Randomized Complexity Classes

Model: probabilistic TM
Deterministic TM w/ an additional read-only input tape containing coin flips.

$\text{BPP: Bounded-Error Probabilistic Poly-time.}$

Let $\text{BPP} \equiv \{ \text{p.p.t. TM M} \}$

\begin{align*}
 x \in L & \Rightarrow \text{Prob}_{y} [M(x,y) \text{ accepts}] \geq \frac{2}{3} \\
 x \notin L & \Rightarrow \text{Prob}_{y} [M(x,y) \text{ rejects}] \geq \frac{2}{3}
\end{align*}

RP:

\begin{align*}
 x \in L & \Rightarrow \text{Prob}_{y} [M(x,y) \text{ accepts}] \geq \frac{1}{2} \\
 x \notin L & \Rightarrow \text{Prob}_{y} [M(x,y) \text{ rejects}] = 1
\end{align*}

$\text{ZPP: (zero error poly-time)} \quad \text{ZPP} = \text{RP} \cap \text{co-RP}$

\begin{align*}
 \text{Prob}_{y} [M(x,y) \text{ outputs "fail"}] & \leq \frac{1}{2} \\
 \text{otherwise it outputs the correct answer.}
\end{align*}

→ Or runs in expected poly time and always produces the right answer.

These classes may better capture "efficiently computable" better than P.

→ The $\frac{1}{2}$ in the defn of ZPP, RP, co-RP can be replaced with any $\frac{1}{\text{poly}(n)}$.

→ The $\frac{2}{3}$ in the defn of BPP can be replaced with any $\frac{1}{2} + \frac{1}{\text{poly}(n)}$ (via Error reduction).

Suppose we have $L, \text{p.p.t. M}$

\begin{align*}
 x \in L & \Rightarrow \text{Prob}_{y} [M \text{ accepts}] \geq \frac{2}{3} \\
 x \notin L & \Rightarrow \text{Prob}_{y} [M \text{ rejects}] = \frac{1}{2}
\end{align*}
Simulate $M \frac{k}{\varepsilon^2}$ times, each time with independent coin flips.
- Accept if any simulation accepts
- O.w. reject.

If $x \in L$, prob a given simulation "bad" $\leq (1 - \varepsilon)^{k/6} \sim e^{-k}$
Prob M accepts $\geq 1 - e^{-k}$

If $x \notin L$, prob M' rejects $= 1$.

Error reduction for BPP:
$x \in L$ $\Pr[M$ accepts $] \geq \frac{1}{2} + \varepsilon$
$x \notin L$ $\Pr[M$ rejects $] \geq \frac{1}{2} + \varepsilon$

Simulate $M \frac{k}{\varepsilon^2}$ times with independent coin flips.
Take the majority answer.

X_i: random variable $= 1$ if i^{th} answer is correct
$= 0$ otherwise.

$\Pr[X_i = 0] \leq \frac{1}{2} - \varepsilon$ $\Pr[X_i = 1] \geq \frac{1}{2} + \varepsilon$
$E[X_i] = \frac{1}{2} + \varepsilon$.

X_i's are mutually independent
$X = \sum X_i$ $\mu = E[X] = \left(\frac{1}{2} + \varepsilon\right) \frac{k}{\varepsilon^2}$ $m = \frac{k}{\varepsilon^2}$

Chernoff's Inequality says $\Pr[X \leq m/2] \leq \frac{2^{-\frac{m^2}{2(\varepsilon^2m)}}}{2^{-\frac{m^2}{2\varepsilon^2}}}$

As long as $\varepsilon > \frac{1}{\poly(n)}$ and $k = O(\poly(n))$,
The running time is polynomial and error exp small.
RP, co-RP, BPP, ZPP are all contained in P
(you can always just ignore the random string).

They are also all contained in PSPACE:

\[P_{\text {accept}} = \frac{\# \text{ y's } M(x,y) = \text{acc}}{\# \text{ all possible } y}. \]

Also RP \subseteq NP (and co-RP \subseteq co-NP)

An NTM can guess y, then compute M(x,y)

\[\begin{align*}
&\text{if } y \in L \quad M(x,y) = \text{reject} \\
&\text{if } x \in L \quad \text{for at least half of the } y \text{'s } M(x,y) = \text{accept} \\
\text{Exp} &
\end{align*} \]

PSPACE \supset \text{NP, BPP, co-NP, EXP, RP, co-RP, P}

How powerful is BPP?

