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Abstract— We study the complexity of a class of problems
involving satisfying constraints which remain the same under
translations in one or more spatial directions. In this paper, we show
hardness of a classical tiling problem on anN ×N 2-dimensional
grid and a quantum problem involving finding the ground state
energy of a1-dimensional quantum system ofN particles. In both
cases, the only input isN , provided in binary. We show that the
classical problem isNEXP-complete and the quantum problem is
QMAEXP-complete. Thus, an algorithm for these problems which
runs in time polynomial inN (exponential in the input size) would
imply that EXP = NEXP or BQEXP = QMAEXP, respectively.
Although tiling in general is already known to beNEXP-complete,
to our knowledge, all previous reductions require that either the set
of tiles and their constraints or some varying boundary conditions
be given as part of the input. In the problem considered here,these
are fixed, constant-sized parameters of the problem. Instead, the
problem instance is encoded solely in the size of the system.

1. INTRODUCTION

One perennial difficulty with practical applications of
hardness results is that the practically interesting instances
of a hard language may not themselves form a hard class.
One approach to solving this problem is the difficult theory
of average-case complexity [14], [2], in which one can show
that “typical” cases of some language are hard. In this paper
we take a different approach. In many cases, practically
interesting instances possess some shared property, such as
a symmetry, that distinguish them from the general instance
and might, in principle, make those instances easier. We will
study such an example and show that, even in a system
possessing a great deal of symmetry, it is still possible to
prove a hardness result.

Specifically, we consider the related problems of deter-
mining whether there is a possible tiling of anr-dimensional
grid with some fixed set of classical tiles and of finding the
lowest energy state (orground state) of a quantum system
involving interactions only between neighboring particles
on an r-dimensional grid. The ground state energy of a
system is considered one of the basic properties of a physical
system, and over the last few decades, physicists have
developed a number of heuristics that have been successful
in finding the ground state energy in many special cases. On
the other hand, in earlier work [1], we have shown that in the

most general case, even in a1-dimensional quantum system,
finding the ground state is a computationally difficult prob-
lem (modulo the usual complexity-theoretic assumptions).
However, the construction presented in [1] involves a system
which is completely unnatural from a physical point of view.
The most interesting physical systems frequently possess an
additional symmetry: translational invariance. In this paper,
we will show that even a1-dimensional translationally-
invariant system can be hard.

One interesting feature of our proof which may have
more general applicability is that the only free parameter
for the language we consider is the size of the system.
This is frequently the case for interesting systems: there
is a basic set of rules of constant size, and we wish to
study the effect of those rules when the system to which the
rules apply becomes large. In practice, many such systems
seem difficult to solve, but it is hard to see how to prove
a complexity-theoretic hardness result, since that requires
reducing a general problem in some complexity class to
the language under consideration, and there doesn’t seem
to be room in this language to fit all the needed instances.
Usually, this difficulty is circumvented by modifying the
problem slightly, to add additional parameters in which
we can encode the description of the instance we wish to
simulate.

To illustrate, let us present the classical tiling problem we
study in this paper: We are given a set of square tiles which
come in a variety of colors. The area to be tiled is a square
area whose size is an integer multiple of the length of a
tile. We are given horizontal constraints indicating which
pairs of colors can be placed next to each other in the
horizontal direction and another set of constraints in the
vertical direction. We specify a particular color which must
go in the four corners of the grid. The description of the
tile colors, placement constraints and boundary conditions
are fixed for all inputs of the problems. The input is just a
numberN written in binary and we wish to know whether
anN×N grid can be properly tiled given these constraints.
We show that this problem isNEXP-complete. Note that
the input in this case is sizelogN , so an algorithm to solve
our tiling problem that runs in time polynomial inN would



imply that NEXP = EXP. While it is possible thatP 6= NP

and yetNEXP = EXP, this seems unlikely to be the case.
This version of tiling is equivalent to the more common

Wang Tiles [21] in that any set of tiles can be transformed
into a set of Wang Tiles (and vice versa) such that there
is a one-to-one correspondence between valid tilings on an
N×N grid. For aninfinite grid, the problem is undecidable.
Intuitively, it makes sense that it is also hard (for some
sets of tiles) for a finite grid, since there are exponentially
many possible tilings, and it is impossible to tell locally
whether a given partial tiling can be extended indefinitely.
Indeed, there are prior results showing that related tiling
problems areNEXP-complete, but to our knowledge, all
previous reductions require that either the set of tiles and
their constraints or some varying boundary conditions be
given as part of the input [7], [15], [5]. For instance, one
may specify the placement of some number of tiles and ask
whether it is possible to extend that partial tiling to a tiling of
the full square. Even though that problem had been proven
hard, the more natural problem of whether it is possible to
efficiently find a tiling of the empty grid remained open.

Many NEXP-complete problems are succinct versions of
familiar combinatorial problems [8], [20] in which the input
has some special structure which allows for a more compact
representation. For example, consider the problem of finding
an independent set in a graph where the graph is specified
by indicating the number of nodes in binary and providing
a compact rule (or circuit) to determine if two nodes are
connected. Traditionally, the rule is included as part of
the input, which potentially allows for a more expressive
language. The analog to our work would be for the rule to
have a constant-sized description, fixed for all inputs.

The basic idea of our construction is to reduce from
an instancex of some language inNEXP by encodingx
in the binary expansion ofN , the size of the grid. It is
well known that a finite set of tiling rules can be used
to implement a universal Turing Machine. We need some
way to express the program for the Turing Machine to run,
and that program must grow with the size ofx. Previous
constructions managed this by resorting to either polylogN
different tile types or varying boundary conditions to encode
x, but those are both fixed, constant-sized parameters in
our version of the problem. Instead, we use the tiles to
implement a binary counter which convertsN into binary
and then uses it as an input to a universal Turing Machine.

