1. Prove that the Bell state $|\Psi^{-}\rangle = 1/\sqrt{2}(|01\rangle - |10\rangle)$ is rotationally invariant. (i.e. $|\Psi^{-}\rangle = 1/\sqrt{2}(|vv^\perp\rangle - |v^\perp v\rangle)$ for any 1-qubit state $|v\rangle$).

2. Describe the action of a CNOT gate if the target bit is $|\rangle$.

Now show that the following circuit is effectively a CNOT gate with the control and target qubits swapped (i.e. b is the control and a is the target).

3. Prove that we can assume without loss of generality that all the amplitudes in a quantum computation are real. Prove that any quantum circuit with m 2-qubit gates can be simulated by a quantum circuit with m 3-qubit gates in which the amplitudes of all the intermediate states computed by the circuit are real.

4. Prove the principle of deferred measurement: suppose a unitary operator $V \otimes I$ acts on a state $|\phi\rangle$ of $n+m$ qubits, where V acts on the first n qubits. Consider the distribution \mathcal{D} that results from measuring the first n qubits after $V \otimes I$ is applied. Prove that this is the same distribution that results from first measuring the last m qubits, applying $V \otimes I$ and then measuring the first n qubits.

5. Suppose that a 2-qubit state is shared by Alice and Bob. Suppose that Alice performs a unitary operation U on her qubit and then Bob measures his qubit in some basis $\{|\phi\rangle, |\phi^\perp\rangle\}$. Show that the results of Bob’s measurement does not depend on the unitary operation chosen by Alice.