earlier workI[1], we have shown that in theour tiling problem that runs in time polynomial i would

1. INTRODUCTION



imply that NEXP = EXP. While it is possible thaP = NP operator. For anV-particle system, it can be expressed as a
and yetNEXP = EXP, this seems unlikely to be the case. dV x d" matrix over the complex numbers. If the property
This version of tiling is equivalent to the more common is measured, then the outcome must be an eigenvalue of the
Wang Tiles [21] in that any set of tiles can be transformedcorresponding linear operator and the state of the system
into a set of Wang Tiles (and vice versa) such that therafter the measurement is in the eigenspace corresponding
is a one-to-one correspondence between valid tilings on ato the outcome. Thus, the problem of finding the energy
N x N grid. For aninfinite grid, the problem is undecidable. for the lowest energy state is the same as determining the
Intuitively, it makes sense that it is also hard (for somelowest eigenvalue for the energy operator (also called the
sets of tiles) for a finite grid, since there are exponetiall Hamiltonianfor the system). The difficulty, of course, is that
many possible tilings, and it is impossible to tell locally the Hamiltonian matrix is exponentially large in the siXe
whether a given partial tiling can be extended indefinitely.of the system.
Indeed, there are prior results showing that related tiling We are typically interested in systems whose Hamilto-
problems areNEXP-complete, but to our knowledge, all nians arelocal in that they can be expressed as a sum of
previous reductions require that either the set of tiles anderms each of which acts non-trivially only on a constant-
their constraints or some varying boundary conditions besized subset of the particles in the system. Although tha ter
given as part of the input [7][15][[5]. For instance, one “local” does not imply anything about the physical location
may specify the placement of some number of tiles and askf the particles, it is motivated by the idea that particles
whether it is possible to extend that partial tiling to anliof ~ only interact when they are physically close to each other.
the full square. Even though that problem had been provelVe can extend this even further and consider a system of
hard, the more natural problem of whether it is possible tgparticles on an-dimensional grid, where the terms of the
efficiently find a tiling of the empty grid remained open. Hamiltonian operate only on neighboring pairs of particles
Many NEXP-complete problems are succinct versions ofin the grid. Note that although the full matrix represertati
familiar combinatorial problem$[8], [20] in which the inpu of a Hamiltonian is exponentially large in the size of the
has some special structure which allows for a more compaaystem, a local Hamiltonian has a compact representation:
representation. For example, consider the problem of findineach term can be expressed as a constant-sized matrix, and
an independent set in a graph where the graph is specifigtiere can only be polynomially many such terms.
by indicating the number of nodes in binary and providing Kitaev introduced the clasQMA, the quantum analog of
a compact rule (or circuit) to determine if two nodes areNP, and showed that the problem of determining the ground
connected. Traditionally, the rule is included as part ofstate energy of a system defined by a local Hamiltonian
the input, which potentially allows for a more expressiveis QMA-hard [13]. Thus, we do not hope to solve it even
language. The analog to our work would be for the rule toon a quantum computer. With an additional promise, the
have a constant-sized description, fixed for all inputs. problem isQMA-complete: there exist two values > b,
The basic idea of our construction is to reduce fromsuch thata — b > 1/poly(NN), where it is guaranteed that
an instancer of some language INEXP by encodingz  the ground state energy is at masor at leasta, and one
in the binary expansion ofV, the size of the grid. It is wants to determine only which of the two alternatives holds.
well known that a finite set of tiling rules can be used The problem is still hard even for two-dimensional systems
to implement a universal Turing Machine. We need someon qubits or one-dimensional systems of particles of canista
way to express the program for the Turing Machine to runHilbert space dimension [18], [1].
and that program must grow with the size :of Previous Despite these worst-case results, numerical methods have
constructions managed this by resorting to either polylog been successful at determining ground state energies for
different tile types or varying boundary conditions to edl€o0 many quantum systems, especially in one dimension. What
x, but those are both fixed, constant-sized parameters iare the differences between these h@hA-complete prob-
our version of the problem. Instead, we use the tiles tdems and the more tractable systems studied by numerical
implement a binary counter which conves into binary  physicists? One feature of tfi@gVIA-completeness construc-
and then uses it as an input to a universal Turing Machinetions is that the individual terms of the Hamiltonian are
The other problem we consider is finding the ground statgosition-dependent. Essentially, the computation peréat
energy of a quantum system. The state of a quantum systehy a quantum verifier circuit is encoded into the Hamiltonian
with N qubits is a vector in a Hilbert space of dimensionso that a low energy state exists if and only if there is
2N We will be considering a slightly more general versiona quantum witness that causes a verifier to accept. Thus,
in which an individual particle has its state in a space ofthe terms of the Hamiltonian encode, among other things,
dimensiond, in which case the state of a system ®f individual gates in a quantum circuit. In contrast, many
such particles is a vector ind’ -dimensional Hilbert space. quantum systems of physical interest are much more uniform
Any physical property of a system that can be measureith that they consist of a single Hamiltonian term that is
(e.g. location, momentum, energy) corresponds to a lineasimultaneously applied to each pair of neighboring pascl