The other problem we consider is finding the ground state
energy of a quantum system. The state of a quantum system
with N qubits is a vector in a Hilbert space of dimension
2N . We will be considering a slightly more general version
in which an individual particle has its state in a space of
dimensiond, in which case the state of a system ofN
such particles is a vector in adN -dimensional Hilbert space.
Any physical property of a system that can be measured
(e.g. location, momentum, energy) corresponds to a linear

operator. For anN -particle system, it can be expressed as a
dN × dN matrix over the complex numbers. If the property
is measured, then the outcome must be an eigenvalue of the
corresponding linear operator and the state of the system
after the measurement is in the eigenspace corresponding
to the outcome. Thus, the problem of finding the energy
for the lowest energy state is the same as determining the
lowest eigenvalue for the energy operator (also called the
Hamiltonianfor the system). The difficulty, of course, is that
the Hamiltonian matrix is exponentially large in the sizeN
of the system.

We are typically interested in systems whose Hamilto-
nians arelocal in that they can be expressed as a sum of
terms each of which acts non-trivially only on a constant-
sized subset of the particles in the system. Although the term
“local” does not imply anything about the physical location
of the particles, it is motivated by the idea that particles
only interact when they are physically close to each other.
We can extend this even further and consider a system of
particles on anr-dimensional grid, where the terms of the
Hamiltonian operate only on neighboring pairs of particles
in the grid. Note that although the full matrix representation
of a Hamiltonian is exponentially large in the size of the
system, a local Hamiltonian has a compact representation:
each term can be expressed as a constant-sized matrix, and
there can only be polynomially many such terms.

Kitaev introduced the classQMA, the quantum analog of
NP, and showed that the problem of determining the ground
state energy of a system defined by a local Hamiltonian
is QMA-hard [13]. Thus, we do not hope to solve it even
on a quantum computer. With an additional promise, the
problem isQMA-complete: there exist two valuesa > b,
such thata − b ≥ 1/poly(N), where it is guaranteed that
the ground state energy is at mostb or at leasta, and one
wants to determine only which of the two alternatives holds.
The problem is still hard even for two-dimensional systems
on qubits or one-dimensional systems of particles of constant
Hilbert space dimension [18], [1].

Despite these worst-case results, numerical methods have
been successful at determining ground state energies for
many quantum systems, especially in one dimension. What
are the differences between these hardQMA-complete prob-
lems and the more tractable systems studied by numerical
physicists? One feature of theQMA-completeness construc-
tions is that the individual terms of the Hamiltonian are
position-dependent. Essentially, the computation performed
by a quantum verifier circuit is encoded into the Hamiltonian
so that a low energy state exists if and only if there is
a quantum witness that causes a verifier to accept. Thus,
the terms of the Hamiltonian encode, among other things,
individual gates in a quantum circuit. In contrast, many
quantum systems of physical interest are much more uniform
in that they consist of a single Hamiltonian term that is
simultaneously applied to each pair of neighboring particles



along a particular dimension. Such a system is calledtrans-
lationally invariant.

Since highly symmetric systems are rather natural, a
number of researchers have studied the computational power
of translationally invariant quantum systems. For instance,
[17] gives a20-state translation-invariant modification of the
construction from [1] (improving on a56-state construc-
tion by [11]) that can be used for universal1-dimensional
adiabatic computation. These modifications require that the
system be initialized to a particular configuration in which
each particle is in a state that encodes some additional
information. The terms of the Hamiltonian, although iden-
tical, act differently on different particles depending on
their state. The ground state is therefore degenerate and
one determines which ground state is reached by ensuring
that the system starts in a particular state. Kay [12] gives
a construction showing that determining the ground state
energy of a one dimensional nearest-neighbor Hamiltonian
is QMA-complete even with all two-particle terms identical.
The construction does, however, require position-dependent
one-particle terms. Irani has demonstrated ground state com-
plexity in one-dimensional translationally-invariant systems
by showing that such systems can have ground states with
a high degree of quantum entanglement [10]. While quan-
tum entanglement is closely related to the performance of
numerical heuristics in practice, the particular states inthis
construction are easy to compute.

In contrast, we show that there exist1-dimensional
translationally-invariant quantum systems with nearest-
neighbor interactions for which finding the ground state
energy is complete forQMAEXP, a quantum analogue of
NEXP. As with the classical result, the only parameter which
varies in the language isN , the number of particles, and we
must useN to encode the instance from which we wish
to reduce. The quantum result uses a similar idea to the
classical result: we arrange for a control particle to shuttle
between the ends of the system and count the number of
particles. The binary encoding for the number of particles
is then used as an input to a quantum Turing Machine.

It is worth noting that the one-dimensional version of the
classical tiling problem is very easy: it is inP (see the
extended version [9] for the algorithm). That is, it can be
solved in a time polylogN , whereas it appears the quantum
problem can not be done in time poly(N ), even on a quantum
computer (unlessQMAEXP = BQEXP, where BQEXP

is like BQP, but with exponential circuits). Translational
invariance does seem to simplify the1-dimensional classical
case, reducing poly(N ) time to polylog(N ) time, but it
doesn’t help very much in the quantum case.

Note that the classical tiling problem is a special case of
the ground state energy problem for quantum systems where
the Hamiltonian is diagonal in the standard basis with only1
or 0 entries. Any ground state of such a system is a classical
state in which the state of each particle is specified by one

of the d possible standard basis states, which correspond to
the possible tile colors. A pair of tiles(ti, tj) is allowed by
the tiling rules iff the corresponding|titj〉〈titj | term of the
Hamiltonian is0, so that allowed tilings have0 total energy,
whereas a forbidden tiling has energy at least1.