We have an example of a problem in BPP
that we only know how to solve in EXP.

Not known if BPP = EXP (or even NEXP)
Strong hints that BPP \neq EXP however.
Is there a deterministic simulation of BPP that does better than brute-force search?

Yes, if we allow non-uniformity.

Theorem

\[\text{BPP} \subseteq \text{P/poly} \quad \text{(Adleman)} \]

Take \(L \in \text{BPP} \)

Error reduction gives TM \(M \) s.t.

\[
\begin{align*}
\text{if } x \in L \quad &|x| = n \quad \Pr_y [M(x,y) \text{ accepts}] \geq 1 - (\frac{1}{2})^n \\
\text{if } x \notin L \quad &|x| = n \quad \Pr_y [M(x,y) \text{ rejects}] \geq 1 - (\frac{1}{2})^n
\end{align*}
\]

\(y \) is "bad" for \(x \) if \(M(x,y) \) gives the wrong answer.

Fix \(x \)

\[
\begin{align*}
\Pr_y [y \text{ is bad for } x] &\leq (\frac{1}{2})^n \\
\Pr_y [y \text{ is bad for some } x] &\leq 2^n (\frac{1}{2})^n < 1
\end{align*}
\]

\(y \) for which \(y \) is good for all inputs \(x \) of length \(n \).
This \(y \) is the hint for inputs of length \(n \).

(hard code \(y \) into \(L_n \).)

\[\Rightarrow \text{ if } \text{BPP} = \text{EXP} \quad \text{then } \text{EXP} \subseteq \text{P/poly}. \]

Does BPP have complete problems?

Determining if a TM \(M \) is an NTM is easy.
Determining if a TM \(M \) is in \(\text{BPTIME} \) is undecidable since if requires that every string is accepted w/ probability \(\leq 1/3 \) or \(\geq 2/3 \).
A natural candidate for a BPP-complete language would be \((M, x, 1^t)\): \(M\) accepts \(x\) w.p. \(\geq 2/3\) in time \(t\). This problem is BPP-hard.

However: is it in BPP? A BPP machine can't just simulate \(M\) on input \(x\) because it could be that \(M\) accepts w/ prob \(1/2\) on input \(x\).

However if BPP = P (conjectured to be true) then it does have complete problems because P does.

Next: try to de-randomize BPP by pseudo-random generators.

Simulate BPP in subexponential time or better.

Pseudo-random Generator (PRG)

\[
\begin{align*}
\text{seed} \quad &\quad \Rightarrow \quad G \quad \Rightarrow \quad \text{output string} \\
+ t \text{ bits} \quad &\quad \quad \text{in bits.}
\end{align*}
\]

\(G\) must be efficiently computable.

Sketches \(t\) into \(m\) bits.

"fools" small circuits. For all \(C\) of size \(\leq s\):

\[
\left| \Pr_{y} \left[C(y) = 1 \right] - \Pr_{z} \left[C(1(z)) = 1 \right] \right| \leq \varepsilon.
\]

Simulating BPP w/ a PRG:

Recall: \(L \in \text{BPP} \implies \exists \ p.p.t \ \text{Th} \ M\)

\[
\begin{align*}
x \in L &\quad \implies \Pr_{y} \left[h(x,y) \ \text{accepts} \right] \geq 2/3 \\
x \notin L &\quad \implies \Pr_{y} \left[h(x,y) \ \text{rejects} \right] \geq 2/3
\end{align*}
\]
Convert M into a circuit $C(x,y)$

Simplification: pad y s.t. $|C| = |y| = m$.

Hardwire x into circuit to get $C(x,y)$

\[
\Pr_y [C(y) = 1] \geq \frac{2}{3} \quad \text{"yes"}
\]

\[
\Pr_y [C(y) = 1] \leq \frac{2}{3} \quad \text{"no"}
\]

Pro: output length: m

Seed length: $t \ll m$

error $\varepsilon < \frac{1}{6}$

fooling size $s = m$.

Compute $\Pr_z [C_z (f(z)) = 1]$ exactly.

evaluate $C_x (f(z))$ for every $z \in \{0, 1\}^t$.

running time $(O(m) + \text{time for } f) 2^t$.