along a particular dimension. Such a system is caliads-  of the d possible standard basis states, which correspond to
lationally invariant the possible tile colors. A pair of tileg;, ¢;) is allowed by
Since highly symmetric systems are rather natural, ahe tiling rules iff the corresponding;¢;)(t;t,| term of the
number of researchers have studied the computational powetamiltonian is0, so that allowed tilings have total energy,
of translationally invariant quantum systems. For instéanc whereas a forbidden tiling has energy at lehst
[17] gives a20-state translation-invariant modification of the
construction from[[1] (improving on &6-state construc-
tion by [11]) that can be used for universaddimensional Definition 2.1: TILING
adiabatic computation. These modifications require that th Problem Parameters:A set of tilesT = {¢4,...,t,,}. Aset
system be initialized to a particular configuration in which of horizontal constrainté/ C 7' x T such that if¢; is placed
each particle is in a state that encodes some additiondb the left of¢;, then it must be the case th@t,t;) € H.
information. The terms of the Hamiltonian, although iden-A set of vertical constrainty” C T' x T' such that if¢; is
tical, act differently on different particles depending on placed belowt;, then it must be the case thét,¢;) € V.
their state. The ground state is therefore degenerate arfildesignated tile; that must be placed in the four corners
one determines which ground state is reached by ensuringf the grid.
that the system starts in a particular state. Kay [12] give$roblem Input: IntegerV, specified in binary.
a construction showing that determining the ground stat®©utput: Determine whether there is a valid tiling of &nx
energy of a one dimensional nearest-neighbor HamiltonianV grid.
is QMA-complete even with all two-particle terms identical. Theorem 2.2:TILING is NEXP-complete.
The construction does, however, require position-depginde We give the proof in sectiohl 3. The basic idea is that
one-particle terms. Irani has demonstrated ground stae co two adjacent corners are used to create a border around the
plexity in one-dimensional translationally-invariantsggms  perimeter of the grid which allows us to implement special
by showing that such systems can have ground states wittules at the top and bottom rows. The interior of the grid
a high degree of quantum entanglemént [10]. While quanis tiled in two layers, each of which implements the action
tum entanglement is closely related to the performance obéf a Turing machine. The first TM proceeds from top to
numerical heuristics in practice, the particular statethia ~ bottom on layer 1 and the second proceeds from bottom
construction are easy to compute. to top on layer 2. The first TM takes no input and acts
In contrast, we show that there exigtdimensional as a binary counter foiV steps. The bottom row of the
translationally-invariant quantum systems with nearestfirst layer then holds a binary number that @N'/*).
neighbor interactions for which finding the ground stateThe rules for the lower boundary are then used to copy the
energy is complete foQMAgxp, @ quantum analogue of output from the binary counter to the bottom row of layer 2,
NEXP. As with the classical result, the only parameter whichwhich acts as the input to a generic non-deterministic Turin
varies in the language %, the number of particles, and we machine. The rules for the top boundary check whether the
must useN to encode the instance from which we wish final configuration on layer 2 is an accepting state.
to reduce. The quantum result uses a similar idea to the Note that it is important that we chose to have the input
classical result: we arrange for a control particle to dautt N provided in binary. If it were instead given in unary,
between the ends of the system and count the number dfiere would only be one instance per problem size, and the
particles. The binary encoding for the number of particlesproblem would be trivially inP/poly. Thus, in order to prove
is then used as an input to a quantum Turing Machine. a meaningful hardness result, we are forced to move up
It is worth noting that the one-dimensional version of thethe exponential hierarchy and prove the problenVExXP-
classical tiling problem is very easy: it is iR (see the complete rather thallP-complete.
extended version_[9] for the algorithm). That is, it can be A common convention for this tiling problem is to only
solved in a time polylogV, whereas it appears the quantum specify the boundary condition tile in a single corner of the
problem can not be done in time polNj, even on a quantum grid. This does not work in our case: If only the upper right
computer (unlessQMAgxp = BQEXP, where BQEXP corner tile is specified, a valid tiling for aN x N grid can be
is like BQP, but with exponential circuits). Translational cropped by removing the leftmost column and bottommost
invariance does seem to simplify thedimensional classical row to give a valid tiling for thg N —1) x (N —1) grid. Thus,
case, reducing poly) time to polylog(V) time, but it there existsVy € ZT U {oo} such that if N < Ny, there is a
doesn’t help very much in the quantum case. valid tiling, and if N > N, then there is no valid tiling. The
Note that the classical tiling problem is a special case ofesulting language either consists of all strings or alhgs
the ground state energy problem for quantum systems wherg to a fixed string in the lexicographical ordering of binary
the Hamiltonian is diagonal in the standard basis with dnly strings. Because tiling the infinite plane is undecidablgis
or 0 entries. Any ground state of such a system is a classicaincomputable as a function ¢I', H, V). Still, if we fix the
state in which the state of each particle is specified by onéling rules, we know there exists a straightforward altfori

2. PROBLEMS AND RESULTS



to solve this variant of TILING: simply determine W < is easy but in a strange non-constructive sense in that the