2. PROBLEMS AND RESULTS

Definition 2.1: TILING
Problem Parameters:A set of tilesT = {t1, . . . , tm}. A set
of horizontal constraintsH ⊆ T ×T such that ifti is placed
to the left of tj , then it must be the case that(ti, tj) ∈ H .
A set of vertical constraintsV ⊆ T × T such that ifti is
placed belowtj , then it must be the case that(ti, tj) ∈ V .
A designated tilet1 that must be placed in the four corners
of the grid.
Problem Input: IntegerN , specified in binary.
Output: Determine whether there is a valid tiling of anN×
N grid.

Theorem 2.2:TILING is NEXP-complete.
We give the proof in section 3. The basic idea is that

two adjacent corners are used to create a border around the
perimeter of the grid which allows us to implement special
rules at the top and bottom rows. The interior of the grid
is tiled in two layers, each of which implements the action
of a Turing machine. The first TM proceeds from top to
bottom on layer 1 and the second proceeds from bottom
to top on layer 2. The first TM takes no input and acts
as a binary counter forN steps. The bottom row of the
first layer then holds a binary number that isΘ(N1/k).
The rules for the lower boundary are then used to copy the
output from the binary counter to the bottom row of layer 2,
which acts as the input to a generic non-deterministic Turing
machine. The rules for the top boundary check whether the
final configuration on layer 2 is an accepting state.

Note that it is important that we chose to have the input
N provided in binary. If it were instead given in unary,
there would only be one instance per problem size, and the
problem would be trivially inP/poly. Thus, in order to prove
a meaningful hardness result, we are forced to move up
the exponential hierarchy and prove the problem isNEXP-
complete rather thanNP-complete.

A common convention for this tiling problem is to only
specify the boundary condition tile in a single corner of the
grid. This does not work in our case: If only the upper right
corner tile is specified, a valid tiling for anN×N grid can be
cropped by removing the leftmost column and bottommost
row to give a valid tiling for the(N−1)×(N−1) grid. Thus,
there existsN0 ∈ Z

+∪{∞} such that ifN < N0, there is a
valid tiling, and ifN ≥ N0, then there is no valid tiling. The
resulting language either consists of all strings or all strings
up to a fixed string in the lexicographical ordering of binary
strings. Because tiling the infinite plane is undecidable,N0 is
uncomputable as a function of(T,H, V ). Still, if we fix the
tiling rules, we know there exists a straightforward algorithm



to solve this variant of TILING: simply determine ifN <
N0. We just do not knowN0, so we do not know precisely
what algorithm to use.

Instead of setting a single boundary condition tile, we use
specified tiles in all four corners to mark out the boundary
of the grid to be tiled. We have considered other versions
of the classical translationally-invariant tiling problem to un-
derstand to what extent the precise definition of the problem
is important. The boundary conditions, as noted above, are
a critical component. As well as fixing the tiles at the4
corners of the square, we have considered periodic boundary
conditions (so we are actually tiling a torus) and open
boundary conditions, where any tile is allowed at the edges
of the square. The case of periodic boundary conditions
is particularly interesting because it is truly translationally
invariant, unlike our usual formulation where the boundaries
break the translational symmetry.

Another variant is to make the problem more similar to
the quantum Hamiltonian problem by assigning a cost to
any pair of adjacent tiles, and allowing the costs to be
different from 0 or 1. This is like a weighted version of
tiling and corresponds to a Hamiltonian which is diagonal
in the standard basis but does not have any other constraints.

Definition 2.3: WEIGHTED TILING
Problem Parameters: A set of tilesT = {t1, . . . , tm}. A
set of horizontal weightswH : T ×T → Z, such that ifti is
placed to the left oftj , there is a contribution ofwH(ti, tj)
to the total cost of the tiling. A set of vertical weightswV :
T × T → Z, such that ifti is placed belowtj , there is
a contribution ofwV (ti, tj) to the total cost of the tiling.
A polynomial p. Boundary conditions (a tile to be placed
at all four corners, open boundary conditions, or periodic
boundary conditions).
Problem Input: IntegerN , specified in binary.
Output: Determine whether there is a tiling of anN × N
grid such that the total cost is at mostp(N).

We have also considered problems with additional sym-
metry beyond the translational invariance. If we havereflec-
tion symmetry, then if (ti, tj) ∈ H , then (tj , ti) ∈ H as
well, and if (ti, tj) ∈ V , then(tj , ti) ∈ V also. That is, the
tiling constraints to the left and right are the same, as are
the constraints above and below. However, if we only have
reflection symmetry, there can still be a difference between
the horizontal and vertical directions. If we haverotation
symmetry, we have reflection symmetry and also(ti, tj) ∈ H
iff (ti, tj) ∈ V . Now the direction does not matter either.
These additional symmetries are well motivated from a
physical point of view since many physical systems exhibit
reflection and rotation symmetry. Finally, we have studied
the one-dimensional version of the problem as well as the
two-dimensional version. See Table 1 for a summary of our
results. Proofs are given in the extended version [9], and we
sketch the main ideas in section 5.

As noted above, TILING with open boundary conditions

is easy but in a strange non-constructive sense in that the
efficient algorithm depends on an uncomputable parameter
N0. This case is denoted as “P, uncomputable” in Table 1
(with a question mark for other cases for which we have
not been able to prove whetherN0 is computable or not).
Note that this does not exclude the existence of a (potentially
slower) algorithm to solve particular instances; indeed, all
the classes in Table 1 are included inNEXP. For these
variants, we know that there is an efficient algorithm, so
a hardness result can be ruled out, but since the algorithm
depends on an uncomputable parameter, it may be that the
problem remains hard in practice.

Now we turn to the quantum problem. First we need to
define the classQMAEXP. It will be a bit more convenient to
work with quantum Turing Machines than quantum circuits.
The definition is the same asQMA except that the witness
and the length of the computation for the verifier (which is
a quantum Turing Machine) can be of size2nk

on an input
of lengthn.