This can distinguish between the two cases.

\[
\forall x \in L \quad \Pr_y [C(y) = 1] \geq \frac{2}{3} - \varepsilon > \frac{1}{2}.
\]

\[
\exists x \in L \quad \Pr_y [C(y) = 1] \leq \frac{1}{3} + t < \frac{1}{2}.
\]
Blum-Micali-Yao PRGs:

Initial goal: for all $1 > \varepsilon > 0$ we will build a family of PRGs G_m with:
- Output length $= m$
- Seed length $= t = m^s$
- Fooling size $s = m$
- Running time: m^c
- Error: $\varepsilon < \frac{1}{6}$

Implies $\text{BPP} \subseteq \text{NTIME}(2^{n^c}) \subseteq \text{EXP}$

Why? Simulation runs in time:

\[O \left((m + m^c) 2^{n^c} \right) = O \left(2^{n^{2c}} \right) = O \left(2^{n^{1.5c}} \right) \]

(Note: in order to get $\text{BPP} \subseteq \text{P}$, need $t = O(\log m)$)

Will require some kind of complexity assumption.
(PRGs of this type imply the existence of one-way functions.)

Definition: One Way Function (OWF)

A function family $f = \{ f_m \}_{m \in \mathbb{N}}$:
- $f_m : 0,1^n \rightarrow 0,1^m$
- Each function is computable in polynomial time
- For every polynomial size circuit $C_{n,\delta}$
 \[\Pr_x \left[C_{n,\delta}(f(x)) \neq f^{-1}(f(x)) \right] \leq \varepsilon(n) \]
- $\varepsilon(n) = o(1/n^c)$ for all c. Note this requires hardness on average which is stronger than worst-case hardness.

It is generally believed that one-way functions exist: (integer multiplication, discrete log, etc.)
Widely used in cryptography.
Definition: One Way Permutation: OWF \(f \)
which is one-to-one.

Can simplify \(\Pr_x [C_n (f(x)) \in f^{-1}(f_n (x))] \leq \epsilon(n) \)

to \(\Pr_y [C_n (y) = f^{-1} (y)] \leq \epsilon(n) \).

Here's an attempt at a PRG from an ONF:

\[
\begin{align*}
t &= m^8, & \text{Computable in time} & \quad k t^c < m t^{c-1} = \quad m \quad m^{8(c-1)} = m^c. \\
y_0 & \in \{0,1\}^t \\
y_i &= f_k (y_{i-1}) \\
g (y_0) &= y_{k-1} y_{k-2} \cdots y_0 \\
k &= m/t.
\end{align*}
\]

The output is "unpredictable".

No poly size ckt \(C \) can output \(y_{i-1} \) given \(y_{k-1} \ldots y_i \) w/ non-negligible success prob.

If \(C \) could, then given \(y_i \), compute \(y_{k-1} \ldots y_{i+1} \)

Use \(y_{k-1} \ldots y_i \) to get \(y_{i-1} \).

This would be a ckt to invert \(f \):

\[
f_k^{-1} (y_i) = y_{i-1}
\]

\(\Rightarrow \) the 1-1 assumption makes \(f^{-1} \) unique.

2 Problems:

1. Although it's hard to compute \(y_{i-1} \) from \(y_i \), it may be possible to compute one or more bits of \(y_{i-1} \)

Which could be used to distinguish \(b \)'s output from the uniform distribution over \(\{0,1\}^n \).
This notion of "unpredictability" is not necessarily enough to meet the fooling requirement:
\[\Pr_y[C(y) = 1] - \Pr_z[C(\hat{g}(\hat{z})) = 1] \leq \epsilon. \]

Hard Bits

If \(\hat{g}, \hat{z} \) is a one-way permutation, we know that no poly-size circuit can compute \(\hat{f}^{-1}(y) \) from \(y \) w/ non-negligible success prob:
\[\Pr_y[C_n(y) = \hat{f}^{-1}(y)] \leq \epsilon(n) \]

We want to identify a single bit position \(j \) for which:
\[\text{no poly-size ekt can compute} \ (\hat{f}^{-1}(y))_j \ \text{from} \ y \]
\[\text{w/ non-negligible advantage over a coin flip.} \]
\[\Pr_y[C_n(y) = (\hat{f}^{-1}(y))_j] \leq \frac{1}{2} + \epsilon(n) \]

