
INF 102
CONCEPTS OF PROG. LANGS
CONCURRENCY 2

Instructors: James Jones
Copyright © Instructors.



Threads

¨ Cute and furry beasts



Threads

¨ Must be restrained



Restrained concurrency models

¨ Actors
¤ Good for independent tasks
¤ Good for discriminate producers/consumers of data

¨ Tuple spaces
¤ Good for indiscriminate producers/consumers of data

¨ Map-reduce
¤ Good for data-intensive, parallelizable situations



Actors



Actor model

¨ Letterbox style (Ch 11) + Threads
¨ Actor = Object with its own thread

¤ Aka “active object”

¨ Actors send messages to each other
¤ Avoid shared memory

¨ Messages are placed in actors’ queues
¤ Queues must be “thread-safe”
¤ Sender places message and moves on

n Asynchronous request



Active Object (Python)

Thread-safe queue

Message loop

Block until there
is a message

Utility (could be a method)



Active Object Queue



Queues

¨ Put / Enqueue / Send
¨ Get / Dequeue / Receive

¨ Operations must be thread safe
¤ No items can be lost



Thread-safe queues

¨ Java: ArrayBlockingQueue
¨ C#: ConcurrentQueue
¨ C++ / Boost: message_queue
¨ Other langs: search for it or do it yourself



Actor example
superclass

dispatch messages

Send messages to other actors



Actor model

¨ Concurrency constrained by
¤ Associating [certain] objects with threads
¤ Using message queues in each actor
¤ Having threads on a loop

¨ Programmer needs to refrain from passing shared 
mutable objects around or else...



Tuple Spaces



Tuple space model

¨ Concurrent threads
¤ Consumers and producers of data items

¨ Shared data structures (queues, lists, trees, etc.)
¤ Must be “thread-safe”

¨ Producers add items and move on
n Asynchronous deposit

¨ Consumers take items and process them

¨ Similar to previous model, but where the queues are 
outside the objects/functions, and may not be queues



Tuple space model



TF Tuple spaces



TF Producer



TF Consumer / Producer worker



Starting workers

(functional style of creating threads in Python)



Tuple space model

¨ Can be functional or OOP style
¨ OOP style: worker functions are threaded objects 

¨ Best fit: data processing parallelization

Actors example decomposition:
• DataStorageManager
• StopWordManager
• WordFrequencyManager
• WordFrequencyController

Tuple space example decomposition:
• Producers of words
• Consumers of words / producers of

word frequencies
• Consumers of word frequencies



Tuple space model

¨ Concurrency constrained by
¤ Having shared, thread-safe collections of items
¤ Having producers/consumers of items in those 

collections
¤ No further communication between threaded code

¨ Programmer needs to refrain from passing shared 
mutable objects around or else...



Map-Reduce



Map-Reduce model

¨ Big data situations
¤ Problem at hand must be data-parallelizable

¨ Data is split into chunks
¨ Chunks are processed independently, produce 

partial results
¤ A function is “mapped” to the chunks of data, 

potentially in parallel

¨ Partial results are then “reduced” to final result
¤ This step is sequential



Read 
File

file Partition

Map
Split
Words

Reduce
Count
Words

Sort display

[chunk1, chunk2, ...]

[result1, result2, ...]

splits = map(split_words,partition(read_file(sys.argv[1]),200))
splits.insert(0, []) # normalize input to reduce
word_freqs = sort(reduce(count_words, splits))

functions



Data partitioning



Mapper – parsing words – emit



Reducer – counting words



Map-Reduce, Hadoop

¨ The previous style allows for parallelization of the 
map step, but requires serialization of the reduce 
step. Google map-reduce and Hadoop use a slight 
variation that makes the reduce step also 
potentially parallelizable. The main idea is to 
regroup, or reshuffle, the list of results from the map 
step so that the regroupings are amenable to 
further mapping of a reducible function.



Read 
File

file Partition

Map
Split
Words

Regroup

Count
Words

Sort display

[chunk1, chunk2, ...]

[result1, result2, ...]

Map

Reduce

[(w1, (...)), (w2, (..)), ...]

splits = map(split_words,partition(read_file(sys.argv[1]),200))
splits_per_word = regroup(splits)
word_freqs = sort(map(count_words, splits_per_word.items()))

functions
reduce inside



Regroup
def regroup(pairs_list):

"""
Takes a list of lists of pairs of the form 
[[(w1, 1), (w2, 1), ..., (wn, 1)],
[(w1, 1), (w2, 1), ..., (wn, 1)],
...]
and returns a dictionary mapping each unique word to the 
corresponding list of pairs, so
{ w1 : [(w1, 1), (w1, 1)...], 
w2 : [(w2, 1), (w2, 1)...], 
...}

"""
mapping = {}
for pairs in pairs_list:

for p in pairs:
if p[0] in mapping:

mapping[p[0]].append(p)
else:

mapping[p[0]] = [p]
return mapping



Map-Reduce model

¨ Concurrency constrained by
¤ Having worker threads work on mutually exclusive 

chunks of data
¤ No communication between threaded code