Definition 2.4: A languageL is in QMAEXP iff there
exists ak and a Quantum Turing MachineM such that
for each instancex and any |ψ〉 on O(2|x|

k

) qubits, on
input (x, |ψ〉), M halts inO(2|x|

k

) steps. Furthermore, (a)
if x ∈ Lyes, ∃ |ψ〉 such thatM accepts(x, |ψ〉) with
probability at least2/3. (b) if x ∈ Lno, then ∀ |ψ〉, M
accepts(x, |ψ〉) with probability at most1/3.

Definition 2.5: r-DIM TIH (Translationally-Invariant
Hamiltonian)
Problem Parameter: r Hamiltonian termsH1, . . . , Hr that
each operate on two finite dimensional particles, specified
with a constant number of bits. Two polynomialsp andq.
Problem Input: IntegerN , specified in binary.
Promise: Consider anN r-dimensional grid of particles and
the Hamiltonian resulting from applyingHi to each pair of
neighboring particles along dimensioni. The ground state
energy of this system is either at mostp(N) or at least
p(N) + 1/q(N).
Output: Determine whether the ground state energy of the
system is at mostp(N) or at leastp(N) + 1/q(N).

The following theorem is the main result for the quantum
case and shows that the problem will likely be, in general,
difficult. Note that typically, one is willing to spend time
that is polynomial in the size of the system (which is in
turn exponential in the size of the input). It follows from
the result that if there is a quantum algorithm that finds the
ground state energy in time that is polynomial in the size of
the system thenQMAEXP = BQEXP.

Theorem 2.6:1-DIM TIH is QMAEXP-complete.
The theorem immediately implies thatr-DIM TIH is

QMAEXP-complete for anyr ≥ 1 since we can always
takeHi = 0 for i ≥ 2 which results in a system ofN r−1

independent lines withN particles. We sketch the proof of
theorem 2.6 in section 4.

We can also consider variants of1-DIM TIH. If we



2-D, no symmetry 2-D, reflection sym. 2-D, rotation sym. 1-D
BC on all corners

unweighted NEXP-complete P, uncomputable? P P

weighted NEXP-complete NEXP-complete P P

BC on 0 or 1 corner
unweighted P, uncomputable P P P

weighted NEXP-complete NEXP-complete P P

Periodic BC
unweighted NEXP-complete* P, uncomputable? P P

weighted NEXP-complete NEXP-complete P P

Figure 1. Summary of the variants of TILING. “BC” is short for“boundary condition.” “P, uncomputable” means that the associated problem is inP,
but an essential parameter of the efficient algorithm we found is uncomputable (with a question mark if we are not sure whether it is uncomputable).
“NEXP-complete*” means complete under an expected poly-time randomized reduction or a deterministic polyspace reduction.

use periodic boundary conditions instead of open boundary
conditions, we get the same result. If we add reflection
symmetry, the problem also remainsQMAEXP-complete
with open or periodic boundary conditions. See the extended
version [9] for proof of these results.

As is common inQMA-completeness results, the con-
struction for Theorem 2.6 creates a Hamiltonian whose
ground state is a uniform superposition of a sequence of
states which represent a particular process. A portion of the
Hilbert space for the system holds a clock which allows us
to control the length of the sequence and ensures that the
states in the sequence are mutually orthogonal. That is, the
tth state has the form|φt〉|t〉, where |φt〉 is the tth state
in the process we wish to simulate, and the overall ground
state will be

∑
t |φt〉|t〉. The size of the system controls

the number of time steps for which the clock runs. In the
case of the construction presented here, the process consists
of two main phases. The first phase is the execution of a
Turing machine which simply increments a binary counter.
The clock ensures that this TM is run forN − 2 steps after
which a number that isΘ(N1/k) is encoded in binary in
the state of the quantum system. This state is then used
as the input to an arbitrary quantum Turing machine which
is executed in the second phase. This QTM implements a
verifier which is also allowed a quantum witness of length
Θ(N). Finally, there is an energy term which penalizes any
non-accepting computation of the verifier.

As a corollary of Theorem 2.6, the following version of
N -REPRESENTABILITY [16] is alsoQMAEXP-complete:
Given a density matrixρ on twod-state particles, is it within
ǫ of a stateρ′ such that there exists a translationally-invariant
pure state|ψ〉 for N particles arranged in a circle for which
ρ′ is the marginal state of two adjacent particles?ρ is a
parameter of the problem, andN , given in binary, is the
only input, as in our Hamiltonian problem. We can reduce to
this version ofN -REPRESENTABILITY by starting with1-
DIM TIH on a circle. Then there is always a translationally-
invariant pure ground state|ψ〉 of the HamiltonianH . By
breaking the Hilbert space of twod-state particles up into
small balls, we can get a finite set of density matricesρ to try.

For each one, if we can solveN -REPRESENTABILITY, we
can determine ifρ can be extended to a candidate ground
state |φ〉, and if so we can determine the energy of|φ〉,
since it is just equal toNtr(H1ρ). Trying all possibleρ,
we can thus find the ground state energy ofH , up to some
ǫ-dependent precision.

3. HARDNESS OFTILING

The construction will make use of a binary counter Turing
machineMBC which starts with a blank semi-infinite tape.
The head begins in a designated start state in the left-most
position of the tape.MBC will generate all binary strings
in lexicographic order. More specifically, there is a function
f : Z → {0, 1}∗ such that for some constantN0 and every
N ≥ N0, if MBC runs forN steps, then the stringfBC(N)
will be written on the tape with the rest of the tape blank.
Moreover there are constantsc1 andc2 such that ifn is the
length of the stringfBC(N) and N ≥ N0, then 2c1n ≤
N ≤ 2c2n. We will also assume that for any binary string
x, we can computeN such thatfBC(N) = x in time that
is polynomial in the length ofx. In some of the variations
of the problem we consider we will need to put additional
restrictions onN (such as requiringN to be odd), and in
those cases, we still require that we can find anN with the
appropriate restrictions such thatfBC(N) = x.

