# INF 102 FORTH

# History of Forth

- Forth was developed by Chuck Moore in the 1960s (see <u>Forth The</u> <u>Early Years</u> by C. Moore and <u>The Evolution of Forth</u> by E. Rather, et al).
- Original use for Forth was to perform instrument control, data acquisition, and least-squares curve-fitting at NRAO and Kitt Peak.
- Became a formal programming language in 1977 with Forth-77 standard. Subsequent standards were Forth-79 and <u>Forth-83</u> by the Forth Standards Team.
- First commercial Forth system for IBM-PC introduced in 1982 by Laboratory Microsystems, Inc.
- Became an ANSI standard language in 1994, resulting in <u>ANS-Forth</u>.

# **Overview of Forth**

### Forth is interactive

- Perform computations directly at the Forth prompt.
- Define and examine variables and constants
- Define and execute new Forth words (individual subroutines).
- Execute operating system commands.

# **Overview of Forth**

Forth syntax is derived from use of a data stack.

The basic method of passing arguments to, and obtaining results from, Forth words is through the data stack.



# **Overview of Forth**

### □ Forth maintains a list of words, a *dictionary*.

| words     |           |          |           |          |
|-----------|-----------|----------|-----------|----------|
| WORD      | WORDS     | FIND     | 1         | [']      |
| [         | ]         | CREATE   | DOES>     | >BODY    |
| FORGET    | COLD      | ALLOT    | ?ALLOT    | LITERAL  |
| EVALUATE  | IMMEDIATE | CONSTANT | FCONSTANT | VARIABLE |
| FVARIABLE | CELLS     | CELL+    | CHAR+     | DFLOATS  |
| DFLOAT+   | SFLOATS   | SFLOAT+  | ?         | 0        |
| 1         | 2@        | 2!       | A@        | C@       |
| C!        | W@        | W!       | F@        | F!       |
| DF@       | DF!       | SF@      | SF!       | SP@      |
| RP@       | >R        | R>       | R@        | 2>R      |
| 2R>       | 2R@       | ?DUP     | DUP       | DROP     |
| SWAP      | OVER      | ROT      | -ROT      | NIP      |
| TUCK      | PICK      | ROLL     | 2DUP      | 2DROP    |
| 2SWAP     | 20VER     | 2ROT     | DEPTH     | BASE     |
| BINARY    | DECIMAL   | HEX      | 1+        | 1-       |
| 2+        | 2-        | 2*       | 2/        | DO       |
| ?DO       | LOOP      | +LOOP    | LEAVE     | UNLOOP   |
| I         | J         | BEGIN    | WHILE     | REPEAT   |
| UNTIL     | AGAIN     | IF       | ELSE      | THEN     |
| CASE      | ENDCASE   | OF       | ENDOF     | RECURSE  |
| BYE       | EXIT      | QUIT     | ABORT     | ABORT"   |
|           |           |          |           |          |
|           |           |          |           |          |

# **Applications of Forth**

#### Embedded Systems:

smart cards, robotics, Fed-Ex package trackers, embedded web servers, space applications

#### Software Tools Development

- writing <u>cross-assemblers</u> and disassemblers
- writing <u>parsers</u> and programming languages
- scripting and software testing
- Application Development
  - editors, word processors, games, <u>circuit</u> <u>modeling</u>, <u>VLSI design</u>, ...

#### Laboratory Automation

- Hardware Interfacing
- Data acquisiton, data logging
- Instrument control
- Engineering and Scientific
   Computing
  - Data analysis
  - Simulation and modeling
  - Visualization
- Exploratory Computing
  - algorithm development
  - artificial intelligence programming, <u>cellular automata</u>, <u>evolutionary</u> <u>programming</u>

| Stack Operations: | DUP  | SWAP<br>R> | ROT<br>2011P | DROP | OVER |
|-------------------|------|------------|--------------|------|------|
| Examples.         | PICK | •S         | •            | 2DUP | •••  |
| $\rightarrow$     |      |            |              |      |      |
|                   |      | 2          |              | 2    |      |
| 1 2 .S            | 1    |            | 1            |      |      |
|                   |      | 2          |              | 1    |      |
| 1 2 SWAP .S       | 1    |            | 2            |      |      |
|                   |      | 3          |              | 1    |      |
|                   |      | 2          |              | 3    |      |
| 1 2 3 ROT .S      | 1    |            | 2            |      |      |

Integer Arithmetic:

| +      | -    | *   | /  | */ |
|--------|------|-----|----|----|
| MOD    | /MOD | 1+  | 1- |    |
| NEGATE |      | ABS |    |    |

Examples:

3 8 \* . 24 ok

56 5 MOD . 1 ok

**Relational Operators:** 

= < > <= >= 0= 0< ...

### Examples:

1 3 < . -1 ok 4 0= . 0 ok -5 -2 <= . -1 ok

Bitwise Operators:ANDORXORINVERTLSHIFTRSHIFT2\*2/

Example:

: byte-swap ( n - m )
 DUP 8 RSHIFT SWAP 255 AND 8 LSHIFT OR ;
4096 byte-swap . 16 ok

| Branching: | IF     | THEN   |     |     |         |
|------------|--------|--------|-----|-----|---------|
|            | IF     | ELSE . | THI | EN  |         |
|            | CASE . | . OF . | ENI | OOF | ENDCASE |

Example:

```
: even? ( n -- )
    2 MOD 0= IF ." YES" ELSE ." NO" THEN ;
5 even? NO ok
8 even? YES ok
```

Looping:

| DO LOOP     | ?DO LOOP  |
|-------------|-----------|
| DO +LOOP    | ?DO +LOOP |
| IJ          |           |
| BEGIN AGAIN |           |
| BEGIN UNTIL |           |
| BEGIN WHILE | REPEAT    |

Example:

:  $2^{(n-2^n)}$  1 SWAP LSHIFT ;

: pow2-sum ( n - m | sum of terms 2^i, i=0,n-1) 0 SWAP 0 ?DO i 2^ + LOOP ;

10 pow2-sum . 1023 ok

Indefinite Loop Example:

```
: pad2 ( n - m | m is next power of 2, >= n)
DUP 0 <= IF DROP 1 THEN 1
BEGIN
2DUP >
WHILE
2*
REPEAT
NIP;
348 pad2 . 512 ok
```

Recursion Example:

\ Find the greatest common divisor of two
\ integers

: gcd ( n1 n2 -- gcd ) ?DUP IF SWAP OVER MOD RECURSE THEN ;

1050 432 gcd . 6 ok

From <u>A Beginner's Guide to Forth</u> by J.V. Noble

# Forth Resources

Forth Programmers Handbook

□ Forth Code Index

comp.lang.forth

Forth in Python:

http://openbookproject.net/py4fun/forth/forth.html