USC Center for Software Engineering

Points of Contact at USC-CSE in Los Angeles

Mr. Chris Abts (primary graduate researcher)..(213) 740-6470
Ms. Ladonna Pierce (CSE Office Administrator)...(213) 740-5703
Dr. Barry W. Boehm (CSE Director)..(213) 740-8163
USC Center for Software Engineering FAX line...(213) 740-4927
COCOTS E-Mail...cots-info@sunset.usc.edu
World Wide Web page..http://sunset.usc.edu/COCOTS/cocots.html

Additional Contact at Software Metrics, Inc. in Virginia (near D.C.)

Dr. Elizabeth (Betsy) Bailey...(703) 754-0115
FAX line...(703) 754-0115
E-Mail..bkbailey@erols.com
USC-CSE Seven Step Modeling Methodology

1. Analyze Existing Literature
2. Perform Behavioral Analysis
3. Identify Relative Significance
4. A-PRIORI MODEL + SAMPLING DATA = A-POSTERIORI MODEL
5. Perform Expert-Judgment, Delphi Assessment
6. Gather Project Data
7. Determine Bayesian A-Posteriori Update
8. Gather more data; refine model
COTS Advantages and Disadvantages

Advantages
- Available now; earlier payback
- Avoids expensive development & maintenance
- Predictable license costs & performance
- Rich in functionality
- Broadly used, mature technology
- Frequent upgrades often anticipate organization’s needs
- Dedicated support organization
- Hardware/software independence
- Tracks technology trends

Disadvantages
- Licensing and intellectual property procurement delays
- Up front license fees
- Recurring maintenance fees
- Reliability often unknown/inadequate; scale often difficult to change
- Unnecessary features compromise usability, performance
- Functionality, efficiency constraints
- No control over upgrades/maintenance
- Dependency on vendor
- Efficiency sacrifices
- Integration not always trivial; incompatibilities among vendors
- Synchronizing multiple-vendor upgrades
COTS Definition

• “Commercial Off the Shelf” Software
• Commercial Software Products
 – sold, leased, licensed at advertised prices
• Source Code Unavailable
 – generally an application program interface (API)
 – frequently tailoring options
• Usually periodic releases with feature growth, obsolescence
USC-CSE Seven Step Modeling Methodology

1. Perform Behavioral Analysis
2. Identify Relative Significance
3. Perform Expert Judgment, Delphi Assessment
4. Gather Project Data
5. Determine Bayesian A-Posteriori Update
6. Gather more data; refine model
7. A-PRIORI MODEL + SAMPLING DATA = A-POSTERIORI MODEL
COTS Integration Sources of Effort

1) COTS Assessment
 Of functionality, performance, interoperability, etc.
 (pre- and post- commitment)
2) COTS Tailoring and Tuning
 Effects of platform, other COTS products
 - includes added Application V&V (System) Effort
3) Glue Code Development
 Similar to other COCOMO II software effort estimation
 - also includes added Application V&V (System) Effort
4) Application Volatility Due to COTS
 COTS volatility, shortfalls, learning curve
COCOMO vs. COCOTS Cost Sources
(COTS in System)

- LCO (reqs review)
- LCA (PDR)
- IOC

Application Code Development Integration and Test Separate from COTS Effects

- LCO - Life Cycle Objectives
- LCA - Life Cycle Architecture
- IOC - Initial Operational Capability

COCOMO Effort Estimate
COCOTS Effort Estimate Components

Beta Test, Field Test

TIME

STAFFING
USC-CSE Seven Step Modeling Methodology

1. Analyze Existing Literature
2. Perform Behavioral Analysis
3. Identify Relative Significance
4. Perform Expert-Judgment, Delphi Assessment
5. Gather Project Data
6. Determine Bayesian A-Posteriori Update
7. Gather more data; refine model

A-PRIORI MODEL + SAMPLING DATA = A-POSTERIORI MODEL
COTS Integration Cost Sources:

