ICS 23

Review Questions for the Midterm

These questions are meant to help you review class material in preparation for the midterm exam. Although I've tried to be reasonably thorough, there may be material that is "fair game" for the exam that is not covered here. Likewise, it's likely that not all particulars covered here will be on the test.

1.
What is a two-dimensional array? three-dimension? etc.? What is Java's notation for defining, constructing, and referencing a cell of said? What is the syntax for passing them as parameters in Java? for using them as a return type?

How does Java represent non-rectangular arrays?

What are the trade-offs of using a two-dimensional array, a nested ArrayList, an array of objects or an object of arrays to represent a chessboard?

2.
Describe these approaches to proving mathematical results:

direct

direct by geometric construction

induction

contradiction

3.
Consider this (pseudo) code fragment:

sum = 0;

for (i = 1; i <= n; i++)

if (booleanValue)

sum = sum + i;

Assume n ≥ 1.

For the worst case performance of the fragment (hint: this will be when BooleanValue is always true):

•
Using summation notation, give an expression in terms of n that gives the number of assignments into Sum.

•
Give a closed-form expression in terms of n that gives the number of assignments into Sum.

•
Give the “best” O,  and  notations, in terms of n, that gives the number of assignments into Sum.

Repeat the above for the best case performance of the fragment (hint: this will be when BooleanValue is always false).

In this fragment, the for loop is executed n times. Assume that, on average, BooleanValue is true 60% of the times that the loop executes (that is, 0.60 * n times), and false 40% of the time. Given this information, repeat the above for the performance of the fragment.
4.
Consider this (pseudo) code fragment:

function Product(int n)

{

if (n == 1)

return 1;

else

return Product(n-1) * n;

}

Assume n ≥ 1, and we call Product with the statement z = Product(n);
•
Write a recurrence relation, in terms of n, that gives the number of calls, including the initial call, to Product.

•
Give a closed-form expression in terms of n that gives the number of calls, including the initial call, to Product.

•
Give the “best” O,  and  notations, in terms of n, that gives the number of calls, including the initial call, to Product.

5. For each of these fragments, give the “best” O,  and  notations for the number of assignment into q:

q = 0;

for (int i = 1, i <= 100, i++)

for (int j = 1, j <= 500, j++)

q = q + 1;

q = 0;

for (int i = 1, i <= n, i++)

for (int j = 1, j <= n, j++)

q = q + 1;

q = 0;

for (int i = 1, i <= n, i++)

for (int j = 1, j <= i, j++)

q = q + 1;

q = 0;

for (int i = 1, i <= n, i++)

if (n/2 == n/2.0)

q = q + 1;

6.
Suppose we wish to implement a priority queue PQ. Using the implementations given below, what is the worst-case time needed to insert a value in the PQ and to delete a value from the PQ? Assume PQ there are n values in the queue at the time the insertion or deletion is done. Give your results in terms of n, in -notation.

- an unordered singly-linked list

- a singly-linked list in ascending order with a head and tail pointer

- an unordered doubly-linked list

- a doubly-linked list in ascending order with a head and tail pointer

- an array in ascending order

- an unordered array

- a binary search tree

- an AVL tree

- a heap

7.
If we call the generalized list traversal algorithm below on the list shown on the next page, what would be printed? (Assume Data() returns the data in the node, and Link() dereferences the node's link pointer.)

void traverse(list L)

{

while (L != nil) {

if L is data then print Data(L) else traverse(Data(L));

L = Link(L);

}

}

[image: image1.wmf]
8.
Under what conditions will a game tree (as discussed in class) correctly determine the winner of a game -- even before the game is played?

•
Think of the standard version of TicTacToe. How many possible first moves are there? How many second moves, given a first move was made? Provide the best O-notation for the total number of possible games (that is, the number of move sequences that lead from the initial to a final configuration).

•
Here's a game tree with the final configurations marked as "win" (a +") or a loss (a 0), Using the usual assumptions about games represented by game trees, complete the tree. Who wins the game?

[image: image2.wmf]
9.
Consider this binary tree:

[image: image3.wmf]
•
Traverse the tree in the following orders, and list the values of the nodes (from left to right) as they are encountered during the traversal:

preorder

breadth-first

postorder

depth-first

inorder

•
Is this a binary search tree? Why or why not?

•
Assume the tree is (intended) to be a heap, but one where the parent value (of any subtree) is less than or equal to the value of its children. (Also assume that, for comparison purposes, alphabetical order holds: e.g., A < C). Is the above tree a heap? Why or why not?

•
Is the tree full? Why or why not?

•
Is the tree complete? Why or why not?

•
How many nodes at least can be on a non-empty level of a binary tree? At most? What are the minimum and maximum number of nodes on a level of an n-ary tree?

•
If a binary tree of n nodes is complete, how many levels at minimum must the tree contain? At maximum, how many can it contain?

10. Now use this binary search tree:

[image: image4.wmf]
•
Make the above tree an extended binary tree by adding external nodes to it.

•
What is the internal path length of this extended tree? Its external path length? How many internal nodes does it have? external nodes?

•
Using the extended tree, determine the worst case number of comparisons to find a key in the tree and the worst case number of comparisons that will occur if a search is unsuccessful. Repeat these measurements for the best and average cases. What are the O-notations for there activities?

•
Is the original tree an AVL tree? If not, at which node(s) is the AVL property violated? What rotation(s), done where, would be needed to make it an AVL tree? Use the least number of rotations possible.

