
INF 102
CONCEPTS OF PROG. LANGS
FUNCTIONAL COMPOSITION

Instructors: James Jones
Copyright © Instructors.

Topics

¨ Recursion
¨ Higher-order functions
¨ Continuation-Passing Style
¨ Monads (take 1)

¤ Identity Monad
¤ Maybe Monad

Recursion

Prototypical Example

fact(n):
if (n <= 1) then 1
else n * fact(n-1)

Thinking Recursively

¨ Add numbers in a list

¨ Print a list of numbers

¨ Check if a number is in a list

Tail Recursion (first-order case)

¨ Function g makes a tail call to function f if return
value of function f is return value of g

¨ Example

fun g(x) = if x>0 then f(x) else f(x)*2

¨ Optimization: can pop current activation record on
a tail call
¤ Especially useful for recursive tail call because next

activation record has exactly same form

slide 6

tail call not a tail call

Example of Tail Recursion
slide 7

fun f(x,y) = if x>y
then x
else f(2*x, y);

f(1,3) + 7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3)

Calculate least power of 2 greater than y

Tail Recursion Elimination
slide 8

control
return val
x 1
y 3

f(4,3)

Optimization
• Tail recursive function is

equivalent to iterative loop

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

fun f(x,y) = if x>y
then x
else f(2*x, y);

f(1,3) + 7;

Tail Recursion and Iteration
slide 9

fun f(x,y) = if x>y
then x
else f(2*x, y);

f(1,y);

control
return val
x 1
y 3

f(4,3)

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

function g(y) {
var x = 1;
while (!x>y)

x = 2*x;
return x;

}initial value

loop body

test

Higher-order functions

Higher-Order Functions

¨ Function passed as argument
¨ Function returned as the result of function call
¨ Functions that take function(s) as input and return

functions as output: these are known as functionals

slide 11

Return Function as Result

¨ Language feature (e.g., Python, ML, ...)
¨ Functions that return “new” functions

¤ Example: fun compose(f,g) = (fn x => g(f x));
¤ Function is “created” dynamically

n Expression with free variables; values determined at run-
time

¤ Function value is closure = áenv, codeñ
¤ Need to maintain environment of the creating function

slide 12

Closures

¨ Function value is pair closure = áenv, code ñ
¤ Statically scoped function must carry a link to its static

environment with it
¤ Only needed if function is defined in a nested block

¨ When a function represented by a closure is
called…
¤ Allocate activation record for call (as always)
¤ Set the access link in the activation record using the

environment pointer from the closure

slide 13

Closures

¨ Function with free variables that are bound to
values in the enclosing environment

(lambda (x)
(lambda (y)

x+y))
closure

def makeInc(x):
def inc(y):

x is "closed" in the definition of inc
return y + x

return inc

What are closures good for?

¨ For changing your mind later!
¤ Replaces constants and variables with functions
¤ Replaces conditionals
¤ ...

Implementing Closures

¨ Closures as used to maintain static environment of
functions as they are passed around

¨ May need to keep activation records after function
returns

¨ Possible “stack” implementation:
¤ Put activation records on heap
¤ Instead of explicit deallocation, invoke garbage

collector as needed

slide 16

Continuations

Continuations

¨ Representation of the control state of a program
¤ Data structure available to the programmer instead of

hidden
¤ Contains the current stack and point in the computation

¨ Can be later used to return to that point

Remember Goto

A: blah
blah
if something GOTO A else GOTO B

B: ...

What are continuations good for?

¤ Co-routines
¤ Exceptions
¤ Preserving flow

in non-blocking I/O

The continuation nature of exceptions

function fact (n) {
if (n < 0)
throw "n < 0" ;

else if (n == 0)
return 1 ;

else
return n * fact(n-1) ;

}

function total_fact (n) {
try {
return fact(n) ;

} catch (ex) {
return false ;

}
}

document.write("total_fact(10): " + total_fact(10)) ;
document.write("total_fact(-1): " + total_fact(-1)) ;

Acts as a continuation

I/O and continuations

Blocking (I/O in most systems)

contents = fs.ReadFile(path);
with contents do

blah

Non-blocking

contents = fs.ReadFileAsync(path);
with contents do

blah

Blocks here until
we have the result

Uh-oh, we still don’t
have it

How to solve this?

I/O and continuations

Non-blocking

fs.ReadFileAsync(path, lambda(contents)
{

with contents do
blah

});

It’s a callback!
It’s the “current continuation” of the blocking form

JavaScript is FULL of this, so are jquery and node.js

Monads

Monads – what is the problem?

¨ The problem: how to affect the world
¨ Problem is more prevalent in pure functional

programming style
¤ No side-effects
¤ That’s right: no side-effects!

No side effects?! Why?

¨ Easier to test: idempotent functions
¨ Easier to parallelize

¨ But the world is ALL about side-effects, right?
¤ Storage, network, UI, ...
¤ Programs affect and control objects and activities in the

real world

http://www.merriam-webster.com/dictionary/idempotent

Example – a Tracing monad

def hypotenuse(x, y):
return math.sqrt(math.pow(x, 2) + math.pow(y, 2))

Now we want to trace it, or affect the world in it:

def hypotenuse(x, y):
h = math.sqrt(math.pow(x, 2) + math.pow(y, 2))
print “In hypotenuse ” + h
return h

Example – a Tracing monad

def hypotenuse(x, y):
h = math.sqrt(math.pow(x, 2) + math.pow(y, 2))
return h, “In hypotenuse” + h

Signature was float, float -> float
Signature now is float, float -> float, string

> math.pow(hypotenuse(6, 16), 4);

What is a monad?

¨ It’s a container

¨ An active container… it has behavior to:
¤ Wrap itself around a [typed] value
¤ Bind functions together

What is a monad?

¨ [A type constructor, m]
¨ A function that builds values of that type

a -> m a (what you’d normally call a constructor in
OOP)

¨ A function (bind) that combines values [of that type]
with computations that produce values [of that type]
m a -> (a -> m b) -> m b

¨ An unwrap function that shows “what’s inside”

