
INF 102
CONCEPTS OF PROG. LANGS
ABSTRACT DATA TYPES

Instructors: James Jones
Copyright © Instructors.

What’s an Abstract Data Type?

¨ From http://stackoverflow.com/tags/abstract-data-
type/info:
“An abstract data type (ADT) is a specification for a
certain class of data structures that have similar
behavior; or for certain data types of one or more
programming languages that have similar semantics.
An abstract data type is defined indirectly, only by
the operations that may be performed on it and by
mathematical constraints on the effects of those
operations.”

http://stackoverflow.com/tags/abstract-data-type/info

ABSTRACT

¨ Does not specify how the data type is implemented
¨ 1 ADT à multiple implementations

CONCRETE

¨ Has 1 implementation

What about subtyping?

¨ class A extends B {...}

¨ Doesn’t make A abstract
¨ Regular subtyping relation, see type systems

Specifying ADTs in Java

public interface Queue<E> extends Collection<E> {
boolean add(E e);
E element();
boolean offer(E e);
E peek();
E poll();
E remove();

}

Implementing ADTs in Java

public class LinkedList<E> implements Queue<E> {
boolean add(E e) {…}
E element() {…}
boolean offer(E e) {…}
E peek() {…}
E poll() {…}
E remove() {…}

}

public class PriorityQueue<E> implements Queue<E> {
boolean add(E e) {…}
E element();
boolean offer(E e) {…}
E peek() {…}
E poll() {…}
E remove() {…}

}

Are Java classes ADTs?

Are Java classes ADTs?

¨ No, unless they are marked abstract

¨ (yes, abstract Java classes are ADTs, like interfaces)

Are C++ classes ADTs?

Are C++ classes ADTs?

¨ No, unless they are marked abstract

Copyright © 2009 Addison-Wesley. All
rights reserved.1-13

Chapter 11 Topics

¨ The Concept of Abstraction

¨ Introduction to Data Abstraction
¨ Design Issues for Abstract Data Types
¨ Language Examples
¨ Parameterized Abstract Data Types
¨ Encapsulation Constructs
¨ Naming Encapsulations

Copyright © 2009 Addison-Wesley. All
rights reserved.1-14

The Concept of Abstraction

¨ An abstraction is a view or representation of an
entity that includes only the most significant
attributes

¨ The concept of abstraction is fundamental in
programming (and computer science)

¨ Nearly all programming languages support process
abstraction with subprograms

¨ Nearly all programming languages designed since
1980 support data abstraction

Copyright © 2009 Addison-Wesley. All
rights reserved.1-15

Introduction to Data Abstraction

¨ An abstract data type is a user-defined data type
that satisfies the following two conditions:
¤ The representation of, and operations on, objects of

the type are defined in a single syntactic unit
¤ The representation of objects of the type is hidden

from the program units that use these objects, so the
only operations possible are those provided in the
type's definition

Copyright © 2009 Addison-Wesley. All
rights reserved.1-16

Advantages of Data Abstraction

¨ Advantage of the first condition
¤ Program organization, modifiability (everything

associated with a data structure is together), and
separate compilation

¨ Advantage the second condition
¤ Reliability--by hiding the data representations, user

code cannot directly access objects of the type or
depend on the representation, allowing the
representation to be changed without affecting user
code

Copyright © 2009 Addison-Wesley. All
rights reserved.1-17

Language Requirements for ADTs

¨ A syntactic unit in which to encapsulate the type
definition

¨ A method of making type names and subprogram
headers visible to clients, while hiding actual
definitions

¨ Some primitive operations must be built into the
language processor

Copyright © 2009 Addison-Wesley. All
rights reserved.1-18

Design Issues

¨ What is the form of the container for the interface
to the type?

¨ Can abstract types be parameterized?
¨ What access controls are provided?

Copyright © 2009 Addison-Wesley. All
rights reserved.1-19

Language Examples: Ada
¨ The encapsulation construct is called a package

¤ Specification package (the interface)
¤ Body package (implementation of the entities named in the

specification)

¨ Information Hiding
¤ The spec package has two parts, public and private
¤ The name of the abstract type appears in the public part of the

specification package. This part may also include representations of
unhidden types

¤ The representation of the abstract type appears in a part of the
specification called the private part
n More restricted form with limited private types

Private types have built-in operations for assignment and comparison
Limited private types have NO built-in operations

Copyright © 2009 Addison-Wesley. All
rights reserved.1-20

Language Examples: Ada (continued)

¨ Reasons for the public/private spec package:

1. The compiler must be able to see the
representation after seeing only the spec package
(it cannot see the private part)
2. Clients must see the type name, but not the
representation (they also cannot see the private
part)

Copyright © 2009 Addison-Wesley. All
rights reserved.1-21

An Example in Ada
package Stack_Pack is

type stack_type is limited private;
max_size: constant := 100;
function empty(stk: in stack_type) return Boolean;
procedure push(stk: in out stack_type; elem:in Integer);
procedure pop(stk: in out stack_type);
function top(stk: in stack_type) return Integer;

private -- hidden from clients
type list_type is array (1..max_size) of Integer;
type stack_type is record

list: list_type;
topsub: Integer range 0..max_size) := 0;

end record;
end Stack_Pack

Copyright © 2009 Addison-Wesley. All
rights reserved.1-22

Language Examples: C++

¨ Based on C struct type and Simula 67 classes
¨ The class is the encapsulation device
¨ All of the class instances of a class share a single

copy of the member functions
¨ Each instance of a class has its own copy of the

class data members
¨ Instances can be static, stack dynamic, or heap

dynamic

Copyright © 2009 Addison-Wesley. All
rights reserved.1-23

Language Examples: C++ (continued)