Using a standard padding argument, we can reduce any
language inNEXP to NTIME(2c1n). If L is in NTIME(2nk

),
the reduction consists of padding an inputx so that its
length is|x|k/c1 [19]. Thus, we will take an arbitrary non-
deterministic Turing machineM which accepts a language
L in time 2c1n and reduce it to TILING. The tiling rules and
boundary conditions will be specific to the Turing machine
M but will be independent of any particular input. The
reduction for Theorem 2.2 then will take an input string
x and output integerN such thatfBC(N − 3) = x. The
tiling rules will have the property that a stringx is in L if
and only if anN × N grid can be tiled according to the
tiling rules.

Proof of Theorem 2.2. The boundary conditions for the
N×N grid will be that the four corners of the grid must have



Figure 2. A possible tiling of the sides of a5× 5 grid.

a designated tile type . (We will actually only need to use
the upper left and bottom left corners.) First we will specify
a set of boundary tiles and their constraints. In addition to

there are four other kinds of boundary tiles:, , ,
. We will call the rest of the tilesinterior tiles. will

mark the left side of the grid, the top of the grid, the
bottom of the grid, and the right side of the grid. (See
figure 2.)

Nothing can go to the left of a tile which means that
the only place a tile could go is the left-most boundary,
as desired. Similarly, nothing can above a tile, nothing
can go below a tile, and nothing can go to the right
of a tile, which means tiles can only go in the top
row, tiles can only go in the bottom row, and tiles
can only go in the right-most column. No interior tile can
border a tile in any direction. Furthermore a cannot
border on itself in any direction. This means that the only
possible locations for a are the four corners since those
are the only places which can be surrounded by, ,

, or tiles. Since the boundary conditions state that
tiles must go in the corners, those are exactly the locations
that will hold tiles. The only tiles that can go above or
below the tiles are and tiles. The only tiles that
can go either to the left or right of the tiles are and

tiles. We will add the constraint that the only tiles that
can go above or below tiles are tiles or tiles. Thus
the entire west boundary, except for the corners, will be
tiles. Similarly, we add constraints that tiles must have

or tiles to their right and left and any tile must
have a or tile to its right and left. This means that the
entire south border except for the corners is tiled with
tiles and the entire north border except for the corners will
be tiles. We do not need to put any further restrictions
on the right boundary.

The remainder of the grid will be tiled in two layers. The
constraints on the two layers only interact at the bottom of
the grid, so we describe each layer separately. The actual
type for an interior tile is specified by a pair denoting its
layer 1 type and layer 2 type. The bottom layer will be used
to simulate the Turing machineMBC . The top boundary
of the grid will be used to ensure thatMBC begins with
the proper initial conditions. Then the rules will enforce
that each row of the tiling going downwards advances the
Turing machineMBC by one step. At the bottom of the
grid, the output is copied onto layer 2. Layer 2 is then used
to simulate a generic non-deterministic Turing machine on

the input copied from layer 1. The lower left corner is used
to initialize the state ofM and the constraints enforce that
each row going upwards advances the Turing machineM
by one step. Finally, the only states ofM that are allowed to
be below an tile are accepting states. Since each Turing
machine only executes forN − 3 steps and the grid has
space forN − 2 tape symbols, the right end of the tape will
never be reached.

Although it is well known that tiling rules are Turing
complete [3], we review the ideas here in order to specify the
details in our construction. We will assume that the Turing
machineM is encoded in a tiling that goes from bottom
to top. This can easily be reversed forMBC which goes
from top to bottom. The non-deterministic Turing machine
M is specified by a triplet(Σ, Q, δ), with designated blank
symbol# ∈ Σ, start stateq0 ∈ Q and accept stateqA ∈ Q.
There are three varieties of tiles, designated by elements
of Σ (variety 1), Σ × Q (variety 2) andΣ × Q × {R,L}
(variety 3). Variety 1 represents the state of the tape away
from the Turing machine head. Variety 2 represents the state
of the tape and head when the head has moved on to a
location but before it has acted. Variety 3 represents the
state of the tape and head after the head has acted, and the
{R,L} symbol tells us which way the head moved. In the
horizontal direction a tile corresponding toa ∈ Σ can go
next to any other interior tile to the left or right. Variety 2
types cannot go next to each other nor can variety 3 types.
The only allowed pairings of variety 2 tiles and variety 3
tiles in the horizontal direction are of the form:[a, q] to the
left of [b, q, L] or [a, q] to the right of[b, q, R]. Note that the
stateq of the head must be the same and the variety 2 tile
must be placed in the direction designated by theR or L in
the variety 3 tile.

In the vertical direction, for anya ∈ Σ we can have[a]
above [a]. Variety 2 tiles cannot go above or below each
other and variety 3 tiles cannot go above or below each
other. A variety 1 or a variety 2 tile can go above a variety
3 or a variety 1 tile as long as the alphabet symbols are the
same. That is,[a, q] or [a] can go above either[a, q′, L/R]
or [a]. Finally, a variety 3 tile must go above a variety 2
tile and a variety 2 tile must go below a variety 3 tile.
Furthermore, these parings are allowed only if they encode
a valid move of the Turing machine. That is,[b, q′, L] can
go above[a, q] only if (a, q) → (b, q′, L) is one of the valid
non-deterministic moves of the machine. Similarly[b, q′, R]
can go above[a, q] only if (a, q) → (b, q′, R) is one of
the valid non-deterministic moves of the machine. The table
below gives an example of a section of tiles that encodes
the move(a, q) → (b, q′, L) of the Turing machine:

[c, q′] [b, q′, L] [d]
[c] [a, q] [d, q, L]

The lower row shows the head in the square with the
a. The [d, q, L] is from the previous TM move. The tile



[b, q′, L] enforces that the tiler is committing to executing
the step(a, q) → (b, q′, L), although there may have been
other non-deterministic choices. The[c, q′] tile to the left of
the [b, q′, L] shows the new location and state of the head.
The [b, q′, L] tile now just acts as a[b] tile for purposes of
the tiling above.