3) **Glue Code Development and Test - Glue Code Cost Drivers**

Personnel Drivers

1) ACIEP - COTS Integrator Experience with Product
2) ACIPC - COTS Integrator Personnel Capability
3) AXCIP - Integrator Experience with COTS Integration Processes
4) APCON - Integrator Personnel Continuity

COTS Component Drivers

5) ACPMT - COTS Product Maturity
6) ACSEW - COTS Supplier Product Extension Willingness
7) APCPX - COTS Product Interface Complexity
8) ACPPS - COTS Supplier Product Support
9) ACPTD - COTS Supplier Provided Training and Documentation

Application/System Drivers

10) ACREL - Constraints on Application System/Subsystem Reliability
11) AACPX - Application Interface Complexity
12) ACPER - Constraints on COTS Technical Performance
13) ASPRT - Application System Portability

Nonlinear Scale Factor

1) AAREN - Application Architectural Engineering
COTS Integration Cost Sources:

3) **Glue Code Development and Test - Glue Code Cost Drivers**

8.1 ACIEP - COTS/NDI Integrator Experience with Product

How much experience did/does the development staff have with running, integrating, and maintaining the COTS/NDI products?

Metric: months/years of experience with product.

UNKNOWN

<table>
<thead>
<tr>
<th>y Low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>average has no experience with the products.</td>
<td>Staff on average has less than 6 month’s experience with the products.</td>
<td>Staff on average has between 6 month’s and 1 year’s experience with the products.</td>
<td>Staff on average has between 1 and 2 years’ experience with the products.</td>
<td>Staff on average has more than 2 years’ experience with the products.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VL</th>
<th>L</th>
<th>N</th>
<th>H</th>
<th>VH</th>
</tr>
</thead>
</table>

Explain rationale for your rating:
COTS Integration Cost Sources:
3) Glue Code Development and Test

Total Effort = \(A \cdot [(\text{size})(1+\text{breakage})]^B \cdot \prod \) (effort multipliers)

- \(A \) - a linear scaling constant
- \(\text{Size} \) - of the glue code in SLOC or FP
- \(\text{Breakage} \) - of the glue code due to change in requirements and/or COTS volatility
- \(\text{Effort Multipliers} \) - 13 parameters, each with settings ranging VL to VH
- \(B \) - an architectural scale factor with settings VL to VH
USC-CSE Seven Step Modeling Methodology

1. Analyze Existing literature
2. Perform Behavioral Analysis
3. Identify Relative Significance
4. Perform Expert-Judgment, Delphi Assessment
5. Gather Project Data
6. Determine Bayesian A-Posteriori Update
7. Gather more data; refine model

A-PRIORI MODEL + SAMPLING DATA = A-POSTERIORI MODEL
Delphi Results

FAA Delphi Round 2 Results

9/1997 (n=7)

