INF 102
CONCEPTS OF PROG. LANGS
CONCURRENCY 2

Threads
=

1 Cute and furry beasts

Threads
=

1 Must be restrained

Restrained concurrency models

Actors
Good for independent tasks

Good for discriminate producers/consumers of data

Tuple spaces

Good for indiscriminate producers/consumers of data

Map-reduce

Good for data-intensive, parallelizable situations

Actor model

Letterbox style (Ch 11) + Threads
Actor = Obiject with its own thread

Aka “active object”

Actors send messages to each other
Avoid shared memory

Messages are placed in actors’ queues

Queues must be “thread-safe”

Sender places message and moves on

Asynchronous request

Active Object (Python)
N

v class ActiveWFObject (Thread):

8 def init__ (self):

9 Thread.___init__ (self)

10 self.name = str(type(self))

11 self.queue = Queue() < Thread-safe queue
12 self._stop = False

13 self.start()

o df (so1t) Block until there
15 run(se : :

16 while not self. stop: /_M a message

17 message = self.queue.get ()

18 self._dispatch(message) - Message loop

19 if message[0] == ’'die’:

0 self._stop = True

[

o

def send(receiver, message): o
receiver.queue.put (message) } Utility (could be a method)

NN N

~
- W

Active Object Queue

Quevues

Put / Enqueue / Send
Get / Dequeue / Receive

Operations must be thread safe

No items can be lost

Thread-safe queues

Java: ArrayBlockingQueue
C#: ConcurrentQueue
C++ / Boost: message_queue

Other langs: search for it or do it yourself

Actor example

-—

78 class WordFrequencyManager (ActiveWFObject):

79 mww Keeps the word frequency data """

80 _word_fregs = ()}

81

82 def _dispatch(self, message): I

83 if message[0] == 'word':

84 self._increment_count (message[1:]) L_ dispatch messages
85 elif message([0] == 'top25’':

86 self._top25(message[1l:])

87 —

88 def _increment_count (self, message):

89 word = message[0]

90 if word in self._word_freqgs:

91 self._word_fregs[word] += 1

92 else:

93 self. word_fregs([word] =1

04

o5 def top25(self, message):

96 recipient = message [0]

o7 fregs_sorted = sorted(self._word_fregs.iteritems(), key=

operator.itemgetter(l), reverse=True)
98 /send(recipient, ["top25’, fregs_sorted])

Send messages to other actors

Actor model

Concurrency constrained by
Associating [certain] objects with threads
Using message queues in each actor

Having threads on a loop

Programmer needs to refrain from passing shared

e

mutable objects around or else...

- Tuple Spaces

Tuple space model

Concurrent threads

Consumers and producers of data items
Shared data structures (queues, lists, trees, etc.)

Must be “thread-safe”

Producers add items and move on

Asynchronous deposit

Consumers take items and process them

Similar to previous model, but where the queues are
outside the objects/functions, and may not be queues

Tuple space model

TF Tuple spaces
N

4+ # Two data spaces
s word_space Queue .Queue ()

¢ freqg space Queue.Queue ()

TF Producer
=

26 # Let’s have this thread populate the word space
27 for word in re.findall(' [a-z]({2,]}’, open(sys.argv([1l]).read().lower

()):
28 word_space.put (word)

N

TF Consumer / Producer worker

10 # Worker function that consumes words from the word space
11 # and sends partial results to the frequency space
12 def process_words():

13 word_fregs = {}

14 “while True:

15 try: ‘////

16 word = word_space.get (timeout=1)
17 except Queue . Empty:

18 break

19 h if not word in stopwords:

20 if word in word_freqgs:

21 word_fregs[word] += 1
22 else:

23 _ word_fregs[word] = 1

24 iiif:igisg.put(word;freqs)

Starting workers
N

30 # Let’s create the workers and launch them at their jobs

31 workers = |[]

32 for i in range (5):

33 workers.append(threading. Thread(target = process_words))
a4 [t.start () for t in workers]

(functional style of creating threads in Python)

Tuple space model

Can be functional or OOP style

OOP style: worker functions are threaded objects

Best fit: data processing parallelization

Actors example decomposition: Tuple space example decomposition:
« DataStorageManager * Producers of words

