Much of classical coding theory concentrates on a class of codes called **linear codes**.

Suppose we wish to encode \(k \) bits using \(n \) bits \((n > k)\). The encoding of all \(k \)-bit words to codewords is defined by an \(n \times k \) matrix \(G \):

\[
\begin{pmatrix}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\end{pmatrix}
\]

All arithmetic is done \(\text{mod} \ 2 \) (i.e. over \(\mathbb{Z}_2 \)).

The columns of \(G \) are linearly independent so that every \(n \)-bit word to be encoded is mapped to a unique codeword \(Gv \).

Columns of \(G \) form a basis for the \(k \)-dimensional space of codewords.

Dual matrix \(P \) is an \((n-k) \times n\) matrix called the dual matrix. The rows of \(P \) form a basis of the subspace orthogonal to the set of all codewords. The rows of \(P \) along with the columns \(P \) and \(G \) are linearly independent and span the space of all \(n \)-bit strings.

We have \(PG = 0 \). Since any code word \(s \) can be expressed as \(Gv \),

\[
Pv = P G v = 0
\]

In fact, \(P s = 0 \) iff \(s \) is a codeword.

(\(\Rightarrow \)) (comes from the fact that the rows of \(P \) and columns of \(G \) span the whole space of \(n \)-bit strings)
P is called the Parity Check Matrix. It can be used to test whether a word is a valid code word.

The Hamming Distance between two words is the minimum number of bits that must be flipped to turn one into the other. The distance between \(a + b \) is the weight (#1's) in \((a+b) \).

For a code to correct t errors, the distance between any two codewords must be at least \(2t+1 \). t errors take a codeword a distance \(t \) from where it started. In order to distinguish between two codewords it is required that the ball of radius \(t \) around each codeword do not intersect.

A code that encodes k bits using n bits with a distance d between codewords is a \([n, k, d]\) code.

We can describe a set of errors with a n-bit vector \(e \) which has a 1 wherever an error occurs and 0's everywhere else. If the original code is \(s \), after the error it becomes \(s' = s + e \). If we apply this to the parity check:

\[
P s' = P (s + e) = P s + P e = P e
\]

\(P s' \) is independent of \(s \) and depends only on \(e \). If \(e \) can be uniquely determined from \(P e \), we can detect and fix the error. \(P e \) is the error syndrome.
\[P_e = P_f \quad \text{iff} \quad P(e-f) = 0. \quad \Leftrightarrow \quad \text{distance between two codewords can be as small as } \|e-f\|. \]

In order for the distance of the code to be \(d \), we must have for any vector \(\bar{e} \) of unit \(d-1 \) or less, \(P_e \neq 0 \).

\(\Rightarrow \) Any \(d-1 \) columns of \(P \) must be linearly independent.