Ny. We just do not knowVy, so we do not know precisely efficient algorithm depends on an uncomputable parameter

what algorithm to use. Ny. This case is denoted a®,”uncomputable” in Tablg]1
Instead of setting a single boundary condition tile, we usgwith a question mark for other cases for which we have

specified tiles in all four corners to mark out the boundarynot been able to prove whethéf, is computable or not).

of the grid to be tiled. We have considered other versiondNote that this does not exclude the existence of a (poténtial

of the classical translationally-invariant tiling probig¢o un-  slower) algorithm to solve particular instances; indedHd, a

derstand to what extent the precise definition of the problenthe classes in Tablg]l 1 are included NEXP. For these

is important. The boundary conditions, as noted above, areariants, we know that there is an efficient algorithm, so

a critical component. As well as fixing the tiles at tHe a hardness result can be ruled out, but since the algorithm

corners of the square, we have considered periodic boundadepends on an uncomputable parameter, it may be that the

conditions (so we are actually tiling a torus) and openproblem remains hard in practice.

boundary conditions, where any tile is allowed at the edges Now we turn to the quantum problem. First we need to

of the square. The case of periodic boundary conditionslefine the clasQMAgxp. It will be a bit more convenient to

is particularly interesting because it is truly translaly = work with quantum Turing Machines than quantum circuits.

invariant, unlike our usual formulation where the bounédsri  The definition is the same &MA except that the witness

break the translational symmetry. and the length of the computation for the verifier (which is
Another variant is to make the problem more similar toa quantum Turing Machine) can be of sizé on an input

the quantum Hamiltonian problem by assigning a cost tmf lengthn.

any pair of adjacent tiles, and allowing the costs to be Definition 2.4: A languageL is in QMAgxp iff there

different from 0 or 1. This is like a weighted version of exists ak and a Quantum Turing Maching/ such that

tiling and corresponds to a Hamiltonian which is diagonalfor each instancer and any|y) on O(2|I|k) qubits, on

in the standard basis but does not have any other constrainiaput (z, |+)), M halts inO(2/*I") steps. Furthermore, (a)
Definition 2.3: WEIGHTED TILING if © € Ly, 3|¢) such thatM accepts(z,|y)) with

Problem Parameters:A set of tilesT = {t1,...,t,,}. A probability at least2/3. (b) if 2 € Ly, thenV|y), M

set of horizontal weighta ) : T'x T — Z, such that ift; is  accepts(z, |¢)) with probability at mostl /3.

placed to the left of;, there is a contribution ofv (¢;,1;) Definition 2.5: r-DIM TIH (Translationally-Invariant
to the total cost of the tiling. A set of vertical weighis;, : Hamiltonian)
T x T — Z, such that ift; is placed belowt;, there is  Problem Parameter: r Hamiltonian termsH, . .., H, that

a contribution ofwy (¢;,t;) to the total cost of the tiling. each operate on two finite dimensional particles, specified
A polynomial p. Boundary conditions (a tile to be placed with a constant number of bits. Two polynomiaisandg.
at all four corners, open boundary conditions, or periodicProblem Input: IntegerN, specified in binary.

boundary conditions). Promise: Consider anN"-dimensional grid of particles and
Problem Input: Integer N, specified in binary. the Hamiltonian resulting from applying; to each pair of
Output: Determine whether there is a tiling of a&i x N neighboring particles along dimensiénThe ground state
grid such that the total cost is at mqst\V). energy of this system is either at mgst/V) or at least

We have also considered problems with additional symyp(N) + 1/¢(N).
metry beyond the translational invariance. If we heaftec-  Output: Determine whether the ground state energy of the
tion symmetrythen if (¢;,t;) € H, then(t;,t;) € H as  system is at mogt(N) or at leastp(N) + 1/q(N).
well, and if (t;,t;) € V, then(t;,t;) € V also. That is, the The following theorem is the main result for the quantum
tiling constraints to the left and right are the same, as arease and shows that the problem will likely be, in general,
the constraints above and below. However, if we only havdlifficult. Note that typically, one is willing to spend time
reflection symmetry, there can still be a difference betweenhat is polynomial in the size of the system (which is in
the horizontal and vertical directions. If we haxaation  turn exponential in the size of the input). It follows from
symmetrywe have reflection symmetry and al3p,¢;) € H  the result that if there is a quantum algorithm that finds the
iff (¢;,t;) € V. Now the direction does not matter either. ground state energy in time that is polynomial in the size of
These additional symmetries are well motivated from athe system the®@MAgxp = BQEXP.
physical point of view since many physical systems exhibit Theorem 2.6:1-DIM TIH is QMAgxp-complete.
reflection and rotation symmetry. Finally, we have studied The theorem immediately implies thatDIM TIH is
the one-dimensional version of the problem as well as th&MAgxp-complete for anyr > 1 since we can always
two-dimensional version. See Talble 1 for a summary of outake H; = 0 for i > 2 which results in a system ao¥"—!
results. Proofs are given in the extended version [9], and wandependent lines withV particles. We sketch the proof of
sketch the main ideas in sectibh 5. theoren{ 2.6 in sectio 4.

