
Pipeline
Programming Style

Constraints

• We now have the power of functions (i.e.,
procedures with return values)

• No shared state between functions

• The larger problem is solved with functional
composition (e.g., f∘g)

Notes
• Pure pipeline style uses only function composition

• No shared state means that our functions have
idempotence, unlike the cookbook-style procedures

• Good for problems that allow for such constraints:

• Quality issues such as testing and concurrency
(idempotence means that testing results should
be deterministic and tasks can be executed in
isolation)

Notes
• Pure pipeline style also includes no function state

from call to call

• The evolution in programming languages was from
subroutines, to subroutines with inputs (procedures),
to subroutines with inputs and outputs (functions)

• This style emerged in the 60s in the context of LISP

• Currently, Haskell is the language the embodies this
style best

