Can computers replace mathematicians?

\[L = \{ (x,k) \mid \text{statement } x \text{ has a proof of length } \leq k \} \]

A yes answer to this question is among the many profound implications that would result if \(P = \text{NP} \).

The class \(\text{NP} \) is an abbreviation of non-deterministic Polynomial time.

The class \(\text{NP} \) will initially be defined in terms of non-deterministic models of computation, but we shall see that it is equivalent to the witness version that we have seen earlier.

This lecture will cover:

- Non-deterministic models of computation
- Non-deterministic time classes
- \(\text{NP} \), \(\text{NP} \)-completeness
- \(\text{co-NP} \)
- \(\text{NTIME} \) Hierarchy
- Ladner's theorem

Recall the definition of non-deterministic Turing Machines:

\[\delta : Q \times \Sigma \rightarrow Q \times \Sigma \times \{ L, R, \}_L, R, \}

In a non-deterministic TM we have \(\Delta \) instead of \(\delta \):

\[\Delta \subseteq (Q \times \Sigma) \times (Q \times \Sigma \times \{ L, R, \}_L, R, \} \]
Given the current state and symbol, there may be more than one (or no) choices for what to do next.

In deterministic computation: given a config of the TM, there is a unique next configuration.
In a non-deterministic computation: there may be several possibilities for the next configuration.

For a given TM \(M \) on input \(x \), we can build a configuration graph (nodes = TM configurations, \((q_1, c_1), (q_2, c_2) \in E \) if \(c_2 \) is reachable from \(c_1 \) in one step).

Deterministic TM

\[q_0 \xrightarrow{x_1} q_1 \xrightarrow{x_2} \ldots \xrightarrow{x_n} q_f \]

Non-deterministic TM

\[q_0 \xrightarrow{x_1 \ldots x_n} \]

\[q_0 \xrightarrow{x_1} q_1 \xrightarrow{x_2} \ldots \]

In order for an NTM to accept or reject \(x \):

- All computation paths must terminate.
- Running time: length of the longest root to leaf path.
- Space: max # tape cells used on any path from the root to a leaf.

Accept if any leaf is an Accept.
Reject if all leaves are Reject.
\[\text{NTIME}(f(n)) : \text{languages decidable by a multi-tape NTM that runs in at most } f(n) \text{ steps along any computation path where } n \text{ is the length of the input.} \]

\[\text{NSPACE}(f(n)) : \text{languages decidable by a multi-tape NTM that touches } f(n) \text{ cells of work tape along any computation path.} \]

Time classes:
\[\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(n^k) \]
\[\text{NEXP} = \bigcup_{k \geq 1} \text{NTIME}(2^{n^k}) \]

Useful alternative view of NP:

Is there a way to prove that \(x \in L \) with a poly-sized proof \(y \) that can be verified by a poly-time verifier?

\[L \in \text{NP} \iff \exists \text{ polytime verifier } R \text{ and constant } k \text{ s.t. } \]
\[x \in L \iff \exists y \mid y \mid \leq |x|^k \text{ and } R \text{ accepts } (x, y) \]

\[L = \exists x \mid \exists y \mid |y| \leq |x|^k (x, y) \in L(R) \]

Examples:
\[3\text{SAT} = \exists \phi \mid \phi \text{ is a 3-CNF formula for which } \exists \text{ assignment } \alpha \]
\[(\phi, \alpha) \in L(R) \]
\[L(R) = \exists (\phi, \alpha) \mid \alpha \text{ is a satisfying assignment for } \phi \]
A is a witness for $\phi \in 3\text{SAT}$

R is a poly-time TM.

Other examples: Hamiltonian Path, etc.

Why are these two definitions the same?

Theorem: $L \in \text{NP}$ iff it is expressible as:

$L = \exists x \exists y \ y \leq x \ (x, y) \in R$

for some poly-time TM R.

Proof: \Leftarrow Show NTM that decides L.