As noted above, TILING with open boundary conditions We can also consider variants atDIM TIH. If we



2-D, no symmetry 2-D, reflection sym. 2-D, rotation sym. 1-D
BC on all corners

unweighted NEXP-complete P, uncomputable? P P
weighted NEXP-complete = NEXP-complete P P
BC on0 or 1 corner
unweighted P, uncomputable P P P
weighted NEXP-complete  NEXP-complete P P
Periodic BC
unweighted NEXP-complete* P, uncomputable? P P
weighted NEXP-complete = NEXP-complete P P

Figure 1. Summary of the variants of TILING. “BC” is short fsoundary condition.” P, uncomputable” means that the associated problem i, in
but an essential parameter of the efficient algorithm we doisnuncomputable (with a question mark if we are not sure héreit is uncomputable).
“NEXP-complete*” means complete under an expected poly-timeaanized reduction or a deterministic polyspace reduction.

use periodic boundary conditions instead of open boundarffor each one, if we can solV€-REPRESENTABILITY, we
conditions, we get the same result. If we add reflectioncan determine ifp can be extended to a candidate ground
symmetry, the problem also remaif@MAgxp-complete state |¢), and if so we can determine the energy |9},
with open or periodic boundary conditions. See the extendesdince it is just equal taVtr(H;p). Trying all possiblep,
version [9] for proof of these results. we can thus find the ground state energyrfup to some

As is common inQMA-completeness results, the con- e-dependent precision.
struction for Theoreni_2l6 creates a Hamiltonian whose
ground state is a uniform superposition of a sequence of 3. HARDNESS OFTILING
states which represent a particular process. A portion®f th  The construction will make use of a binary counter Turing
Hilbert space for the system holds a clock which allows usmachineMpc which starts with a blank semi-infinite tape.
to control the length of the sequence and ensures that tlEhe head begins in a designated start state in the left-most
states in the sequence are mutually orthogonal. That is, theosition of the tapeMpzc will generate all binary strings
t!h state has the form:)|t), where|¢;) is the t'* state in lexicographic order. More specifically, there is a fuonti
in the process we wish to simulate, and the overall ground : Z — {0,1}* such that for some constanf, and every
state will be )", |¢:)[t). The size of the system controls N > Ny, if Mpc runs for NV steps, then the strinfizc (V)
the number of time steps for which the clock runs. In thewill be written on the tape with the rest of the tape blank.
case of the construction presented here, the process onsiMoreover there are constants andcs such that ifn is the
of two main phases. The first phase is the execution of gngth of the stringfpc(N) and N > Ny, then 2¢1 <
Turing machine which simply increments a binary counter. N < 2°2”, We will also assume that for any binary string
The clock ensures that this TM is run fof — 2 steps after x, we can computeV such thatfgc(N) = z in time that
which a number that i®(N'/*) is encoded in binary in is polynomial in the length of:. In some of the variations
the state of the quantum system. This state is then usesf the problem we consider we will need to put additional
as the input to an arbitrary quantum Turing machine whichrestrictions onN (such as requiringV to be odd), and in
is executed in the second phase. This QTM implements gose cases, we still require that we can findNawith the
verifier which is also allowed a quantum witness of lengthappropriate restrictions such thagc (V) = .
©(N). Finally, there is an energy term which penalizes any Using a standard padding argument, we can reduce any
non-accepting computation of the verifier. language ilNEXP to NTIME(2417). If L isin NTIME(2"k),

As a corollary of Theorerh 2.6, the following version of the reduction consists of padding an inputso that its
N-REPRESENTABILITY [16] is alsoQMAgxp-complete:  length is|z|*/c; [19]. Thus, we will take an arbitrary non-
Given a density matriy on two d-state particles, is it within  deterministic Turing machin@/ which accepts a language
e of a statey’ such that there exists a translationally-invariantL in time 2¢™ and reduce it to TILING. The tiling rules and
pure statgq)) for N particles arranged in a circle for which boundary conditions will be specific to the Turing machine
o’ is the marginal state of two adjacent particlgs?s a M but will be independent of any particular input. The
parameter of the problem, amdl, given in binary, is the reduction for Theoreni 2.2 then will take an input string
only input, as in our Hamiltonian problem. We can reduce toz and output intege?NV such thatfzc(N — 3) = z. The
this version of V-REPRESENTABILITY by starting with-  tiling rules will have the property that a stringis in L if
DIM TIH on a circle. Then there is always a translationally- and only if an/N x N grid can be tiled according to the
invariant pure ground state)) of the HamiltonianH. By  tiling rules.
breaking the Hilbert space of tw@-state particles up into Proof of Theorem[2.2 The boundary conditions for the
small balls, we can get a finite set of density matrigéstry. N x N grid will be that the four corners of the grid must have



EEEEE the input copied from layer 1. The lower left corner is used
to initialize the state of\/ and the constraints enforce that

