Non-deterministic Space

NSPACE(\(f(n)\)) - languages decidable by a multi-tape NTM that touches \(\leq f(n)\) squares of work tape along any computation path.

Robust non-deterministic space classes:

\(NL = NSPACE(\log n)\)

\(NPSPACE = \bigcup_{k\geq 1} NSPACE(n^k)\)

First the relationship between these classes and time complexity classes. Recall that on input \(x\), \(|x| = n\), a \(t(n)\) space bounded device (det or non-det) has at most:

\[\log n \times \log t(n) \times |Q| \times 2^{O(t(n))}\]

Can build a configuration graph where each node is one of these configurations. Edges correspond to one step in the computation. For a deterministic TM, the out-degree is 1 or 0 if it's a halting state.

In a non-deterministic computation, out-degree is bounded by some constant.

The problem boils down to connectivity:

Is there a path from the starting configuration to an accepting configuration?

This question can be answered in time poly in the size of the graph:

\(t(n) = \log n\) \(\Rightarrow NSPACE(t(n)) = NL \subseteq P\)

\(t(n) = n^k\) \(\Rightarrow NSPACE(n^k) \subseteq EXP \Rightarrow NSPACE \subseteq \text{EXP} \).
This suggests a problem that could be complete for NL:

ST-Connectivity (STCONN)

Input: $G = (V, E); s, t \in V$

Is there a path from s to t in G?

Theorem: STCONN is NL-complete (under log space reductions)

STCONN ∈ NL:

- $V = S$
- Clock = 0

Algorithm:

1. Use non-determinism to “guess” a node label v'.
 - If $(v, v') \notin E$ reject.
 - Else increment clock
 - if $v' = t$ accept.
 - if clock = n reject.

2. $V = v'$
3. Repeat

If there is no path from s to t, every computation path will hit a dead end in the graph or the timer will run out. (i.e. never reach t)

If there is a path from s to t: $s = v_0 \rightarrow v_1 \rightarrow v_2 \ldots \rightarrow v_n = t$

There is a sequence of guesses that will lead to t.

Now prove: $∀ L \in NL \rightarrow \exists x \cdot STCONN$

There is an NTM M that uses log cells of work tape that decides L.

Will describe logspace $R: x \rightarrow G_x, s, t$

$x \in L \iff \exists$ path from s to t in G_x
On input α, there will be $\log^2 n \times |C^{th}| \times |Q|$ configurations of M. Each can be specified using $O(t(n))$ bits.

R:
Run through all possible pairs of configurations on the work tape. For each pair determine if if one can be reached from the other in one step of M. If so:
- Output the edge.
- Add new node "t": add edge from each accepting configuration to t.
- Output: $S = \text{start config.}$, $t = \text{t}$.

Now we will prove two surprising theorems about non-deterministic space classes.

Switch to: $\text{NPSPACE} = \text{PSPACE}$

$(\text{NL} \subseteq \text{SPACE} (\log^2 n))$

Immerman-Szelepcsényi (’87/’88): $\text{NL} = \text{co-NL}$

These are the opposite of what we believe to hold for time complexity classes. ($P = \text{NP}$, $\text{NP} = \text{co-NP}$)
Savitch's Theorem: \(\text{STCONN} \in \text{SPACE}(\log^2 n) \)

Corollary: \(\text{NL} \subseteq \text{SPACE}(\log^2 n) \)

Corollary: \(\text{NPSPACE} = \text{PSPACE} \)

The configuration graph for a poly-space NTM \(M \) has size \(2^{c \log n} \). The algorithm that solves \(\text{STCONN} \) in space \(\log^2 n \) does not need to construct the graph explicitly. It only requires answers to queries: is \((i,j)\) an edge? So, we can solve the connectivity problem on a graph of size \(2^{c \log n} \) in \(\log^2 (2^{c \log n}) = \Theta(c \log n) \).

We can answer queries of the form: \((c,c')\) is there a single move of \(M \) that transforms \(c \) into \(c' \)?

Proof that \(\text{STCONN} \in \text{SPACE}(\log^2 n) \):

Input: \(G = (V,E) \) \& \(s, t \in V \).

Recursive algorithm:

\[\text{PATH}(x, y, i) \] // is there a path from \(x \) to \(y \) of length \(\leq 2^i \)

\[\text{if } i = 0 \text{ return } (x = y \lor (x, y) \in E); \]

\[\text{for all nodes } z: \]

\[\text{if } \text{PATH}(x, z, i-1) \land \text{PATH}(z, y, i-1) \text{ return true; } \]

\[\text{else return false.} \]

Return \(\text{PATH}(s, t, \log n) \)

Space used: (depth of recursion) \times (size of stack record)
depth = $\log n$.

Stack record: (x, y, i) $O(\log n)$ space.