For some specific functions we know a bit position \(j \), but would like a more general:
\[h_n : \{0,1\}^n \rightarrow \{0,1\}^m \]
\[\text{rather than just a bit position } j. \]

Definition: hard bit for \(g = \hat{g}, \hat{z} \) is a family \(h = \{ h_n \} \)
\[h_n : \{0,1\}^n \rightarrow \{0,1\}^m \] such that if circuit family
\[\{ C_n \} \] of size \(s(n) \) achieves:
\[\Pr_y[C_n(y) = h_n(\hat{g}(\hat{z}))] \leq \frac{1}{2} + \epsilon(n) \]

Then there is a ekt family \(\{ C'_n \} \) of size \(s'(n) \) that achieves
\[\Pr_y[C'_n(y) = g_n(y)] \geq \epsilon'(n) \]
\[\epsilon'(n) = (\frac{\epsilon(n)}{\epsilon(n)})^{o(1)} \]
\[s'(n) = (s(n) n / \epsilon(n))^{o(1)} \]
In order to get a generic hard bit, we need to modify our one-way permutation.

Define \(f_n : \mathbb{Z}_2^n \times \mathbb{Z}_2^n \to \mathbb{Z}_2 \times \mathbb{Z}_2^n \)

\[
f_n(x, y) = (f_n(x), y).
\]

1. \(f \) is a permutation iff \(f' \) is a permutation.
2. \(f \) is a one-way perm iff \(f' \) is a one-way perm.

Goldreich-Levin function:

\(GL_n : \mathbb{Z}_2^n \times \mathbb{Z}_2^n \to \mathbb{Z}_2 \times \mathbb{Z}_2^n \)

\[
GL_n(x, y) = \bigoplus_{i=1}^{n} x_i \quad (\text{inner product over } GF_2)
\]

\(y \) selects a subset of \(x \)'s bits for parity.

Theorem: (b-L) for every function \(f \), \(GL \) is a hard bit for \(f' \).

We won't prove this here, but let's discuss how it will be used.

We can assume here that if we have a one-way function, then it has a hard bit for \(f' \). (Use the modified one-way perm and the b-L function for the hard bit).

This is what the PRG looks like.
y_0 is chosen uniformly from $\{0,1\}^t$.
This yields a distribution over $(b_{n-1} b_{n-2} \ldots b_0)$ n-bit strings.

Note that because f_i is a permutation, the distribution is the same if we pick y_i at random and compute

$y_{i-1} \leftarrow y_{i-1} \oplus f_i^{-1}(y_i) \oplus f_{i-1}(y_{i-2}) \oplus \ldots \oplus f_1(y_0)$

This may be difficult to compute, but it is well defined and produces the same distribution as if we start at y_0.

We know that there are no poly-sized circuits that can predict b_{i-1} from y_i w/ non-negligible bias away from a random bit:

$$\Pr_{y_i}[C(y_i) = b_{i-1}] = \frac{1}{2} + \epsilon.$$

Given y_i, we can use f and g^{-1} to produce $b_{n-1} b_{n-2} \ldots b_i$.

If y_i is chosen at random, this will be the same induced distribution as if $b_{n-1} \ldots b_0$ is produced starting at y_0 and then tossing out b_i.

There is no poly-size circuit that can take $b_{n-1} \ldots b_i$ and predict b_{i-1} w/ probability better than a random bit when $b_{n-1} \ldots b_i$ is chosen according to this induced distribution.

Now we need to relate this notion of predictability to distinguishability.
Distinguishers and Predictors:

Distribution D on $\{0,1\}^n$

D ϵ-passes statistical tests of size s if for all circuits of size s:

$$Pr_{y \leftarrow U} [C(y) = 1] - Pr_{y \leftarrow D} [C(y) = 1] \leq \epsilon$$

A circuit violating this is called an efficient distinguisher.

D ϵ-passes prediction tests of size s if for all circuits of size s:

$$Pr_{y \leftarrow D} [C(y_{1, \ldots, y_{s-1}}) = y_s] \leq \frac{1}{2} + \epsilon$$

A circuit violating this is called a predictor.