El |:| each row going upwards advances the Turing machihe
by one step. Finally, the only states f that are allowed to
A e feed beed EH be below arf tile are accepting states. Since each Turing
Figure 2. A possible tiling of the sides offax 5 grid. machine only executes faN — 3 steps and the grid has

space forN — 2 tape symbols, the right end of the tape will
never be reached.
a designated tile tygH. (We will actually only need to use  Although it is well known that tiling rules are Turing
the upper left and bottom left corners.) First we will spgcif complete[[3], we review the ideas here in order to specify the
a set of boundary tiles and their constraints. In addition todetails in our construction. We will assume that the Turing
H there are four other kinds of boundary til], [, [m,. = machineM is encoded in a tiling that goes from bottom
E. We will call the rest of the tilesnterior tiles. E will to top. This can easily be reversed fodfg- which goes
mark the left side of the grid® the top of the gridfm] the ~ from top to bottom. The non-deterministic Turing machine
bottom of the grid, anm the right side of the grid. (See M is specified by a triplet>, @, ), with designated blank
figure[2.) symbol# € ¥, start stateyy € Q and accept states € Q.
Nothing can go to the left of ] tile which means that There are three varieties of tiles, designated by elements
the only place §] tile could go is the left-most boundary, of ¥ (variety 1),¥ x @ (variety 2) and® x Q x {R, L}
as desired. Similarly, nothing can abovﬂ tile, nothing  (variety 3). Variety 1 represents the state of the tape away
can go below g tile, and nothing can go to the right from the Turing machine head. Variety 2 represents the state
of a[H tile, which mean{d™ tiles can only go in the top of the tape and head when the head has moved on to a
row, fm] tiles can only go in the bottom row, aff] tles  location but before it has acted. Variety 3 represents the
can only go in the right-most column. No interior tile can state of the tape and head after the head has acted, and the
border aff tile in any direction. Furthermore g cannot  {R, L} symbol tells us which way the head moved. In the
border on itself in any direction. This means that the onlyhorizontal direction a tile corresponding to€ ¥ can go
possible locations for [ are the four corners since those next to any other interior tile to the left or right. Variety 2
are the only places which can be surroundedm( E types cannot go next to each other nor can variety 3 types.
[md. or [H tiles. Since the boundary conditions state @t  The only allowed pairings of variety 2 tiles and variety 3
tiles must go in the corners, those are exactly the locationtiles in the horizontal direction are of the forra, ¢] to the
that will hold B tiles. The only tiles that can go above or left of [b, ¢, L] or [a, ¢] to the right of[b, ¢, R]. Note that the
below the[H tiles are[] and[[] tiles. The only tiles that ~stateq of the head must be the same and the variety 2 tile
can go either to the left or right of tfF tiles aref and  must be placed in the direction designated by kher L in
[ tiles. We will add the constraint that the only tiles that the variety 3 tile.
can go above or beloff] tiles areff] tiles orFH tiles. Thus In the vertical direction, for any. € ¥ we can havea]
the entire west boundary, except for the corners, wilff  above[a]. Variety 2 tiles cannot go above or below each
tiles. Similarly, we add constraints thE tiles must have other and variety 3 tiles cannot go above or below each
H or [ tiles to their right and left and anf® tile must ~ other. A variety 1 or a variety 2 tile can go above a variety
have E orE tile to its right and left. This means that the 3 or a variety 1 tile as long as the alphabet symbols are the
entire south border except for the corners is tiled v@ same. That is[a, ¢] or [a] can go above eith€i, ¢', L/ R]
tiles and the entire north border except for the corners willor [a]. Finally, a variety 3 tile must go above a variety 2
be [ tiles. We do not need to put any further restrictionstile and a variety 2 tile must go below a variety 3 tile.
on the right boundary. Furthermore, these parings are allowed only if they encode
The remainder of the grid will be tiled in two layers. The a valid move of the Turing machine. That %, ¢’, L] can
constraints on the two layers only interact at the bottom ofgo abovela, g] only if (a,q) — (b,¢’, L) is one of the valid
the grid, so we describe each layer separately. The actuabn-deterministic moves of the machine. Similajtlyq’, R]
type for an interior tile is specified by a pair denoting its can go abovda,q] only if (a,q) — (b,¢',R) is one of
layer 1 type and layer 2 type. The bottom layer will be usedthe valid non-deterministic moves of the machine. The table
to simulate the Turing machiné/gc. The top boundary below gives an example of a section of tiles that encodes
of the grid will be used to ensure thatz- begins with  the move(a,q) — (b,¢’, L) of the Turing machine:
the proper initial conditions. Then the rules will enforce - .
that each row of the tiling going downwards advances the [e.q'] | [b,d', L] [d]
Turing machineMpc by one step. At the bottom of the [¢] la,q] | [d\q,L]
grid, the output is copied onto layer 2. Layer 2 is then used The lower row shows the head in the square with the
to simulate a generic non-deterministic Turing machine oru. The [d, ¢, L] is from the previous TM move. The tile




