INF 102
CONCEPTS OF PROG. LANGS
ADVERSITY

Approaches to failure

Let it fail
Good in development: understand failure mode

Defend against the possible and the impossible

Good in production. Detect and...
Correct?
lgnore?
Report?
Pass up?
Stop?

Prevent
|deal(ist)

Obliviousness

Failure is an option!

Especially when you learn from it to avoid it in the
future

Obliviousness exposes problems
Better than hiding them

Shows you failure conditions you might not have
considered

Fix as you go, during development

Avoid in production

Defensive
N

11 Detect every possible failure

7 Paranoid: detect unlikely failures too

Reaction to failures

Detect and correct (constructivist)
Detect and ignore (lazy)
Detect and report (tantrum)

Detect and pass up the stack (passive-aggressive)

Recover vs. Stop immediately

Overreaction is bad
I

Integer one = 1;
Integer two = one + one;

if (two > one) {
...do stuff...
}

Overreaction is bad
I

public class Person {

private String name = null;
public void setName (String name) { this.name = name; }
public String getName () { return name; }

public Person newPerson (String name) {
Person person = new Person();
if (name != null) {
person.setName (name) ;

}

return person;

Lazyness is bad
B

vold addFriendTolist (List<Friend> friends, Friend newFriend) {
if (friends != null && newFriend != null) {
friends.add (newFriend) ; bad

vold addFriendTolist (List<Friend> friends, Friend newFriend) {
friends.add (newFriend) ;

) better

vold addFriendTolist (List<Friend> friends, Friend newFriend) {
if (friends != null && newfFriend != null) {
friends.add (newFriend) ;

}

else throw new Exception(™...”); better

Lazyness is bad
B

public List<Friend> findFavoriteFriends (Person person) {

List<Friend> favoriteFriends = new ArraylList<Friend> () ;
if (person !'= null) {
List<Friend> friends = person.getFriends()
if (friends !'= null) {
for (Friend friend : friends) {
if (friend != null) {
if (friend.isFavorite()) {

favoriteFriends.add (friend) ;

} bad

return favoriteFriends;

Spectrum of reactions

Recover: do you have a good guess for reasonable
state?

Report & proceed
Pass up

Fail fast: avoid corruptions by stopping immediately
after a failure occurs

Recover (i.e., constructionist style)
N

public class Person {
private String name = “Unknown User”;

public void setName (String name) { this.name = name; }

public String getName () { return name; }

}

public Person (String name) {
if (name != null) {
person.setName (name) ;
}
// otherwise, use default
return person;

Report & Proceed (constructionist++)
!

public class Person {
private String name = “Unknown User”;

public void setName (String name) { this.name = name; }

public String getName () { return name; }

public Person (String name) {
if (name == null) {
log.Warn (“Person constructor given null name arg”);
}
person.setName (name) ;
// otherwise, use default
return person;

Pass up (passive aggressive style)
N

public class Person {
private String name = “Unknown User”;

public void setName (String name) { this.name = name; }

public String getName () { return name; }

}

public Person (String name) {
if (name == null) {
raise new Exception (“null name”);
}
person.setName (name) ;
// otherwise, use default
return person;

Fail fast (i.e., tantrum style)
N

public class Person {
private String name = “Unknown User”;

public void setName (String name) { this.name = name; }

public String getName () { return name; }

public Person (String name) {

if (name == null) {
log.Warn (“"Person constructor given null name arg”);
System.exit (1) ;

}

person.setName (name) ;

// otherwise, use default

return person;

Preventing failures

Before the program runs:
Quarantine vulnerable code
Type checking (next lecture)

Test (won’t be covered in this course — take INF115)

Vulnherable code

N
o1 Anything that deals with 1O
= From users
= From network

=1 From database

xked: “Exploits of a Mom”

HI, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL WEVE LOST THIS

YOUR SON' SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME | A Ay~ Robert!); DROP T HOPE YOURE HAPPY.

COMPUTER TROUBLE. / TABLE Students; - 7 f

R { AND T HOPE

j ~OH, YES LUTTE < YOUVE LEARNED

ROBRY TARLES, 70 SANTIZE YOUR

ﬁ F i !j ﬂ « WE CALL HIM. DATABASE INPUTS,

http://xked.com/327/

SQL Injection Attacks
=

“SQL injection 1s a security vulnerability that occurs
in the database layer of an application. Its source 1s
the incorrect escaping of dynamically-generated

string literals embedded in SQL statements. “
(Wikipedia)

Uses SQL script
—— Injectionto —p
access data

Hacker

Impact of SQL Injection - Dangerous
=

o1 At best: you can leak information

1 Depending on your configuration, a hacker can
Delete, alter or create data
Grant direct access to the hacker

Escalate privileges and even take over the OS

SQL Injection Attacks

1 Login Example Attack

O Text in blue is your SQL code, Text in orange is the hacker input, black text
is your application code

71 Dynamically Build SQL String performing authentication:

O “SELECT * FROM users WHERE login = ” + userName + *’ and password=
(32 + pqssword + “”’;

o1 Hacker logs in as: “ or ; -
O SELECT * FROM users WHERE login = “* or ** = **; == and password="

More Dangerous SQL Injection
Attacks

1 Hacker creates a Windows Account:

O SELECT * FROM users WHERE login = “’; exec master..xp_cmdshell 'net users
username password /add’;--" and password="

1 And then adds himself as an administrator:

O SELECT * FROM users WHERE login = *'; exec master..xp_cmdshell 'net
localgroup Administrators username /add';--" and password=*

1 SQL Injection examples are outlined in:

O hitp://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

O htp://www.unixwiz.net/techtips/sql-injection.hitml

http://www.uci.edu/getdata.jsp?ssn=333224444&ucinetid=johnsmith&password=blah
http://apps.adcom.uci.edu/expresso/sams/Login.do?state=processLogin

Preventing SQL injection

Use Prepared Statements (aka Parameterized Queries)

PreparedStatement stmt = conn.createStatement ("INSERT INTO
students VALUES('" + user + "")");

stmt.execute () ; bad
Vs

PreparedStatement stmt =

INTO student VALUES(?)");
stmt.setString(l, user);

stmt.execute () ;

conn.prepareStatement ("INSERT

better

Consider if user is “Robert'); DROP TABLE students; --"
Validate input
Strong typing
If the id parameter is a number, try parsing it into an integer

Business logic validation

Escape questionable characters (ticks, --, semi-colon, brackets, etc.)

More than SQL

“Injection Flaw” is a blanket term
SQL Injection is most prevalent

Other forms:
XPath Injection
Command Injection
LDAP (Lightweight Directory Access Protocol) Injection
DOM (Document Object Model) Injection
JSON (Javascript Object Notation) Injection
Log Spoofing

On and on and on...

|O Monad

A explicit reminder that you can’t trust IO

“Promote” 10-bound functions to higher-order

They don’t run until you make an effort