Having a predictor seems stronger than having a distinguisher.

We have that our distribution has no predictor but we need to be able to say that there is no distinguisher.

Yao showed that these are essentially the same.

Theorem (Yao): If a distribution D over $\{0,1\}^n$ $\left(\frac{\epsilon}{n^2} \right)$-passes all prediction tests of size s, then it ϵ-passes all statistical tests of size $s' = s - O(n)$.

Proof by contradiction:
given an ε' distinguisher C:

$$\Pr_{y \sim D_0} [C(y) = 1] - \Pr_{y \sim D} [C(y) = 1] > \varepsilon'$$

We will show that there is a predictor P_i (for some i)

$$\Pr_{y \sim D} [P(y_{i+1}, \ldots, y_n) = y_i] > \frac{1}{2} + \frac{\varepsilon}{n^2}$$

Consider hybrid distributions between D and Un:

$$D_0 = Un \quad D_i \quad D_n = D$$

\text{generate } b_1 \ldots b_n \quad \text{toss and bit: } b_1 \ldots b_n \quad \text{induced by } D \quad \text{uniform}

Let $P_i = \Pr_{y \sim D_i} [C(y) = 1]$

$$p_0 = \Pr_{y \sim Un} [C(y) = 1] \quad p_n = \Pr_{y \sim D} [C(y) = 1]$$

by assumption $|p_n - p_0| > \varepsilon$.

$$\varepsilon < |p_n - p_0| \leq \frac{1}{n} \sum_{i=1}^{n} |P_i - P_{i-1}|$$

$$\Rightarrow \exists i \text{ s.t. } |P_i - P_{i-1}| > \varepsilon/n.$$ (assume w.l.o.g. $P_i > P_{i-1}$ otherwise can just reverse the output).

Let $D_i^* = D_i$ except flip the ith bit.

$$P_i' = \Pr_{y \sim D_i^*} [C(y) = 1]$$
\[\begin{align*}
D_i & : b_1 \ldots b_{i-1} y_i y_{i+1} \ldots y_n \\
D_i^* & : b_1 \ldots b_{i-1} \bar{b}_i y_i \ldots y_n \\
p(x) &= p(x_i \ldots x_{i-1}) z^{-n+i} \\
p(x) &= p(x_i \ldots x_{i-1})p(y_i|x_i, \ldots, x_{i-1})z^{-n+i} \\
p(x) &= p(x_i \ldots x_{i-1})(1 - p(y_i|x_i, \ldots, x_{i-1}))z^{-n+i}
\end{align*} \]

\[\Rightarrow D_{i-1} = \frac{D_i + D_i^*}{2}. \]

\[P_{i-1} = \frac{P_i + P_i^*}{2}. \]

Randomized predictor \(P' \) for \(i \) th bit:

- **Input:** \(b = b_1 \ldots b_{i-1} \) (generated by \(D \))
- Flip a coin \(d \in \{0,1\} \).
- \(w = w_1 w_2 \ldots w_n \leftarrow U_{n-1} \)
- Evaluate \(C(b, d, w) \)
- If 1 \(\Rightarrow \) output \(d \) \(\; \; \) if 0 \(\Rightarrow \) output \(\bar{d} \).

Claim: \(P_{i-1}[P'(b_1 \ldots b_{i-1}) = b_i] > \frac{1}{2} + \epsilon/n. \)

\(b_1 \ldots b_i \leftarrow D \)

\(C \) may need an extra gate.

\(d^* \), \(w^* \)

\(\text{Size is } g' + O(n) = s. \)

\(P' \) is a randomized procedure, we will choose a way to fix the random bits to preserve the probability of success. Call these settings \(d^* \) and \(w^* \). \(P \) has these hardwired.
\[\Pr_{b_1 \cdots b_{i-1} \in D; \theta, \omega \in \mathcal{U}} \left[p' (b_1 \cdots b_{i-1}) = b_i \right] = \]

\[\Pr \left[b_i = d \mid C(b, d, \omega) = 1 \right] \Pr \left[C(b, d, \omega) = 1 \right] + \]
\[\Pr \left[b_i = 7d \mid C(b, d, \omega) = 0 \right] \Pr \left[C(b, d, \omega) = 0 \right] \]

\[\cdot (1 - p_{i-1}) \]