[b,q’, L] enforces that the tiler is committing to executing n is the length of the string'sc(N) and N > N, then
the step(a,q) — (b,¢’, L), although there may have been 21" < N < 2%". We will also assume that for any binary
other non-deterministic choices. The¢'] tile to the left of  string «, we can computéV such thatfpc (N —2) = z in
the [b, ¢’, L] shows the new location and state of the headtime that is polynomial in the length af.
The [b, ¢, L] tile now just acts as ] tile for purposes of We can reduce any language @MAgxp to a language
the tiling above. L that is accepted by a verifier who uses a witness of size
For our particular construction, we would like to start 2™ and whose computation lasts faf'" steps, wherex
out the Turing machiné/gc with [qo, #] in the leftmost is the length of the input. This is the same reduction used
location followed by[#] tiles. For layer 1, the only tiles in the classical case, in which the input is padded to length
that can go below § tile are [qo, #] or [#] tiles. We  |z|*/c1. We can use standard boosting techniques to assume
forbid having a[#] tile to the right of aff] tile and we do that the probability of acceptance or rejection is at lgast
not allow alqo, #] tile to the right of a[#] tile. We can  or at moste for e = 1/poly(N) [13]. Suppose we are given
assume without loss of generality that the Turing machinen arbitrary verifier quantum Turing machiivewhich takes
overwrites the leftmos# on the tape and never writesfa  as input a classical/quantum pait, |¢))) such that|¢)) has
there again. We can also assume that the Turing machir'™ qubits and halts i2“™ steps. Based o, we will
never transitions back to thg state. The rest of the layer produce a Hamiltonian tertd which acts on a pair of finite-
1 rules just enforce the rules for the Turing machiig-.  dimensional particles. We will also produce two polynomial
Now in order to copy the output from/z¢ to the input  p andg. The reduction for Theoreri_2.6 will then take input
tape for M, we restrict the kinds of tiles that can go above stringz and output an intege¥ such thatfpc (N —2) = z.
E tiles. A layer 2 tile that goes above E must be The Hamiltonian will have the property that for any if
[a] or [a,qo] for somea € X. Furthermore, in the space there exists &) that caused” to accept with probability at
above anE tile, the alphabet characters for the layer 1leastl —e, then whenH is applied to every neighboring pair
and layer 2 tiles must match. This copies the output ofin a chain of lengthV, the resulting system has a unique
Mpc onto the input oft”. Now we want to ensure that the ground state whose energy is at mp&W ). If for every|v),
starting configuration o¥ has only one head in the leftmost M accepts with probability at most then the ground state
location. To accomplish this, we forbidf[] to go nextto an  energy of the system is at legstV) + 1/q(IN).
[a] tile for a € X, and forbid anfa] tile (for all a € ¥) Quantum Turing machines were first introduced.in [6] and
to the left of afb, ¢o] tile. Again, we can assume thaf  further developed iri[4]. The latter paper showed that we can
never transitions back tgy. A little care must be taken to make a number of simplifying assumptions about the form
overwrite the leftmost input tape character with somethingof a quantum Turing machine and not restrict its power in
that is not in the alphabet df/g<. This is because we have a complexity-theoretic sense. In particular, we can assume
forbidden having ara] tile to the right of am for any  without loss of generality that the Turing machiliehas a
a € ¥,.- The information encoded in the left-most tape one-way infinite tape and that the head starts in designated
symbol can be retained by having a netvsymbol inX, start statey, at the left-most end of the tape. We will also
for everya € ¥y, assume that on input, after211*! steps, the Turing machine
Finally, the only variety 2 tiles on layer 2 which we allow is in an accepting or rejecting state and the head is again at
below a[ tile must be of the forma, g4], whereg, is  the left-most end of the tape. We will also assume that the
the accepting state. Thus, there is a valid tiling if and onlywitness will be stored in a parallel track with the left-most
if the non-deterministic TMM acceptse in N — 3 steps. qubit in the left-most position of the tape.
We now describe the set of states for the particles. A
standard basis state for the whole system will be denoted
As in the 2-dimensional classical tiling problem, we makeby the state for each particle. Stat<sand & are special
use of a binary counting Turing machingzc. Because bracket states that occur at the ends of the chain.
we are working with quantum systems, we will require Definition 4.1: A standard basis state imacketedif the
that Mpc be reversible. Bernstein and Vazirani [4] have left-most particle is in stat&), the right-most particle is in
shown that any deterministic Turing machine can be madstate>), and no other particle in the chain is in st&<zor
reversible, meaning that given a configuration of the Turing>. S, is the space spanned by all bracketed states.
machine, it has a unique predecessor in the computation. We will restrict our attention for now t&;, and add a
There may be some additional overhead but it is noterm later that gives an energy penalty to any state outside
significant. We can still assume that there is a functionS,,.. The rest of the states will be divided into six tracks,
f +Z — {0,1}* such that for some constafif, and so the state of a particle is an orderéduple with each
every N > Ny, if Mpe runs for N steps, then the string entry specifying the state for a particular track. The set of
fec(IN) will be written on the tape with the rest of the tape allowable states will not necessarily be the full cross prad
blank. Moreover there are constamtsand cy such that if of the states for each track.

