Recursive Algorithms

ICS 6D
Sandy Irani
Pseudo-code

• Algorithms for solving problems
• Specified in a language between English and programming language
 – The syntax is informal – meant to convey the meaning of steps.
 – Should be complete enough that it can be unambiguously translated into code.
 – Use elements of computer languages:
 • If-then-else, For, Assignment (x := 6).
Recursive Algorithm

• A *recursive algorithm* is an algorithm that calls itself.

• A recursive algorithm has
 – *Base case*: output computed directly on small inputs
 – On larger input, the algorithm calls itself using smaller inputs and then uses the results to construct a solution for the large input.

 • The calls to itself are called *Recursive Calls*.
Computing an Exponent Recursively

• **Power(a, n)**
• **Input:** real number, non-negative integer **n**
• **Output:** a^n

• If $(n = 0)$, return (1)
• $p := \text{Power}(a, n-1)$
• Return $(p*a)$
Power(a,n) Proof of Correctness

• **Theorem**: for integer $n \geq 0$, $\text{Power}(a, n)$ returns a^n

• Proof: By induction on n.

• **Base case**: $n = 0$. $\text{Power}(a, 0)$ returns $1 = a^0$.

• **Inductive Step**: We will show that for $k \geq 0$,
 – If $\text{Power}(a, k)$ returns a^k,
 – then $\text{Power}(a, k+1)$ returns a^{k+1}.
Power(a,n) multiplication count

• **Theorem**: for integer $n \geq 0$, Power(a, n) performs n multiplications.

• **Proof**: By induction on n.

• Base case: $n = 0$. Power(a, 0) performs no multiplications.

• Inductive Step: We will show that for $k \geq 0$,
 – If Power(a, k) performs k multiplications
 – then Power(a, $k+1$) performs $k+1$ multiplications.
Power(a,n) multiplication count

- Inductive Step: We will show that for \(k \geq 0 \),
 - If \(\text{Power}(a, k) \) performs \(k \) multiplications
 - then \(\text{Power}(a, k+1) \) performs \(k+1 \) multiplications.

- The number of multiplications performed by
 \(\text{Power}(a, k+1) = \)
Faster Recursive Exponentiation

FastPower(a, n)

Input: real number a, non-negative integer n

Output: \(a^n\)

- If \(n = 0\), return(1)
- \(d := \text{n DIV 2}\)
- \(p := \text{FastPower}(a, d)\)
- If n is even
 - Return\((p^2)\)
- If n is odd
 - Return\((a \cdot p^2)\)
Faster Recursive Exponentiation

FastPower(a, n)

Input: real number a, non-negative integer n

Output: \(a^n\)

- If \(n = 0\), return(1)
- \(d := n \text{ DIV } 2\)
- \(p := \text{FastPower}(a, d)\)

- If n is even
 - Return\(p^2\)
- If n is odd
 - Return\((a \cdot p^2)\)
FastPower(a,n) Proof of Correctness

- **Theorem**: for integer $n \geq 0$,
 \[\text{FastPower}(a, n) \text{ returns } a^n \]

- **Proof**: By induction on n.

- **Base case**: $n = 0$. \[\text{FastPower}(a, 0) \text{ returns } 1 = a^0. \]

- **Inductive Step**: We will show that for $k \geq 0$,
 - If \[\text{FastPower}(a, j) \text{ returns } a^j \text{ for every } j = 0,\ldots,k \]
 - then \[\text{FastPower}(a, k+1) \text{ returns } a^{k+1}. \]
FastPower(a,n) Proof of Correctness

• Inductive Step: We will show that for \(k \geq 0 \),
 – If FastPower(a, j) returns \(a^j \) for every \(j = 0,\ldots,k \)
 – then FastPower(a, k+1) returns \(a^{k+1} \).

• Case 1: \(k+1 \) is even

 – \(k+1 = 2m \) for integer \(m \)
 – \(d := k+1 \ \text{DIV} \ 2 = m \)
 – \(m \) is in the range 0 through \(k \), by the inductive hypothesis,
 FastPower(a, m) returns \(a^m \)
 – FastPower(a, k+1) returns \([\text{FastPower}(a, m)]^2\)
Faster Recursive Exponentiation
Case 1: \(k+1 \) is odd

FastPower\((a, k+1)\)

Input: real number \(a \), non-negative integer \(n \)

Output: \(a^n \)

- If \(n = 0 \), return(1)
- \(d := k+1 \) DIV 2
- \(p := \text{FastPower}(a, d) \)

- If \(n \) is even
 - Return\((p^2)\)

- If \(n \) is odd
 - Return\((a \cdot p^2)\)
FastPower(a,n) Proof of Correctness

- **Inductive Step:** We will show that for $k \geq 0$,
 - If FastPower(a, j) returns a^j for every $j = 0,\ldots,k$
 - then FastPower($a, k+1$) returns a^{k+1}

- **Case 2:** $k+1$ is odd
 - $k+1 = 2m+1$ for integer m
 - $d := k+1 \text{ DIV } 2 = m$
 - m is in the range 0 through k, by the inductive hypothesis,
 FastPower(a, m) returns a^m
 - FastPower($a, k+1$) returns $a \cdot [\text{FastPower}(a, m)]^2$
Faster Recursive Exponentiation
Case 2: k+1 is odd

FastPower(a, k+1)

Input: real number a, non-negative integer n

Output: a^n

- If (n = 0), return(1)
- $d = k+1 \text{ DIV } 2$
- $p := \text{FastPower}(a, d)$

- If n is even
 - Return(p^2)

- If n is odd
 - Return($a \cdot p^2$)
Recursive Algorithm to Compute
SuperPower(a, n) = \(a^{(3^n+1)}\)

- SuperPower(a,n)

 //a is a real number, n is a non-negative int

If __________ then __________ //Base Case

p := SuperPower(a,n-1)
Return(_________)
Recursive Algorithm to Compute the Power Set of a Set

• PowerSet(A)

• Input: a set A

• Output: P(A)

• If A = ∅, return({∅})
Recursive Algorithm to Compute the Power Set of a Set

- PowerSet(A)
- Input: a set A
- Output: P(A)

- If A = ∅, return({∅})
- Select an element a ∈ A
- A' := A – {a}
- P := PowerSet(A')
- For each S ∈ P
 - Add {a} ∪ S to P
- Return(P)