1. Compute $|x|^k$ by marking off $|x|^k$ symbols on a tape.
2. "Guess" a string y of length $|x|^k$ and write it on a tape.
3. Run R on (x, y) and accept if R accepts.
 (Reject if R rejects)

What does 2 look like?

\[\Delta(\#, \#_{\text{guess}}) = \frac{1}{2} (0, \#_{\text{guess}}, R), (1, \#_{\text{guess}}, R) \]
\[\text{\(\exists \) NTM } M \text{ that decides } L \text{ in time } \mathcal{O} \]

Consider a string \(y \) consisting of the non-deterministic choices at each step.

\[y = \left[\left(q, a, L \right), \left(q', b, R \right), \left(\bar{q}, a, - \right), \ldots \right] \]

- \(\text{ triples} \)

\[R(x, y) : \text{ simulates } M \text{ on } x \]

- \(\text{ checks if } \left[\left(q, a \right) x (q', b, L) \right] \in \Delta M \)

- \(\text{ If so, execute step and continue.} \)

- \(\text{ If not, reject.} \)

If \(M \) halts then \(R \) halts (\text{acc/rej depending on } M) \)

An accepting path of computation of \(M \) will correspond to some \(y \) which causes \(R \) to accept \((x, y)\)

If all paths in \(M \) reject, there will be no \(y \) that can cause \(R \) to accept.

\[\text{Why NP? There are a huge number of problems that are complete for NP.} \]

\[\text{Why not EXP? Too strong important problems are not complete for EXP.} \]
Central question in computer science: \[P =?= NP \]

Finding a solution vs. Verifying a solution.

NP-completeness:

Circuit SAT: Given a boolean circuit with variables, is there an assignment to the variables that makes it output 1?

Theorem: Circuit-SAT is NP-complete.

Circuit SAT \in NP: guess assignment for the variables and check if circuit is satisfied.

If \(L \in NP \), \(L \times Circuit SAT \)

\[\exists k \in \text{Poly-time} R: \]

\[L = \exists x \ | \ \exists y \ | \ \| x \| \leq k \ | \ R(x, y) \text{ accept} \]

Recall the tableau from last lecture corresponding to the computation of \(R \):

```
1
|x^k
1
```

First row of tableau:

\[x_1 \ldots x_n y_1 \ldots y_m \]

\(m = |x^k| \)

0/1 inputs, variable inputs to circuit

As discussed before, this can be made into a circuit.
Reduction: given \(x \) output \(E_x \).

Only difference is \(P \)-completeness proof are the input variables for \(y_1, \ldots, y_m \). //

Witness version for \(\text{NEXP} \): (or "proof system" version)

\[L \in \text{NEXP} \text{ if and only if } \exists k \in \text{polytime} \ R \text{ s.t.} \]

\[\exists x \mid \exists y, |y| = 2^{|x|^k} \Rightarrow R \text{ accepts } (x, y) \]

\[R \text{ is poly time in } |x|, |y| \]

Since \(|y|\) is already exp long in \(|x|\).

\[\text{Pf of theorem similar to the proof for } \text{NP}. \]

\[\text{SUCCINCT Ckt SAT} \]

\begin{itemize}
 \item Succinctly encoded Boolean circuit with \(n \) non-variable inputs and \(m \) variable inputs
 \item Is there a setting of the variables that causes the circuit to evaluate to 1?
\end{itemize}

\[\text{Theorem} \quad \text{SUCCINCT Ckt SAT is } \text{NEXP-complete}. \]

\[\text{Pf uses same ideas as the proof for } \text{SUCCINCT-Ckt-EVAL} \text{ is } \text{EXP-complete}. \]

\[\text{The tableau is a record of the verifier's (R's) computation on input } x = x_1 \ldots x_n \text{ with variables } y_1, \ldots, y_m \text{. In this case } m = 2^k \text{ and the size of the circuit is poly } (n, m). \]
Complement Classes

If C is a complexity class then $\text{co-} C$ is the class containing complements of languages in C.

\[
L \in C \implies \text{co-} L \in \text{co-} C \\
\text{co-} L \in C \implies L \in C
\]

Note that $\text{co-} L$ is not quite $\Sigma^* - L$ because invalid encodings are always excluded from the language.

\[
L = \text{graphs w/ a Hamiltonian cycle} \\
\text{co-} L = \text{graphs w/ no Hamiltonian cycle}
\]

(both languages exclude strings which are not valid encoodings of graphs).