¨ Information Hiding
¤ Private clause for hidden entities
¤ Public clause for interface entities
¤ Protected clause for inheritance (Chapter 12)

Copyright © 2009 Addison-Wesley. All
rights reserved.1-24

Language Examples: C++ (continued)

¨ Constructors:
¤ Functions to initialize the data members of instances

(they do not create the objects)
¤ May also allocate storage if part of the object is

heap-dynamic
¤ Can include parameters to provide parameterization

of the objects
¤ Implicitly called when an instance is created
¤ Can be explicitly called
¤ Name is the same as the class name

Copyright © 2009 Addison-Wesley. All
rights reserved.1-25

Language Examples: C++ (continued)

¨ Destructors
¤ Functions to cleanup after an instance is destroyed;

usually just to reclaim heap storage
¤ Implicitly called when the object’s lifetime ends
¤ Can be explicitly called
¤ Name is the class name, preceded by a tilde (~)

Copyright © 2009 Addison-Wesley. All
rights reserved.1-26

An Example in C++
class Stack {

private:
int *stackPtr, maxLen, topPtr;

public:
Stack() { // a constructor

stackPtr = new int [100];
maxLen = 99;
topPtr = -1;

};
~Stack () {delete [] stackPtr;};
void push (int num) {…};
void pop () {…};
int top () {…};
int empty () {…};

}

A Stack class header file

// Stack.h - the header file for the Stack class

#include <iostream.h>

class Stack {

private: //** These members are visible only to other

//** members and friends (see Section 11.6.4)

int *stackPtr;

int maxLen;

int topPtr;

public: //** These members are visible to clients

Stack(); //** A constructor

~Stack(); //** A destructor

void push(int);

void pop();

int top();

int empty();

}

Copyright © 2009 Addison-Wesley. All
rights reserved.1-27

The code file for Stack
// Stack.cpp - the implementation file for the Stack class

#include <iostream.h>

#include "Stack.h"

using std::cout;

Stack::Stack() { //** A constructor

stackPtr = new int [100];

maxLen = 99;

topPtr = -1;

}

Stack::~Stack() {delete [] stackPtr;}; //** A destructor

void Stack::push(int number) {

if (topPtr == maxLen)

cerr << "Error in push--stack is full\n";

else stackPtr[++topPtr] = number;

}

...
Copyright © 2009 Addison-Wesley. All
rights reserved.1-28

Copyright © 2009 Addison-Wesley. All
rights reserved.1-29

Language Examples: Java
¨ Similar to C++, except:

¤ All user-defined types are classes
¤ All objects are allocated from the heap and

accessed through reference variables
¤ Individual entities in classes have access control

modifiers (private or public), rather than clauses
¤ Java has a second scoping mechanism, package

scope, which can be used in place of friends
n All entities in all classes in a package that do not have

access control modifiers are visible throughout the
package

Copyright © 2009 Addison-Wesley. All
rights reserved.1-30

An Example in Java
class StackClass {

private:
private int [] *stackRef;
private int [] maxLen, topIndex;
public StackClass() { // a constructor

stackRef = new int [100];

maxLen = 99;
topPtr = -1;

};
public void push (int num) {…};
public void pop () {…};
public int top () {…};

public boolean empty () {…};
}

Copyright © 2009 Addison-Wesley. All
rights reserved.1-31

Abstract Data Types in Ruby
¨ Encapsulation construct is the class
¨ Local variables have “normal” names
¨ Instance variable names begin with “at” signs (@)
¨ Class variable names begin with two “at” signs (@@)
¨ Instance methods have the syntax of Ruby functions (def …

end)
¨ Constructors are named initialize (only one per class)—

implicitly called when new is called
¤ If more constructors are needed, they must have different names and

they must explicitly call new

¨ Class members can be marked private or public, with public
being the default

¨ Classes are dynamic

Copyright © 2009 Addison-Wesley. All
rights reserved.1-32

Abstract Data Types in Ruby (continued)

class StackClass {
def initialize
@stackRef = Array.new
@maxLen = 100
@topIndex = -1

end

def push(number) … end
def pop … end
def top … end
def empty … end

end

Copyright © 2009 Addison-Wesley. All
rights reserved.1-33

Summary

¨ The concept of ADTs and their use in program design was a
milestone in the development of languages

¨ Two primary features of ADTs are the packaging of data with
their associated operations and information hiding

¨ Ada provides packages that simulate ADTs
¨ C++ data abstraction is provided by classes
¨ Java’s data abstraction is similar to C++
¨ Ada, C++, Java 5.0, and C# 2005 support parameterized

ADTs
¨ C++, C#, Java, Ada, and Ruby provide naming encapsulations

Reset

Are Python classes ADTs?

¨ No, unless they are marked abstract.

Are classes ADTs?

¨ No, unless they are marked abstract.

Abstract Data Types

¨ What part of the word ABSTRACT is unclear?!?
¨ abstract = no concrete implementation