Can figure out what to do next from current record.

- (x, y, i) $(x, z, i-1) \rightarrow$ next cell $(z, y, i-1)$
- (x, y, i) $(z, y, i-1) \rightarrow$ pop record & return results.

ST-NON-CONN

Input: $G = (V, E)$ s,t.

Is there no path from s to t in G?

$L \in NL$ \quad \quad $ST-$ NON-CONN (no)

$N \quad \quad \quad \rightarrow (s, s, t)$ with a path for s to t \quad $ST-$ NO-CONN (YES)

$Y \quad \quad \quad \rightarrow (s, s, t)$ with no path for s to $t.$

$co-L$

ST-NON-CONN is complete for $co-NL$.

Immerman–Szelelősényi: $ST-$ NON-CONN $\notin NL$.

Review non-deterministic log-space algorithm for $ST-$ CONN:

Counter $= 0$.

Current node $= s$

While (current node $\neq t$ \land counter $< n$)

Guess v

if $(current$ $node, v) \in E$

Current node $\rightarrow v$

Counter $+= 1$

else reject.

after loop:

if current node $= t$ accept

else reject.
Each computation path in the tree is a sequence of node labels:
$(V_{i_1}, V_{i_2}, \ldots, V_{i_n})$. Compute in steps if $(V_{i_j}, V_{i_{j+1}}) \in E$.
Reject if t never reached.
Accept if t is reached.

 dois reasons to stop:
+ reached (accept).
+ path does not follow an edge (reject).

Now suppose we know the number of nodes reachable
from s. Call this R. One way to show that t
is not reachable from s is to find R distinct nodes
that are reachable from s, none of which are t:

Counter = 0
For each $V = 1, \ldots, n$
Non-deterministically guess if V is reachable from s.
If guess = yes
 Solve STCONN (s, V) using logspace
 Guess path from s to V. If guess doesn't lead to V,
 reject.
 If path does lead to V
 If $(V = t)$ reject
 else Counter++;
If (Counter = R) accept
Else reject.

> only way to accept is to reach R distinct nodes not
 end to t.

Now how to compute \(R \)?

\[
R(i) = \#\text{nodes reachable from } s \text{ in } \leq i \text{ steps.}
\]

\[
R(0) = 1 \quad \text{(node } s)\text{.}
\]

Compute \(R(i+1) \) from \(R(i) \) using non-determinism.

- Uses only \(\log n \) bits
- Eventually have \(R(n) = R \).
- Only need to keep \(R(i) \) to get \(R(n) \) \(O(\log n) \) bits.

Initialize \(R(1) = 0 \)

For each \(v \in V \) guess if \(v \) is reachable from \(s \) in \(\leq i+1 \) steps.

If guess = "yes"

Use NL procedure to verify path from \(s \) to \(v \).
There will be an accepting path if yes guess is right.

If guess is right, increment \(R(i+1) \).

If guess = "no"

Use NL procedure to verify there is no path from \(s \) to \(v \) that uses \(\leq i+1 \) edges.
There will be an accepting path if no guess is right.

Computation guesses a subset of the nodes.

\[
\begin{bmatrix}
V_1 & V_2 & \cdots & V_n \\
Y/N & Y/N & \cdots & Y/N
\end{bmatrix}
\]

Computation continues only if each yes guess is in fact reachable from \(s \).

Only accept if \(R \) nodes have been reached.
Let S_i be the nodes reachable by path of length $\leq i+1$.

NL procedure to verify \exists path from s to v of length $\leq i+1$.

This is basically the alg for ST-CONN:

- Current node = s.
- Count = 0.

While (count $\leq i$ and current node $\neq t$)

- Guess v

 $(\text{current node}, v) \in E$?

 No \Rightarrow reject

 Yes

 current node $\leftarrow v$

 count \leftarrow count + 1.

If current node $= t$

 accept

Else reject.

NL procedure to verify that there is no path from s to v in $\leq i+1$ steps.

Use $R(i)$ and the procedure outlined above to reach every node reachable from s in $\leq i$ steps.

For each v reached, verify that it has no edge to v.

Reject if v is reached

Accept otherwise.
Here's an expanded specification of this procedure:

Counter = 0

For each $v = 1 \ldots n$

Non-deterministically guess if v is reachable from s in $\leq i$ steps.

If guess = YES

 $c_{uv} = q$
 $c = 0$

 While ($c < i$ and $c_{uv} \neq w$)
 Non-deterministically guess a node w
 If (c_{uv}, w) is an edge
 $c_{uv} = w$
 $c++$
 Else reject.
 If $(c_{uv} \neq w)$
 Reject.

 Counter ++;
 If there is an edge (u, v)
 Reject.

If Counter $\neq R(i)$
 Only accept if all $R(i)$ nodes reachable from s in i steps were actually reached.