For our particular construction, we would like to start
out the Turing machineMBC with [q0,#] in the leftmost
location followed by[#] tiles. For layer 1, the only tiles
that can go below a tile are [q0,#] or [#] tiles. We
forbid having a[#] tile to the right of a tile and we do
not allow a [q0,#] tile to the right of a[#] tile. We can
assume without loss of generality that the Turing machine
overwrites the leftmost# on the tape and never writes a#
there again. We can also assume that the Turing machine
never transitions back to theq0 state. The rest of the layer
1 rules just enforce the rules for the Turing machineMBC .

Now in order to copy the output fromMBC to the input
tape forM , we restrict the kinds of tiles that can go above

tiles. A layer 2 tile that goes above a must be
[a] or [a, q0] for somea ∈ Σ. Furthermore, in the space
above an tile, the alphabet characters for the layer 1
and layer 2 tiles must match. This copies the output of
MBC onto the input ofV . Now we want to ensure that the
starting configuration ofV has only one head in the leftmost
location. To accomplish this, we forbid a to go next to an
[a] tile for a ∈ ΣMBC

and forbid an[a] tile (for all a ∈ Σ)
to the left of a [b, q0] tile. Again, we can assume thatM
never transitions back toq0. A little care must be taken to
overwrite the leftmost input tape character with something
that is not in the alphabet ofMBC . This is because we have
forbidden having an[a] tile to the right of a for any
a ∈ ΣMBC

. The information encoded in the left-most tape
symbol can be retained by having a newa′ symbol inΣM

for everya ∈ ΣMBC
.

Finally, the only variety 2 tiles on layer 2 which we allow
below a tile must be of the form[a, qA], whereqA is
the accepting state. Thus, there is a valid tiling if and only
if the non-deterministic TMM acceptsx in N − 3 steps.

4. THE QUANTUM CASE

As in the 2-dimensional classical tiling problem, we make
use of a binary counting Turing machineMBC . Because
we are working with quantum systems, we will require
that MBC be reversible. Bernstein and Vazirani [4] have
shown that any deterministic Turing machine can be made
reversible, meaning that given a configuration of the Turing
machine, it has a unique predecessor in the computation.
There may be some additional overhead but it is not
significant. We can still assume that there is a function
f : Z → {0, 1}∗ such that for some constantN0 and
everyN ≥ N0, if MBC runs forN steps, then the string
fBC(N) will be written on the tape with the rest of the tape
blank. Moreover there are constantsc1 and c2 such that if

n is the length of the stringfBC(N) andN ≥ N0, then
2c1n ≤ N ≤ 2c2n. We will also assume that for any binary
string x, we can computeN such thatfBC(N − 2) = x in
time that is polynomial in the length ofx.

We can reduce any language inQMAEXP to a language
L that is accepted by a verifier who uses a witness of size
2c1n and whose computation lasts for2c1n steps, wheren
is the length of the input. This is the same reduction used
in the classical case, in which the input is padded to length
|x|k/c1. We can use standard boosting techniques to assume
that the probability of acceptance or rejection is at least1−ǫ
or at mostǫ for ǫ = 1/poly(N) [13]. Suppose we are given
an arbitrary verifier quantum Turing machineV which takes
as input a classical/quantum pair(x, |ψ〉) such that|ψ〉 has
2c1n qubits and halts in2c1n steps. Based onV , we will
produce a Hamiltonian termH which acts on a pair of finite-
dimensional particles. We will also produce two polynomials
p andq. The reduction for Theorem 2.6 will then take input
stringx and output an integerN such thatfBC(N−2) = x.
The Hamiltonian will have the property that for anyx, if
there exists a|ψ〉 that causesV to accept with probability at
least1−ǫ, then whenH is applied to every neighboring pair
in a chain of lengthN , the resulting system has a unique
ground state whose energy is at mostp(N). If for every |ψ〉,
M accepts with probability at mostǫ, then the ground state
energy of the system is at leastp(N) + 1/q(N).

Quantum Turing machines were first introduced in [6] and
further developed in [4]. The latter paper showed that we can
make a number of simplifying assumptions about the form
of a quantum Turing machine and not restrict its power in
a complexity-theoretic sense. In particular, we can assume
without loss of generality that the Turing machineV has a
one-way infinite tape and that the head starts in designated
start stateq0 at the left-most end of the tape. We will also
assume that on inputx, after2c1|x| steps, the Turing machine
is in an accepting or rejecting state and the head is again at
the left-most end of the tape. We will also assume that the
witness will be stored in a parallel track with the left-most
qubit in the left-most position of the tape.

We now describe the set of states for the particles. A
standard basis state for the whole system will be denoted
by the state for each particle. States and are special
bracket states that occur at the ends of the chain.

Definition 4.1: A standard basis state isbracketedif the
left-most particle is in state , the right-most particle is in
state , and no other particle in the chain is in stateor

. Sbr is the space spanned by all bracketed states.
We will restrict our attention for now toSbr and add a

term later that gives an energy penalty to any state outside
Sbr. The rest of the states will be divided into six tracks,
so the state of a particle is an ordered6-tuple with each
entry specifying the state for a particular track. The set of
allowable states will not necessarily be the full cross product
of the states for each track.



Two of the tracks will implement a clock, with one track
working as sort of a second hand and another track as a
minute hand. The other four tracks will be used to implement
two Turing machines which share a work tape. Track 3 holds
the work tape. Track 4 holds the state and head location for
the first Turing Machine (which isMBC ) and Track 5 holds
the state and head location for the second Turing Machine
(which isV ). The sixth track will hold the quantum witness
for V . Since there is limited interaction between the tracks, it
will be simpler to describe the Hamiltonian as it acts on each
track separately and then describe how they interact. Figure
3 below gives a picture of the start state for the system. Each
column represents the state of an individual particle.