<table>
<thead>
<tr>
<th>Resp</th>
<th>ACIEP</th>
<th>ACIPC</th>
<th>AXICP</th>
<th>APCON</th>
<th>ACPMT</th>
<th>ACSEW</th>
<th>ACPX</th>
<th>ACPS</th>
<th>ACPTD</th>
<th>APVOL</th>
<th>ACREL</th>
<th>AACPX</th>
<th>ACPER</th>
<th>ASPRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.79</td>
<td>2.53</td>
<td>1.53</td>
<td>2.50</td>
<td>2.13</td>
<td>1.30</td>
<td>2.02</td>
<td>1.70</td>
<td>1.43</td>
<td>2.00</td>
<td>1.58</td>
<td>2.02</td>
<td>1.50</td>
<td>1.30</td>
</tr>
<tr>
<td>1</td>
<td>1.80</td>
<td>2.75</td>
<td>1.50</td>
<td>2.75</td>
<td>2.10</td>
<td>1.50</td>
<td>2.25</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>2.25</td>
<td>1.75</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>1.80</td>
<td>2.53</td>
<td>1.53</td>
<td>2.50</td>
<td>1.90</td>
<td>1.30</td>
<td>2.10</td>
<td>1.70</td>
<td>1.50</td>
<td>2.00</td>
<td>1.70</td>
<td>2.00</td>
<td>1.50</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>2.69</td>
<td>2.00</td>
<td>1.80</td>
<td>2.30</td>
<td>1.20</td>
<td>2.57</td>
<td>2.20</td>
<td>1.43</td>
<td>2.12</td>
<td>1.58</td>
<td>1.70</td>
<td>1.50</td>
<td>1.30</td>
</tr>
<tr>
<td>4</td>
<td>1.79</td>
<td>2.57</td>
<td>1.60</td>
<td>2.60</td>
<td>1.80</td>
<td>1.30</td>
<td>2.25</td>
<td>1.74</td>
<td>1.55</td>
<td>2.20</td>
<td>1.77</td>
<td>2.30</td>
<td>1.77</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>1.80</td>
<td>2.80</td>
<td>1.60</td>
<td>2.50</td>
<td>2.00</td>
<td>1.55</td>
<td>2.20</td>
<td>1.70</td>
<td>1.40</td>
<td>2.50</td>
<td>1.60</td>
<td>2.20</td>
<td>1.50</td>
<td>1.30</td>
</tr>
<tr>
<td>6</td>
<td>1.90</td>
<td>2.53</td>
<td>1.80</td>
<td>2.50</td>
<td>2.13</td>
<td>1.30</td>
<td>2.02</td>
<td>1.70</td>
<td>1.43</td>
<td>2.00</td>
<td>1.85</td>
<td>2.02</td>
<td>1.50</td>
<td>1.30</td>
</tr>
</tbody>
</table>

mean	1.77	2.63	1.65	2.45	2.05	1.35	2.20	1.78	1.50	2.08	1.69	2.07	1.57	1.43
median	1.80	2.57	1.60	2.50	2.10	1.30	2.20	1.70	1.43	2.00	1.70	2.02	1.50	1.30
mode	1.80	2.53	1.60	2.50	2.05	1.30	2.02	1.70	1.43	2.00	1.58	2.02	1.50	1.30
range	1.50-1.90	2.53-2.80	1.50-2.00	1.80-2.75	1.80-2.30	1.20-1.55	2.02-2.57	1.70-2.20	1.40-1.75	1.75-2.50	1.58-1.85	1.70-2.30	1.50-1.77	1.30-2.00
Delphi Results (cont’d)

<table>
<thead>
<tr>
<th>(n=7)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACIEP</td>
<td>ACIPC</td>
<td>AXICP</td>
<td>APCON</td>
<td>ACPMT</td>
<td>ACSEW</td>
<td>APCPX</td>
</tr>
<tr>
<td>Round 1</td>
<td>mean</td>
<td>1.78</td>
<td>2.57</td>
<td>1.65</td>
<td>2.69</td>
<td>1.89</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.79</td>
<td>2.53</td>
<td>1.53</td>
<td>2.50</td>
<td>2.13</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>mode</td>
<td>1.50, 1.79</td>
<td>2.53, 2.00</td>
<td>2.50</td>
<td>2.13</td>
<td>1.20, 1.30</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>1.50-2.10</td>
<td>2.33-3.00</td>
<td>1.20-2.00</td>
<td>1.80-5.00</td>
<td>1.00-2.50</td>
<td>1.10-1.75</td>
</tr>
<tr>
<td>Round 2</td>
<td>mean</td>
<td>1.77</td>
<td>2.63</td>
<td>1.65</td>
<td>2.45</td>
<td>2.05</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.80</td>
<td>2.57</td>
<td>1.60</td>
<td>2.50</td>
<td>2.10</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>mode</td>
<td>1.80</td>
<td>2.53, 1.60</td>
<td>2.50</td>
<td>2.13</td>
<td>1.30</td>
<td>2.02, 2.25</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>1.50-1.90</td>
<td>2.53-2.80</td>
<td>1.50-2.00</td>
<td>1.80-2.75</td>
<td>1.80-2.30</td>
<td>1.20-1.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPPS</td>
<td>ACPTD</td>
<td>APVOL</td>
<td>ACREL</td>
<td>AACPX</td>
<td>ACPER</td>
<td>ASPRT</td>
<td>AAREN</td>
</tr>
<tr>
<td>Round 1</td>
<td>mean</td>
<td>1.74</td>
<td>1.53</td>
<td>1.85</td>
<td>1.77</td>
<td>2.12</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.70</td>
<td>1.43</td>
<td>2.00</td>
<td>1.58</td>
<td>2.02</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>mode</td>
<td>1.70</td>
<td>1.43</td>
<td>2.00</td>
<td>1.58</td>
<td>2.02</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>1.40-2.20</td>
<td>1.10-2.00</td>
<td>1.40-2.30</td>
<td>1.20-3.00</td>
<td>1.70-2.75</td>
<td>1.20-2.00</td>
</tr>
<tr>
<td>Round 2</td>
<td>mean</td>
<td>1.78</td>
<td>1.50</td>
<td>2.08</td>
<td>1.69</td>
<td>2.07</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.70</td>
<td>1.43</td>
<td>2.00</td>
<td>1.70</td>
<td>2.02</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>mode</td>
<td>1.70</td>
<td>1.43</td>
<td>2.00</td>
<td>1.58</td>
<td>2.02</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>1.70-2.20</td>
<td>1.40-1.75</td>
<td>1.75-2.50</td>
<td>1.58-1.85</td>
<td>1.70-2.30</td>
<td>1.50-1.77</td>
</tr>
</tbody>
</table>