4. THE QUANTUM CASE



Two of the tracks will implement a clock, with one track iteration ha®(N —2) distinct states an?l(/NV —2) transitions.
working as sort of a second hand and another track as Bach iteration causes one change in the configuration on
minute hand. The other four tracks will be used to implemenfTrack 2 which acts then as a minute hand for the clock.
two Turing machines which share a work tape. Track 3 holdS'he Track 2 states are partitioned into two phases. The first
the work tape. Track 4 holds the state and head location fophase is called th€ounting Phasand consists of allV —2
the first Turing Machine (which i8/p¢) and Track 5 holds of the states of the forn< @ "©®©@ . The second phase
the state and head location for the second Turing Machiné the Computation Phasand consists of allV — 2 of the
(which is V). The sixth track will hold the quantum witness states of the forn@Q " @@ > states. Thed D @@ &
for V. Since there is limited interaction between the tracks, itstates are ordered according to the number of particles in
will be simpler to describe the Hamiltonian as it acts on eactstate@ and the< @ "©®" > states are ordered according
track separately and then describe how they interact. €igurto the number of particles in stat2. Note that the state
below gives a picture of the start state for the system. Eaciimmediately after<) @ "©® in the ordering is<9 @ D,
column represents the state of an individual particle. The ground state for the clock is the uniform superposition

As is typical in hardness results for finding ground stateof all the clock states. We need to have illegal pairs that
energies, the Hamiltonian applied to each pair will consiist cause all other states to have an energy cost. As is the case
a sum of terms. There are two types of terms. Type | term$n other such proofs, it is not possible to disallow all state
will have the form|ab) (ab| wherea andb are possible states. directly with illegal pairs. Instead, we need to show that
This has the effect of adding an energy penalty to any statsome states are unfavorable because they evolve via forward
which has a particle in state to the immediate left of a or backwards transitions to high energy states.
particle in stateh. We will say a configuration isegal if it Each of the arrow states for Track 1 will come in three
does not violate any Type | constraints. Type Il terms will varieties: @ and @ will be used during the initial minute
have the formz (|ab)(ab| 4 |cd) (cd| — |ab)(cd| — |cd)(ab]).  of the clock when it is in stat® @@ & and will be used
These terms enforce that for any eigenstate with zero energy check initial conditions on the other track?®) and &
if there is a configuratiom with two neighboring particles will be used during the counting phase azdand @ will
in statesa and b, there must be a configuratioR with  pe used during the computation pha@.and @ will be
equal amplitude that is the same dsexcept thata and  ysed to trigger different actions on the other tapes. Every
b are replaced by andd. Even though a Type Il term is time the @ sweeps from the left end of the chain to the
symmetric, we associate a direction with it by denoting itright end of the chain, it causes zc to execute one more
with ab — cd. Type Il terms are also referred totansition  step. Thus,Mpc is run for exactlyN — 2 steps. At the
rules We will say that configurationd transitions into  end of the counting phase, Tragkcontainsfzc (N — 2),
configurationB by ruleab — cd if B can be obtained from which acts as the input for the Turing machilie The @

A by replacing an occurrence @b with an occurrence of symbol is what causel to execute a step, so at the end of
cd. We say that the transition rule applies4dn the forward  the computation phas#, has decided whether to accept the
direction and applies t@ in the backwards direction. We witness on Tracks with input fzc(N — 2). We then add
will choose the terms so that for any legal configuration, ata term that penalizes any state which is in the final clock
most one transition rule applies to it in the forward directi  state and does not have an accepting Turing machine state.
and at most one rule applies in the backwards directionThus, only accepting computations will have low energy.
Thus, a state satisfying all Type | and Type Il constraints Finally we use an additional term to enforce the boundary
must consist of an equal superposition of legal configunatio conditions. This is achieved by weighting the Hamiltonian
such that there is exactly one transition rule that carr@ehe terms for the illegal pairs and transition rules by a factbr o
configuration to the next. The illegal pairs are chosen sb thahree. Then an additional term is applied to each particle,
any state which satisfies the Type | and Type Il constraintsvhich gives a benefit to any particle that is in ti<» or
corresponds to a process we would like to simulate or encods) state. Only the left-most and right-most particles can
in the ground state. In our case, the process is the executi@btain this energy benefit without incurring the higher cost
of two Turing Machines each for at moat—2 steps, where  of having an endpoint state in the middle of the chain.

N is the length of the chain.

In the remainder of this section, we give a brief overview 5. VARIANTS OF TILING AND 1-DIM TIH
of the construction. See the extended version [9] for detail Here we briefly summarize the main idea for the variants

lllegal pairs are used to enforce that the state of Traclof TILING and 1-DIM TIH. For the full proofs, see [9]. For
1 is always of the form given by the regular expressionthe hard cases, the proof generally consists of adding extra
< *(—> +©) *>. There is one arrow symbol on Track 1 layers of tiles that will mimic the four-corners boundary
that shuttles back and forth between the left end and thé riglcondition and break any extra reflection symmetry of the
end and operates as a second hand for our clock. We caililes. The easy cases typically take a tiling of some size
one round trip of the arrow on Track 1 d@eration. Every  and modify it to make tilings of larger or smaller sizes.