As is typical in hardness results for finding ground state
energies, the Hamiltonian applied to each pair will consistof
a sum of terms. There are two types of terms. Type I terms
will have the form|ab〉〈ab| wherea andb are possible states.
This has the effect of adding an energy penalty to any state
which has a particle in statea to the immediate left of a
particle in stateb. We will say a configuration islegal if it
does not violate any Type I constraints. Type II terms will
have the form:1

2
(|ab〉〈ab|+ |cd〉〈cd| − |ab〉〈cd| − |cd〉〈ab|).

These terms enforce that for any eigenstate with zero energy,
if there is a configurationA with two neighboring particles
in statesa and b, there must be a configurationB with
equal amplitude that is the same asA except thata and
b are replaced byc and d. Even though a Type II term is
symmetric, we associate a direction with it by denoting it
with ab→ cd. Type II terms are also referred to astransition
rules. We will say that configurationA transitions into
configurationB by ruleab→ cd if B can be obtained from
A by replacing an occurrence ofab with an occurrence of
cd. We say that the transition rule applies toA in the forward
direction and applies toB in the backwards direction. We
will choose the terms so that for any legal configuration, at
most one transition rule applies to it in the forward direction
and at most one rule applies in the backwards direction.
Thus, a state satisfying all Type I and Type II constraints
must consist of an equal superposition of legal configurations
such that there is exactly one transition rule that carries each
configuration to the next. The illegal pairs are chosen so that
any state which satisfies the Type I and Type II constraints
corresponds to a process we would like to simulate or encode
in the ground state. In our case, the process is the execution
of two Turing Machines each for at mostN−2 steps, where
N is the length of the chain.

In the remainder of this section, we give a brief overview
of the construction. See the extended version [9] for details.

Illegal pairs are used to enforce that the state of Track
1 is always of the form given by the regular expression

∗
(→ +

→

)
∗

. There is one arrow symbol on Track 1
that shuttles back and forth between the left end and the right
end and operates as a second hand for our clock. We call
one round trip of the arrow on Track 1 aniteration. Every

iteration has2(N−2) distinct states and2(N−2) transitions.
Each iteration causes one change in the configuration on
Track 2 which acts then as a minute hand for the clock.
The Track 2 states are partitioned into two phases. The first
phase is called theCounting Phaseand consists of allN−2
of the states of the form 1

∗
0̄ 0

∗
. The second phase

is the Computation Phaseand consists of allN − 2 of the
states of the form 1

∗
1̄ 2

∗
states. The 1

∗
0̄ 0

∗

states are ordered according to the number of particles in
state 1 and the 1

∗
1̄ 2

∗
states are ordered according

to the number of particles in state2 . Note that the state
immediately after 1

∗
0̄ in the ordering is 1

∗
1̄ .

The ground state for the clock is the uniform superposition
of all the clock states. We need to have illegal pairs that
cause all other states to have an energy cost. As is the case
in other such proofs, it is not possible to disallow all states
directly with illegal pairs. Instead, we need to show that
some states are unfavorable because they evolve via forward
or backwards transitions to high energy states.

Each of the arrow states for Track 1 will come in three
varieties: →0 and

→

0 will be used during the initial minute
of the clock when it is in state 0̄ 0

∗
and will be used

to check initial conditions on the other tracks.→1 and

→

1

will be used during the counting phase and→2 and

→

2 will
be used during the computation phase.→1 and →

2 will be
used to trigger different actions on the other tapes. Every
time the →1 sweeps from the left end of the chain to the
right end of the chain, it causesMBC to execute one more
step. Thus,MBC is run for exactlyN − 2 steps. At the
end of the counting phase, Track3 containsfBC(N − 2),
which acts as the input for the Turing machineV . The →

2

symbol is what causesV to execute a step, so at the end of
the computation phase,V has decided whether to accept the
witness on Track6 with input fBC(N − 2). We then add
a term that penalizes any state which is in the final clock
state and does not have an accepting Turing machine state.
Thus, only accepting computations will have low energy.

Finally we use an additional term to enforce the boundary
conditions. This is achieved by weighting the Hamiltonian
terms for the illegal pairs and transition rules by a factor of
three. Then an additional term is applied to each particle,
which gives a benefit to any particle that is in the or

state. Only the left-most and right-most particles can
obtain this energy benefit without incurring the higher cost
of having an endpoint state in the middle of the chain.

5. VARIANTS OF TILING AND 1-DIM TIH

Here we briefly summarize the main idea for the variants
of TILING and 1-DIM TIH. For the full proofs, see [9]. For
the hard cases, the proof generally consists of adding extra
layers of tiles that will mimic the four-corners boundary
condition and break any extra reflection symmetry of the
rules. The easy cases typically take a tiling of some size
and modify it to make tilings of larger or smaller sizes.



→
0 · · · Track 1: Clock second hand · · ·

0̄ 0 · · · Track 2: Clock minute hand · · · 0 0

# # · · · Track 3: Turing machine work tape · · · # #
q0 · · · Track 4: Tape head and state for TMMBC · · ·

q0 · · · Track 5: Tape head and state for TMV · · ·

0/10/1 · · · Track 6: Quantum witness forV · · · 0/10/1

Figure 3. The start state for the system. Each row representsa track and each column represents the state of an individualparticle.

One-D TILING: We consider the graph whose nodes
are the different types of tile, with an edge between any two
tiles that can be adjacent. The graph is of constant size, so
most properties of it can be pre-computed. We want to know
whether the graph has a path of exactly lengthN satisfying
the appropriate boundary conditions. For largeN , the path
can be taken to consist of a constant-length path plus many
copies of one cycle, and whether such a path is possible can
be easily computed. For WEIGHTED TILING, the graph is
a weighted graph and we wish to find a minimal-cost path,
which can be done in essentially the same way.