CA 6/25/99
USC-CSE Seven Step Modeling Methodology

1. Analyze Existing Literature
2. Perform Behavioral Analysis
3. Identify Relative Significance
4. Perform Expert-Judgment, Delphi Assessment
5. Gather Project Data
6. Determine Bayesian A-Posteriori Update
7. Gather more data; refine model
Experience with Library Projects

Raw Effort Data

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
<th>Total Pers-hrs</th>
<th>% Total Pers-hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine Requirements:</td>
<td>16.00</td>
<td>49.50</td>
<td>86.50</td>
<td>26.50</td>
<td>5.50</td>
<td>38.50</td>
<td>222.50</td>
<td>4.99</td>
</tr>
<tr>
<td>COTS Related Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understand and qualify COTS:</td>
<td>2.00</td>
<td>6.00</td>
<td>98.50</td>
<td>10.00</td>
<td>61.00</td>
<td>19.50</td>
<td>197.00</td>
<td>4.42</td>
</tr>
<tr>
<td>Design COTS glue code:</td>
<td>0.00</td>
<td>0.00</td>
<td>7.50</td>
<td>0.00</td>
<td>0.30</td>
<td>9.00</td>
<td>16.80</td>
<td>0.38</td>
</tr>
<tr>
<td>Code COTS glue code:</td>
<td>0.00</td>
<td>0.00</td>
<td>4.00</td>
<td>0.00</td>
<td>16.80</td>
<td>30.50</td>
<td>51.30</td>
<td>1.15</td>
</tr>
<tr>
<td>Fix defects found in COTS testing:</td>
<td>5.00</td>
<td>0.00</td>
<td>2.50</td>
<td>1.00</td>
<td>1.50</td>
<td>4.00</td>
<td>14.00</td>
<td>0.31</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>114.00</td>
<td>239.00</td>
<td>31.50</td>
<td>8.00</td>
<td>100.00</td>
<td>82.50</td>
<td>575.00</td>
<td>12.90</td>
</tr>
<tr>
<td>TOTAL WEEKLY Person-Hours</td>
<td>709.00</td>
<td>1073.50</td>
<td>972.50</td>
<td>418.50</td>
<td>477.60</td>
<td>805.25</td>
<td>4456.35</td>
<td>99.99</td>
</tr>
</tbody>
</table>

Table VIII.1- Effort hours by activity for graduate software engineering class projects incorporating COTS products.