Some classes are closed under complements:

$\text{co-} P = P$.

What about $\text{co-} NP$? We can't just exchange ace and gre.

$\text{NP: } x \in L \\
\triangleleft \text{ace} \\
x \notin L \\
\triangleleft \text{gre}$

$\text{NP-} \text{ languages with short proofs}$

$\text{co-} \text{NP} \text{ unlikely to have short proofs}$

(all ϕ that are unsatisfiable).

$P \equiv NP$ implies $NP = \text{co-} NP$

Believed that

$NP \neq \text{co-} NP$.
Non-deterministic Time Hierarchy Theorem:

If \(f + g \) are time constructible (proper) and \(f(n) \) is \(o(g(n)) \) then \(\text{NTIME}(f(n)) \neq \text{NTIME}(g(n)) \)

We will only show: \(\text{NTIME}(t(n)) \neq \text{NTIME}(t(n)^{11}) \)

We will assume the existence of an NTM called NSIM. On input \(<M, x> \) (\(M \) is non-deterministic) NSIM simulates \(M \) on \(x \). If \(M \) runs in time \(t(n) \) then NSIM runs in time \(t(n)^{11} \)

We can't just naively diagonalize. It's not clear how to flip the output of an NTM (because of the asymmetry in the acceptance criteria).

We will use a technique called "lazy diagonalization".

We'll use a technique called "lazy diagonalization."

Note that when we build this tableau:

\[
\begin{array}{cccc}
 & \rightarrow \ & \rightarrow \ & s. t. \ \text{flip the diagonal} \\
M & \downarrow & \downarrow & \text{we just need to find a language} \\
\hline
\end{array}
\]

Each row in the table corresponds to a string. Some strings will not encode a TM at all. Other strings will encode a TM that does not halt in time \(t(n) \). Some will encode \(t(n) \) time NTM's.

We will construct a language \(L \) computed by \(\text{NTM} \ D \) in time \(f(n) \), s.t. for every \(\text{NTM} \ M \) that runs in time \(t(n) \), \(\exists \ z \) s.t.

\[
D(z) \neq M(z) \quad (z's \ don't \ have \ to \ be \ consecutive).\]
\[M_i = \text{ith string in lexicographic order of all strings, interpreted as a TM.} \]

\[\text{Define } f(i) = 2 \]
\[f(i+1) = \left\lfloor \frac{f(i)+1}{2} \right\rfloor + 1 \]

\[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
M_2 & M_1 & f(i+2) & f(i+3) \\
M & j^{f(i)} & f(i) & f(i+1) \\
\hline
1 & 1 & 1 & 1 \\
\end{array} \]

If \(M_i \) is an NTM which runs in time \(t(n) \), then the language \(L \) (i.e., \(D(L) \)) will differ from \(L(M_i) \) somewhere in the range \(1^{f(i)+1}, 1^{f(i)+2}, \ldots, 1^{f(i+1)} \).

Here's what \(D \) does on input \(x \):

- If \(x \neq 1^n \) then reject.
- If \(x = 1^n \), compute \(i \) s.t. \(f(i) < n \leq f(i+1) \).
 - If \(i \) is not a valid encoding of a TM = reject.
 - Otherwise output whatever \(M_i \) does. Takes time \(t(n+1) \).

If \(f(i) < n < f(i+1) \), use NSIM to simulate \(M_i \) on \(1^{n+1} \) for \(t(n+1) \) steps. If \(M_i \) does not finish = accept. Otherwise output whatever \(M_i \) does. Takes time \(t(n+1) \).

If \(M_i \) runs in time \(t(i) \) then \(1^n \in L(D) \iff 1^{n+1} \in L(M_i) \).

If \(n = f(i+1) \) (brute force)

D deterministically simulates \(M_i \) on input \(1^{f(i)+1} \).

\(D \) accepts on input \(1^{f(i)+1} \) if \(M_i \) rejects \(1^{f(i)+1} \).
This takes $2^{t(f(i)+1)}$ steps of N_i. With simulation overhead $\left\lceil \frac{t(f(i)+1)}{2} \right\rceil \leq 2^{t(f(i)+1)} \leq f(i+1) = n$ line-time!

There must be some 1^m in this range on which they disagree.

//