« StopWordManager « Consumers of words / producers of
 WordFrequencyManager word frequencies

« WordFrequencyController « Consumers of word frequencies

Tuple space model

Concurrency constrained by
Having shared, thread-safe collections of items

Having producers/consumers of items in those
collections

No further communication between threaded code

Programmer needs to refrain from pqssmg shared
mutable objects around or else... = 4

- Map-Reduce

Map-Reduce model

Big data situations

Problem at hand must be data-parallelizable

Data is split into chunks

Chunks are processed independently, produce
partial results

A function is “mapped” to the chunks of dataq,
potentially in parallel

Partial results are then “reduced” to final result

This step is sequential

file—| Read Partition

—>
File
Map
Split
Words
Reduce Sort displa
Count piay
Words
functions

splits = map(split words,partition(read file(sys.argv[1l]),200))
splits.insert (0, []) # normalize input to reduce
word fregs = sort (reduce (count words, splits))

Data partitioning
N

v def partition(data_str, nlines):

8 LA N

9 Partitions the input data str (a big string)
10 into chunks of nlines.

11 LA N

12 lines = data_str.split('\n’")

19 for i in xrange(0, len(lines), nlines):

14 yield ’'\n’ .join(lines[i:i+nlines])

Mapper — parsing words — emit
N

16 def split_words (data_str):

17
18
19
20
21
22
23
24

"~
v

26
27
28
29
30
31
32
a3
34

™~
L%

36
a7

Takes a string, returns a list of pairs (word, 1),
one for each word in the input, so
[(wi, 1), (w2, 1), ..., (wn, 1)]
LA N
def scan(str_data):
pattern = re.compile(’ [\W_]+")
return pattern.sub(’ ’, str_data).lower().split()

def remove_stop_words(word_list):
with open(’../stop_words.txt’) as f:
stop_words = f.read().split(’,")
stop_words.extend(list (string.ascii_lowercase))
return [w for w in word list if not w in stop words]

The actual work of splitting the input into words
result = []
words = _remove_stop_words(_scan(data_str))
for w in words:
result.append((w, 1))
return result

Reducer — counting words
B

30 def count_words (pairs_list_1, pairs_list_2):

40 LA

41 Takes a two lists of pairs of the form

42 [(wl, 1), ...]

43 and returns a list of pairs [(wl, frequency), ...],
44 where frequency 1is the sum of all the reported occurrences
45 LA

46 mapping = dict((k, v) for k, v in pairs_list_1)

47 for p in pairs_list_2:

48 if p(0] in mapping:

49 mapping[p[0]] += p[1]

50 else:

51 mapping[p(0]] = 1

52 return mapping.items()

Map-Reduce, Hadoop

The previous style allows for parallelization of the
map step, but requires serialization of the reduce
step. Google map-reduce and Hadoop use a slight
variation that makes the reduce step also
potentially parallelizable. The main idea is to
regroup, or reshuffle, the list of results from the map
step so that the regroupings are amenable to
further mapping of a reducible function.

file—| Read Partition

—>
File
Map
Split
Words [|]
Regroup
|
Map Sort| display
functions
reduce inside
splits = map(split words,partition(read file(sys.argv[1l]),200))

splits per word = regroup (splits)
word fregs = sort (map (count words, splits per word.items()))

Regroup
N

def regroup (pairs list):
Takes a list of lists of pairs of the form
[[(wl, 1), (w2, 1), ..., (wn, 1)],
[(wl, 1), (w2, 1), ..., (wn, 1)],
-]
and returns a dictionary mapping each unique word to the
corresponding list of pairs, so
{ wl : [(wl, 1), (wl, 1)...1],
w2 : [(w2, 1), (w2, 1)...]1,
-}
mapping = {}
for pairs in pairs list:
for p in pairs:
if p[0] in mapping:
mapping[p[0]].append (p)
else:
mapping[p[0]] = [p]
return mapping

Map-Reduce model

Concurrency constrained by

Having worker threads work on mutually exclusive
chunks of data

No communication between threaded code