Key:
- Group 1 - EDGAR Corporate Data
- Group 2 - Medieval Manuscripts
- Group 3 - Technical Reports
- Group 4 - Latin American Pamphlets
- Group 5 - CNTV Moving Image Archive
- Group 6 - Hancock Photo Archive
Experiences with Library Project Data

Initial Model

<table>
<thead>
<tr>
<th>Project</th>
<th>A</th>
<th>Size</th>
<th>B</th>
<th>xEAFs</th>
<th>Estimate (P-hr)</th>
<th>Actual (P-hr)</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.00</td>
<td>12</td>
<td>1.00</td>
<td>0.68</td>
<td>8.16</td>
<td>61.36</td>
<td>-87%</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>10</td>
<td>1.00</td>
<td>2.39</td>
<td>23.90</td>
<td>79.60</td>
<td>-70%</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>3</td>
<td>1.00</td>
<td>4.35</td>
<td>13.05</td>
<td>14.54</td>
<td>10%</td>
</tr>
</tbody>
</table>

\[A = 1.00 \Rightarrow \text{one UFP/P-hr} \]
USC-CSE Seven Step Modeling Methodology

1. Analyze Existing Literature
2. Perform Behavioral Analysis
3. Identify Relative Significance
4. Perform Expert-Judgment, Delphi Assessment
5. Gather Project Data
6. Determine Bayesian A-Posteriori Update
7. Gather more data; refine model
Experiences with Library Project Data
Revised Glue Code Submodel

<table>
<thead>
<tr>
<th>Project</th>
<th>A</th>
<th>Size (SLOC)</th>
<th>B</th>
<th>xEAFs</th>
<th>Estimate (P-hr)</th>
<th>Actual (P-hr)</th>
<th>Relative Error</th>
<th>Original Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.009</td>
<td>500</td>
<td>1.04</td>
<td>1.82</td>
<td>10.50</td>
<td>11.50</td>
<td>-9%</td>
<td>-87%</td>
</tr>
<tr>
<td>5</td>
<td>0.009</td>
<td>400</td>
<td>1.12</td>
<td>2.25</td>
<td>16.62</td>
<td>17.10</td>
<td>-3%</td>
<td>-70%</td>
</tr>
<tr>
<td>6</td>
<td>0.009</td>
<td>218</td>
<td>1.16</td>
<td>10.42</td>
<td>48.38</td>
<td>39.50</td>
<td>22%</td>
<td>10%</td>
</tr>
</tbody>
</table>

A = .009 => 111 SLOC/P-hr
COTS Integration Cost Sources:

1) Assessment

Initial Filtering Effort

Total Effort = \(\left(\# \text{ COTS Candidates} \right) \left(\frac{\text{Average Filtering Effort}}{\text{Candidate}} \right) \)

Final Selection Effort

Total Effort = \(\sum \left(\# \text{ COTS Candidates} \right) \left(\frac{\text{Average Assessment Effort}}{\text{Candidate}} \right) \)

- List of attributes refined in collaboration with Dr. Elizabeth Bailey
- Effort/candidate is project-dependent, within domain guidelines
COTS Integration Cost Sources:
1) Assessment - Assessment Attributes

<table>
<thead>
<tr>
<th>Correctness</th>
<th>Understandability</th>
<th>Portability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Documentation quality</td>
<td>Portability</td>
</tr>
<tr>
<td>Correctness</td>
<td>Simplicity</td>
<td></td>
</tr>
<tr>
<td>Testability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability/Robustness</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Functionality</td>
</tr>
<tr>
<td>Fail safe</td>
<td>Ease of use</td>
</tr>
<tr>
<td>Fail soft</td>
<td>Usability/Human Factors</td>
</tr>
<tr>
<td>Fault tolerance</td>
<td>Version Compatibility</td>
</tr>
<tr>
<td>Input error tolerance</td>
<td>Downward compatibility</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Upward compatibility</td>
</tr>
<tr>
<td>Reliability</td>
<td>Maturity</td>
</tr>
<tr>
<td>Robustness</td>
<td>Product Maturity</td>
</tr>
<tr>
<td>Safety</td>
<td>Inter-component Compatibility</td>
</tr>
<tr>
<td></td>
<td>Vendor Maturity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security</th>
<th>Flexibility</th>
<th>Extendability</th>
<th>Warranty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security (Access related)</td>
<td>Flexibility</td>
<td>Extendability</td>
<td>Vendor Support</td>
</tr>
<tr>
<td>Security (sabotage related)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Performance</th>
<th>User Training</th>
<th>User training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution performance</td>
<td>Installation/Upgrade Ease</td>
<td>User training</td>
</tr>
<tr>
<td>Information/data capacity</td>
<td>Installation Ease</td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>Upgrade/Refresh ease</td>
<td>Vendor Concessions</td>
</tr>
<tr>
<td>Memory performance</td>
<td></td>
<td>Willingness to escrow source code</td>
</tr>
<tr>
<td>Response time</td>
<td></td>
<td>Willingness to make modifications</td>
</tr>
<tr>
<td>Throughput</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two Models, Differing Fidelity in Development
(Parallels COCOMO II modeling)