\[\Pr \left[b_i = d \mid C(b, d, \omega) = 1 \right] = \frac{\Pr \left[C(b, d, \omega) = 1 \mid b_i = d \right] \Pr \left[b_i = d \right]}{\Pr \left[C(b, d, \omega) = 1 \right]} = p_i \]

\[\Pr \left[b_i = 7d \mid C(b, d, \omega) = 0 \right] = \frac{\Pr \left[C(b, d, \omega) = 0 \mid b_i = 7d \right] \Pr \left[b_i = 7d \right]}{\Pr \left[C(b, d, \omega) = 0 \right]} = (1 - p_{i-1}) \]

So:
\[\Pr_{b_1 \cdots b_{i-1} \in D; \theta, \omega \in \mathcal{U}} \left[p' (b_1 \cdots b_{i-1}) = b_i \right] = \]

\[\frac{p_i \cdot (p_{i-1})}{2 (p_{i-1})} + \frac{(1 - p_i) \cdot (1 - p_{i-1})}{2 (1 - p_{i-1})} = \frac{1}{2} + \frac{1}{2} (p_i - p_{i-1}) \]

\[= \frac{1}{2} + \frac{1}{2} (p_i - p_{i-1}) \]

\[> \frac{1}{2} + \frac{\epsilon}{2n} \]

Generator \(G^S = \frac{S}{2} G_m^S \)

\[t = m^S \quad y_0 = \{0, 1\}^t \quad y_i = f_k (y_{i-1}) \quad b_i = h_k (y_i) \]

\(G_m^S (y_0) = b_{m-1} b_m \ldots b_0 \)
Theorem (BMY) For every $\delta > 0$ there is a constant c s.t. for all d, e G^e is a PRG with

\[\text{error } \epsilon < 1/m^d \quad ? \]
\[\text{fooling size } S = m^e \]
\[\text{running time } m^c \]

Proof: Time to compute $G^e(y_0)$ is $m^{t^c} < m^{c+1}$

Assume f^S does not $(1/m^d)$ pass a statistical test \(C = 3C_{\text{en}} \) of size m^e

\[\left| \Pr_{y \in U_m} [C(y)=1] - \Pr_{z \in D} [C(z)=1] \right| > 1/m^e \]

We can transform this into a predictor P of size $m^e + O(m)$:

\[\Pr_{z \in D} [P(b_{m-1}, \ldots, b_{m-i}) = b_{m-i+1}] > 1/2 + 1/m^{i+1} \]

We will use this to devise a procedure to compute $h_t(f^{-1}(y))$

Set $y < y_{m-1}$ \quad $b_{m-i} = h_t(y_{m-i})$

Compute y_j for $j = m-i+1, \ldots, m-1$ as above. \quad $b_j = h_t(y_j)$.

Evaluate $P(b_{m-1}, \ldots, b_{m-i}) \xRightarrow{\text{distributed according to the prefix of the generator.}}$
Pr[y \geq \frac{1}{2} + \frac{1}{\text{poly}(m)}]

Initially chosen uniformly

bm-i: \text{ht}(y_{m-i}) = \text{ht}(f^{-1}(y_{m-i})) = \text{ht}(f^{-1}(y))

This is a family of circuits that computes \text{ht}(f^{-1}(y)) from y with success greater than \frac{1}{2} + \frac{1}{\text{poly}(m)}

\Rightarrow \text{Contradiction.}

To get BPP = P need t = O(\log m)

(need to run over all seeds of length t \rightarrow 2^t).

BMY building block one-way \textbf{if} \colon \{0,1\}^t \rightarrow \{0,1\}^t
required to fool circuits of size \text{poly} \textbf{for all e}.
But with these settings \textbf{f} can be inverted by brute force!

BMY generator:

one generator fooling all poly-sized circuits
one-way permutation is a hard function.
implies hard function in NP \cap \text{co-NP}.

Computing \textbf{f}^{-1}(x) is hard
but can show \textbf{f}(y)=x: y is witness

Nisan-Wigderson generator:

for each poly-size bound, a different generator.

hard function can be in \textbf{E} = \bigcup \Sigma^* \text{DTIME}(2^n)
This allows them to get $t = O(\log m)$.

Hardness assumption still average case.
Can be made worst case using error-correcting codes.