T Track 1: Clock second hand
0|@]| --- Track 2: Clock minute hand - @]
e #|# Track 3: Turing machine work tape EEE S
qo .-~ Track 4: Tape head and state for TMgc
Qo .-~ Track 5: Tape head and state for TWI
0/10/1 ---  Track 6: Quantum witness far -+ 10/10/1

Figure 3. The start state for the system. Each row represetrttsck and each column represents the state of an indivighréitle.

One-D TILING: We consider the graph whose nodes N. Whether these solutions exist might be uncomputable for
are the different types of tile, with an edge between any twahe four corners or periodic boundary conditions. For open
tiles that can be adjacent. The graph is of constant size, deoundary conditions avV x N tiling can be extended or
most properties of it can be pre-computed. We want to knoveropped to tile a square of siZé + 1 or N — 1, so we only
whether the graph has a path of exactly lendtlsatisfying  need to check if there is a valid tiling of &ax 2 square.
the appropriate boundary conditions. For lafye the path WEIGHTED TILING with reflection symmetry: We
can be taken to consist of a constant-length path plus manyse additional layers of tile to break the symmetry. We
copies of one cycle, and whether such a path is possible caitrange the costs so that a checkerboard pattern of fous type
be easily computed. For WEIGHTED TILING, the graph is of tile [}, [}, ], and[l] is preferred in most places, but
a weighted graph and we wish to find a minimal-cost pathanother sort of tile prefers to line the edges (for open or fou
which can be done in essentially the same way. corners BC) or break up the checkerboard with a vertical

TILING with open BC: See sectiofil2. and a horizontal line (for periodic BC). Onfll] and[]

TILING with periodic BC: For this case, we restrig¢ ~ can border the vertical edge of divider tiles without a large
to be an odd prime. We need a randomized reduction teost penalty, so by choosing the parity &§f appropriately,
choose an appropriat®. We can create tiling rules which we enforce an interruption in each row with another kind of
largely alternate between two tile typ. and|:|, but since tile. We can force these additional tiles to form a diagonal
N is odd, the checkerboard pattern cannot wrap all the wajine, and by giving them a positive cost, ensure that there is
around, and there must be vertical and horizontal lines obnly one in each row and column. Then the tiles above and
other types of tiles present as well. These will serve as th¢o the left of the diagonal line will be of different types tha
borders of a grid within which the regular TILING solution the tiles below and to the right. This breaks the reflection
can be implemented. With no further constraints, it wouldsymmetry near the diagonal line, and by adding additional
be possible for there to be multiple vertical and horizontallayers of tile, we can extend this broken symmetry to the
lines, dividing the grid into multiple smaller rectanglésit ~ whole grid. The main layer can refer to the extra layers to
we add extra tile types that form a diagonal line within eachdetermine which directions are left and right or up and down.
rectangle. This forces the rectangles to be squares and thel-DIM TIH with reflection symmetry: For this case,
sides of the squares to dividé. SinceN is prime, there can we use the arrow state in Tradkto break the reflection
only be a single vertical line and a single horizontal line. symmetry. We can choos® odd and almost fill Trackl

WEIGHTED TILING: For open BC, for each corner, we with alternating® and ® states. However, we only lea
can add a tile type and corresponding rules so that the nego next to the ends of the line, and put a small positive cost
type has a negative cost to be in that corner, but a positiveo an arrow state, meaning there will be exactly one arrow
cost elsewhere. These new tiles set the boundary conditiorstate in a ground state. When the arrow is in the interior of
at the corners. For the periodic BC case, we again have the track, it has aid state on one side and®! state on the
checkerboard and use odd to ensure there is at least one other, distinguishing left and right. Each time the arroatest
vertical and one horizontal line, but we make the intersecti moves, the correspondence betw@rand @ with left and
of the lines have positive cost to ensure that there is noemorright switches, but we can keep track of that by switching
than one of each type of line. the internal state of the arrow. Tragkuses a similar trick

1-DIM TIH with periodic BC: Again we use oddV, and  to distinguish left from right. Tracks through6 can refer
add an extra track with alternating statdsand ®. Since  to Trackl to determine which direction is left and which is
N is odd, there must be another type of st(Dewhich we right, since they only need to have non-reflection invariant
use to define the ends of the line, but we assign a positivelles when Track has an arrow state nearby.
cost to(D so that there will only be one such state. TILING with rotation symmetry: To show these cases

TILING with reflection symmetry: If AB is a legal are computable, use the algorithm for one-dimensional
configuration, so iIABAB. Thus, given any valid tiling of TILING. Once we find a path in one direction, we can use
anN x N grid, we can extend it to a valid tiling of afiv+  the symmetry to extend it to a tiling of the complete grid.
2)x (N+2) grid. We need only find a single eve¥isolution WEIGHTED TILING with rotation symmetry and
and a single odadv solution to get solutions for all larger periodic BC: In this case, the same solution works as for
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