TILING with open BC: See section 2.
TILING with periodic BC: For this case, we restrictN

to be an odd prime. We need a randomized reduction to
choose an appropriateN . We can create tiling rules which
largely alternate between two tile types and , but since
N is odd, the checkerboard pattern cannot wrap all the way
around, and there must be vertical and horizontal lines of
other types of tiles present as well. These will serve as the
borders of a grid within which the regular TILING solution
can be implemented. With no further constraints, it would
be possible for there to be multiple vertical and horizontal
lines, dividing the grid into multiple smaller rectangles,but
we add extra tile types that form a diagonal line within each
rectangle. This forces the rectangles to be squares and the
sides of the squares to divideN . SinceN is prime, there can
only be a single vertical line and a single horizontal line.

WEIGHTED TILING: For open BC, for each corner, we
can add a tile type and corresponding rules so that the new
type has a negative cost to be in that corner, but a positive
cost elsewhere. These new tiles set the boundary conditions
at the corners. For the periodic BC case, we again have a
checkerboard and use oddN to ensure there is at least one
vertical and one horizontal line, but we make the intersection
of the lines have positive cost to ensure that there is not more
than one of each type of line.

1-DIM TIH with periodic BC: Again we use oddN , and
add an extra track with alternating statesA and B . Since
N is odd, there must be another type of statewhich we
use to define the ends of the line, but we assign a positive
cost to so that there will only be one such state.

TILING with reflection symmetry: If AB is a legal
configuration, so isABAB. Thus, given any valid tiling of
anN×N grid, we can extend it to a valid tiling of an(N+
2)×(N+2) grid. We need only find a single even-N solution
and a single odd-N solution to get solutions for all larger

N . Whether these solutions exist might be uncomputable for
the four corners or periodic boundary conditions. For open
boundary conditions anN × N tiling can be extended or
cropped to tile a square of sizeN +1 or N − 1, so we only
need to check if there is a valid tiling of a2 × 2 square.

WEIGHTED TILING with reflection symmetry: We
use additional layers of tile to break the symmetry. We
arrange the costs so that a checkerboard pattern of four types
of tile , , , and is preferred in most places, but
another sort of tile prefers to line the edges (for open or four
corners BC) or break up the checkerboard with a vertical
and a horizontal line (for periodic BC). Only and
can border the vertical edge of divider tiles without a large
cost penalty, so by choosing the parity ofN appropriately,
we enforce an interruption in each row with another kind of
tile. We can force these additional tiles to form a diagonal
line, and by giving them a positive cost, ensure that there is
only one in each row and column. Then the tiles above and
to the left of the diagonal line will be of different types than
the tiles below and to the right. This breaks the reflection
symmetry near the diagonal line, and by adding additional
layers of tile, we can extend this broken symmetry to the
whole grid. The main layer can refer to the extra layers to
determine which directions are left and right or up and down.

1-DIM TIH with reflection symmetry: For this case,
we use the arrow state in Track1 to break the reflection
symmetry. We can chooseN odd and almost fill Track1
with alternating A and B states. However, we only letA
go next to the ends of the line, and put a small positive cost
to an arrow state, meaning there will be exactly one arrow
state in a ground state. When the arrow is in the interior of
the track, it has anA state on one side and aB state on the
other, distinguishing left and right. Each time the arrow state
moves, the correspondence betweenA and B with left and
right switches, but we can keep track of that by switching
the internal state of the arrow. Track2 uses a similar trick
to distinguish left from right. Tracks3 through6 can refer
to Track1 to determine which direction is left and which is
right, since they only need to have non-reflection invariant
rules when Track1 has an arrow state nearby.

TILING with rotation symmetry: To show these cases
are computable, use the algorithm for one-dimensional
TILING. Once we find a path in one direction, we can use
the symmetry to extend it to a tiling of the complete grid.

WEIGHTED TILING with rotation symmetry and
periodic BC: In this case, the same solution works as for



unweighted TILING: find an optimal path for one direction
and reflect it to give an optimal tiling for the whole grid.

WEIGHTED TILING with rotation symmetry and
open BC: We find the cheapest adjacent pair of tiles and
use them to tile the whole grid with a checkerboard pattern.

WEIGHTED TILING with rotation symmetry and
four-corners BC: We fill most of the grid using a checker-
board of the cheapest pair of tiles. However, we may need
to put a different pattern in the corners in order to satisfy
the boundary conditions. We show that it is sufficient to use
corner inserts of constant size, so we can just consider all
possible corner inserts to find if a tiling is possible.

6. CONCLUSION

We have shown that a class of classical tiling problems
and 1-dimensional quantum Hamiltonian problems can be
proven hard, even when the rules are translationally-invariant
and the only input is the size of the problem. While this
result was motivated by the desire to see if it could be hard to
find the ground state in some physically interesting system,
it is true that the tiling problem and Hamiltonian problem
for which we prove hardness are not themselves particularly
natural. Still, given that very simple cellular automata can
be universal, it seems quite possible that even some very
simple tiling and Hamiltonian problems are complete for
NEXP andQMAEXP respectively.

Another interesting avenue to pursue would be to apply a
similar idea to other problems. For instance, the game of go
produces aPSPACE-complete problem [19]. However, the
computational problem GO is defined by asking whether
black can force a win given a particular board configuration
as input. However, there is no guarantee that these board
configurations would appear in a regular game of go, which
starts from a blank board. A more natural problem arising
from GO is to ask who wins with optimal play when
starting from an emptyN × N board. As with our tiling
and Hamiltonian problems, the only thing that varies is the
size; the rules and initial configuration are fixed. Thus, we
would wish to show that this variant of GO isEXPSPACE-
complete. Our techniques will not solve this problem, but at
least our result points the way to ask the right question.
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