Early Design COCOTS model

- roll up of parameters in Assessment, Glue code submodels into fewer, more aggregated factors; inclusion of only the approximate Volatility model.

- less fidelity but requires fewer data points to calibrate.

- intended for more “what if” kind of estimating, earlier in the development process.

Post-architecture COCOTS model

- the full model with all parameters
COTS Integration Cost Sources:

2) Tailoring

\[
\text{Total Effort} = \sum_{\text{Tailoring Complexity Levels}} \left(\frac{\# \text{ COTS Candidates Tailored at Complexity Level } i}{\text{Average Effort at Tailoring Complexity Level in Domain } i} \right)
\]

-Five tailoring effort complexity levels:

- Very Low, Low, Nominal, High, Very High

Differentiated based on number tailored parameters, difficulty of needed scripts, API iterations, etc.
COTS Integration Cost Sources:

2) Tailoring - Dimensions of Tailoring Difficulty

<table>
<thead>
<tr>
<th>Tailoring Activities & Aids</th>
<th>Very Low (point value = 1)</th>
<th>Low (point value = 2)</th>
<th>Nominal (point value = 3)</th>
<th>High (point value = 4)</th>
<th>Very High (point value = 5)</th>
<th>Corresponding Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Specification</td>
<td>Zero to 50 parms to be initialized.</td>
<td>51 to 100 parms to be initialized.</td>
<td>101 to 500 parms to be initialized.</td>
<td>501 to 1000 parms to be initialized.</td>
<td>1001 or more parms to be initialized.</td>
<td>________</td>
</tr>
<tr>
<td>Script Writing</td>
<td>Menu driven; 1 to 5 line scripts; 1 to 5 scripts needed.</td>
<td>Menu driven; 6 to 10 line scripts; 6 to 15 scripts needed.</td>
<td>Hand written; 11 to 25 line scripts; 16 to 30 scripts needed.</td>
<td>Hand written; 26 to 50 line scripts; 31 to 50 scripts needed.</td>
<td>Hand written; 51 or more line scripts; 51 or more scripts needed.</td>
<td>________</td>
</tr>
<tr>
<td>I/O Report & GUI Screen Specification & Layout</td>
<td>Automated or standard templates used; 1 to 5 reports/screens needed.</td>
<td>Automated or standard templates used; 6 to 15 reports/screens needed.</td>
<td>Automated or standard templates used; 16 to 25 reports/screens needed.</td>
<td>Hand written or custom designed; 26 to 50 reports/screens needed.</td>
<td>Hand written or custom designed; 51 or more reports/screens needed.</td>
<td>________</td>
</tr>
<tr>
<td>Security/Access Protocol Initialization & Set-up</td>
<td>1 security level; 1 to 20 user profiles; 1 input screen/user.</td>
<td>2 security levels 21 to 50 user profiles; 2 input screens/user.</td>
<td>3 security levels 51 to 75 user profiles; 3 input screens/user.</td>
<td>4 security levels 76 to 100 user profiles; 4 input screens/user.</td>
<td>5 or more security levels 101 or more user profiles; 5 or more input screens/user.</td>
<td>________</td>
</tr>
<tr>
<td>Availability of COTS Tailoring Tools</td>
<td>No tools available.</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Tools are available.</td>
<td>________</td>
</tr>
</tbody>
</table>

Total Point Score = ________
COTS Integration Cost Sources:
4) Increased Application Effort Due to COTS Volatility

Approximate Model:

Total Effort = (Application Effort) • \left[\frac{\text{BRAK COTS}}{100} \right] • (\text{EAF})^\text{COTS}

Detailed Model with COCOMO II Parameters:

Total Effort = (Application Effort) • \left[\left(\frac{1 + \frac{\text{BRAK COTS}}{1+\text{BRAK}}}{1 + \frac{\Sigma}{1+\text{BRAK}}} \right)^{1.01 + \Sigma} - 1 \right] • (\text{EAF})^\text{COTS}

BRAK COTS: \% application code breakage due to COTS volatility
BRAK : \% application code breakage otherwise
\Sigma : COCOMO II scale factor
EAF : Effort Adjustment Factor (product of effort multipliers)
COTS Integration Cost Sources:
4) Increased Application Effort Due to COTS Volatility
- **COCOMO II Scale Factors**

<table>
<thead>
<tr>
<th>Scale Factor</th>
<th>Very Low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
<th>Extra High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precedentedness</td>
<td>thoroughly unprecedented</td>
<td>Largely unprecedented</td>
<td>somewhat unprecedented</td>
<td>generally familiar</td>
<td>largely familiar</td>
<td>thoroughly familiar</td>
</tr>
<tr>
<td>Development Flexibility</td>
<td>rigorous</td>
<td>Occasional Relaxation</td>
<td>some relaxation</td>
<td>general conformity</td>
<td>some conformity</td>
<td>general goals</td>
</tr>
<tr>
<td>Architecture/Risk Resolution</td>
<td>little (20%)</td>
<td>some (40%)</td>
<td>often (60%)</td>
<td>generally (75%)</td>
<td>mostly (90%)</td>
<td>full (100%)</td>
</tr>
<tr>
<td>Team Cohesion</td>
<td>some difficult interactions</td>
<td>Basically cooperative interactions</td>
<td>largely cooperative</td>
<td>highly cooperative</td>
<td>seamless interactions</td>
<td>N/A</td>
</tr>
<tr>
<td>Process Maturity</td>
<td>Chaos</td>
<td>CMM Level 1</td>
<td>CMM Level 2</td>
<td>CMM Level 3</td>
<td>CMM Level 4</td>
<td>CMM Level 5</td>
</tr>
</tbody>
</table>

percentage of module interfaces specified, percentage of significant risks eliminated.
Total COTS Integration Cost Estimate

Total Integration Effort (in Person-Months) =
Assessment Effort + Tailoring Effort + Glue Code Effort + Volatility Effort

where
Assessment Effort = Filtering Effort + Final Selection Effort

Total integration Cost =
(Total Integration Effort) • ($$/Person-Month)
USC-CSE Seven Step Modeling Methodology

1. Analyze Existing literature
2. Perform Behavioral Analysis
3. Identify Relative Significance
4. Perform Expert-Judgment, Delphi Assessment
5. Gather Project Data
6. Determine Bayesian A-Posteriori Update
7. Gather more data; refine model

A-PRIORI MODEL + SAMPLING DATA = A-POSTERIORI MODEL
Calibration Data Collection Status

• 6 Student Digital Library Projects
 – 4 more by end Spring ‘99 semester

• 16 Industrial Projects
 – FAA & aerospace contractors
 – 4+ additional projects anticipated by mid ‘99
 – will allow calibration of Early Design version

• Other Sources Being Explored
 – NASA, DoD, Commercial, foreign
 – USC-CSE Affiliates, professional conferences
Immediate COCOTS Follow-ons

• Modeling of schedule estimation & activity distribution
• Complete COTS software lifecycle modeling
• Integration with COCOMO II estimation model
• More extensive tool implementation
In Conclusion: COCOTS’ Most Important Aspect

- COCOTS is completely open:
 - highlights most important factors of concern in using COTS s/w.

- COCOTS is a "constructive" cost model:
 - helps understand the complexities of a given software job.
 - Shows exactly why it gives the estimates it does.